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Abstract. We discuss the “odderon” exchange at high energy within the framework of
the Color Glass Condensate (CGC). We explicitly construct gauge-invariant amplitudes for
multiple odderon exchanges in the scattering between the CGC and two types of color-
singlet projectiles: a ‘color dipole’ and three quarks.
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1. INTRODUCTION

Recent years have seen a remarkable progress in understanding the high-energy
scattering in QCD. The main trigger of this progress is the observation that, when
the scattering energy is very large, the hadron or nucleus exhibits a high density
gluonic matter which is now called the Color Glass Condensate (CGC) [1]. In
short words, the CGC emerges as follows: When the scattering energy is increased,
soft gluon emission (g → gg) is induced, and its successive occurrence leads to
multiple production of ”small-x gluons” that have small fractions x ¿ 1 of the
total momentum (x∝ 1/

√
s with

√
s being the scattering energy). However, as the

density of gluons becomes high, ”gluon recombination” (gg→ g) starts to contribute
and eventually leads to saturation where both processes are balanced. This state is
the CGC. Technically, all these are described by a weak-coupling method (αs ¿ 1
due to the presence of a hard scale Qs À ΛQCD, see below) which is powered by
resummation schemes with respect to (αs ln1/x)n and strong gauge fields.

The properties of CGC are specified by correlation functions of gluons, and the
change of CGC with increasing energy is determined by ”evolution” equations for
these correlation functions. In particular, the Balitsky-Kovchegov (BK) equation is
a nonlinear evolution equation for a 2-point correlation function which physically
corresponds to the scattering amplitude of a ”color dipole” off the CGC, and reduces
to the gluon density in the weak-field regime. The nonlinearity comes into play due
to the recombination effects, whose contribution is naively proportional to square
of the gluon density. As a result of extensive investigation of this equation both in
analytic and numerical methods, it turned out that there exists saturation regime
whose borderline in the kinematical plain is given by the saturation momentum
Qs(x) in such a way that gluons having transverse momenta lower than Qs(x)

1 On the first slide of the talk, I showed an odd-looking lithograph ”Smiling spider” drawn by a
French painter, Odilon Redon.



is saturated. Since the saturation momentum depends upon energy (or x) as
Q2

s(x) ∝ (1/x)λ with λ ' 0.3, it grows with increasing energy (decreasing x) and
the kinematical region for saturation expands. As most of the gluons have their
transverse momenta around Qs(x), the weak-coupling treatment becomes better
and better with increasing energy αs(Qs) ¿ 1, as mentioned above. Lastly, the
solutions to the BK equation show new scaling phenomena called geometric scaling
which naturally comes out due to the presence of a saturation momentum, and is
also observed in experimental results in a beautiful way.

So far, studies of CGC have been focusing on the BK equation for a 2-point
correlation function. However, in order to accurately understand the dynamics of
CGC, we need to treat higher-point functions too. For example, the BK equation is
obtained by a ”mean-field” approximation of the more fundamental equation (the
Balitsky equation), but this original equation involves 4-point function. Also, at
high energy, we anticipate that multi-gluon exchanges between a projectile and
a target, which are not expressed by multiple 2-gluon exchanges, will become
important. All these should be addressed in the framework of the CGC.

The first nontrivial step beyond the BK equation in the direction of higher-
point correlation functions should be the studies on ”odderon” which requires an
exchange of at least three reggeized gluons (in contrast to 2 reggeized gluons for
a pomeron) and is odd under the charge conjugation operation (see Ref. [2] for a
review of traditional description of odderon). This has been done in Ref. [3], and
this talk gives a summary of the results presented there. Below, I first explain how
to construct C-odd scattering amplitudes which correspond to ”odderon” exchange
in two different processes. Then, I show evolution equations for these amplitudes
which are obtained by the application of the JIMWLK equation to them. Lastly,
I compare the result with the BKP equation [4, 5] which is the evolution equation
for the odderon exchanges in the traditional framework.

2. ODDERON OPERATORS IN THE CGC

Let us construct the relevant operators for multiple odderon exchanges in the
scattering between the CGC and two types of simple projectiles: a color dipole
and three quarks in a colorless state. The C-odd dipole-CGC scattering can be
considered as a sub-process of the diffractive scattering of a virtual photon on the
CGC into C–even mesons like ηc. The 3-quark system may be regarded as a crude
model of a baryon.

2.1. The dipole-CGC scattering

Consider the high energy scattering of a qq̄ dipole off the CGC which is treated as
a random classical gauge field α. To obtain the S-matrix of this process, we first
compute the S-matrix for a fixed configuration α, and then average over it. For the
first step, we can use the eikonal approximation: S(x,y;α) = 〈out|in〉, where the



transverse positions of the quark (x) and the antiquark (y) are the same in the
in-coming and the out-going states:

| in〉 ∼ ψ̄in
i (x)ψin

i (y) |0〉 , |out〉 ∼ ψ̄out
i (x)ψout

i (y) |0〉 .
The relation between the in-coming and the out-going fields is found by solving
(∂−−igαata)ψ = 0 for a given gauge configuration α. Namely, ψout

i = (V †
x )ijψ

in
j with

V †
x being the Wilson line in the fundamental representation along the trajectory

of the quark:

V †
x = Pexp

{
ig

∫
dx−αa(x−,x)ta

}
. (2.1)

Then,

S(x,y;α) = 〈out|in〉=
1

Nc

(V †
x )ij(Vy)kiδklδjl =

1

Nc

tr(V †
xVy).

The physical S–matrix is obtained after averaging over the random classical field:

Sτ (x,y) =
∫
DαWτ [α]S(x,y;α) =

1

Nc

〈tr(V †
xVy)〉τ . (2.2)

Notice that this result depends upon the scattering energy or the rapidity τ defined
by τ = ln1/x (x is the Bjorken variable) because the weight function Wτ [α] which
governs the randomness of the gauge field α changes with increasing energy. The
change of Wτ [α] under the change of rapidity is formulated as a renormalization
group equation, which is called the JIMWLK equation.

So far, the scattering process is generic and the exchanged object can be either
even, or odd, under the charge conjugation C. To single out C-even (‘pomeron’)
or C-odd (‘odderon’) exchanges, one needs to project Eq. (2.2) onto in-coming
and out-going states with appropriate C-parities. Since the charge conjugation
for fermions is defined by CψC−1 = −i(ψ̄γ0γ2)T , and Cψ̄C−1 = (−iγ0γ2ψ)T , it
is easy to check that the eigenstates of C in the dipole sector are given by
(ψ̄(x)ψ(y)± ψ̄(y)ψ(x)) |0〉, where +(−) sign yields the C-even(odd) state. These
are reasonable because the charge conjugation essentially works as the exchange of
a quark and an antiquark.

Taking the C-odd dipole state as the in-coming state (a photon is C-odd), and
the C-even dipole state as the out-going state, one obtains the C-odd contribution:

Sodd
τ (x,y) = 〈out, even | in, odd〉=

1

2Nc

〈
tr(V †

xVy)− tr(V †
yVx)

〉
τ
. (2.3)

This allows us to identify the operator for C-odd exchanges in the dipole-CGC
scattering (”the dipole odderon operator”) as

O(x,y)≡ 1

2iNc

tr(V †
xVy−V †

yVx) = −O(y,x). (2.4)

One can check that the operator (2.4) is indeed C-odd by using the transformation
property of the gauge fields, C Aµ C−1 =−(Aµ)T , or, C V C−1 = (V †)T for a generic



Wilson line V built with Aµ. Note that the C-odd contribution (2.3) is the
imaginary part of the S-matrix element:

〈O(x,y)〉τ = =mSτ (x,y). (2.5)

Correspondingly, the C-even, pomeron exchange, amplitude, that we shall denote
as N(x,y), is identified with the real part of the S-matrix:

N(x,y)≡ 1− 1

2Nc

tr(V †
xVy +V †

yVx), (2.6)

〈N(x,y)〉τ = 1−<eSτ (x,y). (2.7)

From perturbative QCD, we expect that the lowest order contribution to the
odderon exchange is of the form dabcAa

µ(x)Ab
ν(y)Ac

ρ(z) with dabc = 2tr({ta, tb}tc)
being a totally symmetric tensor. A similar structure indeed emerges from the
CGC operator (2.4) in the weak-field limit. By expanding the Wilson lines (2.1)
up to cubic order in the field α in the exponent

V †
x [α] ≈ 1 + ig

∫
dx−αa(x−,x)ta

− g2

2

∫
dx−

∫
dy−αa(x−,x)αb(y−,x)[θ(x−−y−)tatb + θ(y−−x−)tbta]

+
{
cubic term in α

}
, (2.8)

one finds the lowest non-trivial contribution to Eq. (2.4):

O(x,y)' −g3

24Nc

dabc
{
3(αa

xα
b
yαc

y−αa
xα

b
xα

c
y)+(αa

xα
b
xα

c
x−αa

yαb
yα

c
y)

}
, (2.9)

where αa
x =

∫
dx−αa(x−,x). As expected, this expression is cubic in αa with the

color indices contracted symmetrically by the d–symbol. Note that this combination
of trilinear field operators is gauge invariant by construction.

2.2. The 3-quark–CGC scattering

We now turn to the 3-quark–CGC scattering at high energies. The 3-quark colorless
state may be given by the ”baryonic” operator εijkψi(x)ψj(y)ψk(z), where εijk is
the complete antisymmetric symbol (i, j,k=1,2,3). For our present purpose, flavor
dependences are irrelevant. By using the same eikonal approximation as for the
dipole-CGC scattering, one obtains the following S-matrix:

Sτ (x,y,z) =
1

3!
εijkεlmn

〈
V †

il (x)V †
jm(y)V †

kn(z)
〉

τ
, (2.10)

where x, y and z are transverse positions of the three quarks. The odderon contri-
bution is given again by the imaginary part of the S-matrix :

〈O(x,y,z)〉τ = =mSτ (x,y,z), (2.11)



where the ”3-quark odderon operator” O(x,y,z) has been introduced as

O(x,y,z) =
1

3!2i

(
εijkεlmnV †

il (x)V †
jm(y)V †

kn(z)− c.c.
)
. (2.12)

Gauge invariance of this operator becomes manifest if one rewrites this as

O(x,y,z) =
1

3!2i

[
tr(V †

xVw)tr(V †
yVw)tr(V †

z Vw)− tr(V †
xVw)tr(V †

yVwV †
z Vw)

−tr(V †
yVw)tr(V †

xVwV †
z Vw)− tr(V †

z Vw)tr(V †
xVwV †

yVw)

+tr(V †
xVwV †

yVwV †
z Vw)+tr(V †

xVwV †
z VwV †

yVw)− c.c.
]
, (2.13)

which is easily done with the help of the identity related to the definition of the
determinant for SU(3) matrices: εijkεlmnVil(w)Vjm(w)Vkn(w) = 3!detV (w) = 3!
(w is an arbitrary transverse coordinate). By construction, this expression is
independent of w when Nc = 3. Note that it can be simplified by choosing w
to be one of the quark coordinates, say w = z:

O(x,y,z) =
1

3!2i

[
tr(V †

xVz)tr(V
†
yVz)− tr(V †

xVzV
†
yVz)− c.c.

]
. (2.14)

Furthermore, when two of the coordinates are the same, the 3-quark odderon
operator reduces to the dipole odderon operator, Eq. (2.4):

O(x,z,z) = O(x,z) = −O(x,x,z). (Nc = 3) (2.15)

This is physically reasonable because the diquark state is equivalent to an antiquark
as far as color degrees of freedom are concerned.

In the weak-field approximation, as obtained after expanding to lowest non-
trivial order (i.e., to cubic order in α) the Wilson lines, one finds again a gauge
invariant linear combination of trilinear field operators with the d-symbol:

O(x,y,z)' g3

144
dabc (2.16)

×
{
(αa

x−αa
z)+(αa

y−αa
z)

}{
(αb

y−αb
x)+(αb

z−αb
x)

}{
(αc

z−αc
y)+(αc

x−αc
y)

}
.

Lastly, one can similarly introduce the ”3-quark pomeron operator” N(x,y,z) by
the real part of the scattering matrix:

〈N(x,y,z)〉τ = 1−<eSτ (x,y,z), (2.17)

N(x,y,z) = 1− 1

3!2

(
εijkεlmnV †

il (x)V †
jm(y)V †

kn(z)+c.c.
)
. (2.18)

This operator should be important in describing the high-energy behavior of the
proton-nucleus collisions, which is, however, out of the scope of the present paper.



3. ODDERON EVOLUTION

Once we know the relevant operators for the C-odd scattering amplitudes, we can
apply the JIMWLK equation (or its simplified version proposed in Ref. [3]) to the
operators to derive the evolution equations for them. We consider the two cases
which were discussed in the previous section: the dipole-CGC scattering and the
3-quark–CGC scattering, and then discuss the relation between our result and the
BKP equation.

3.1. The dipole–CGC scattering

For the dipole-CGC scattering, the evolution equations obeyed by the average
amplitudes 〈N(x,y)〉τ and 〈O(x,y)〉τ can be easily derived from the first Balitsky
equation because the operators N(x,y) and O(x,y) are, respectively, the real part
and the imaginary part of the dipole-CGC scattering operator (1/Nc)tr(V

†
xVy)

which satisfies the Balitsky equation. Therefore, the respective equations can be
simply obtained by separating the real part and the imaginary part in the Balitsky
equation. The result is

∂

∂τ
〈O(x,y)〉τ =

ᾱs

2π

∫
d2z Mxyz

〈
O(x,z)+O(z,y)−O(x,y)

−O(x,z)N(z,y)−N(x,z)O(z,y)
〉

τ
, (3.1)

∂

∂τ
〈N(x,y)〉τ =

ᾱs

2π

∫
d2z Mxyz

〈
N(x,z)+N(z,y)−N(x,y)

−N(x,z)N(z,y)+ O(x,z)O(z,y)
〉

τ
, (3.2)

where we have defined the dipole kernel

Mxyz =
(x−y)2

(x−z)2(z−y)2
. (3.3)

Several comments are in order about these equations:

• As is the case with the Balitsky equations, the equations above do not close
by themselves (since they contain both two-point and four-point functions, as
mentioned before), but rather belong to an infinite hierarchy.

• In the weak-field limit, both of the evolution equations reduce to the (linear)
BFKL equation. However, the BFKL equation for the odderon exchange
must be solved with the antisymmetric condition (2.4). Therefore, even if the
evolution equations are the same, the respective solutions behave differently.
In particular, it is known that the highest intercept of the BFKL solution
with C being odd is given by 1 which is smaller than the (hard) pomeron
intercept [6].



• The non-linear terms in these equations couple the evolution of C-odd and
C-even operators. For instance, the last term, quadratic in O, in the r.h.s. of
Eq. (3.2) for 〈N〉τ describes the merging of two odderons into one pomeron
(’merging’ from the target point of view). This has not been discussed before
in connection with the Balitsky hierarchy.

• In the mean-field approximation, Eqs. (3.1)–(3.2) reduce to a closed system
of coupled, non-linear, equations for 〈N〉τ and 〈O〉τ :

∂

∂τ
〈O(x,y)〉τ =

ᾱs

2π

∫
d2z Mxyz

[
〈O(x,z)〉τ + 〈O(z,y)〉τ −〈O(x,y)〉τ (3.4)

−〈O(x,z)〉τ 〈N(z,y)〉τ −〈N(x,z)〉τ 〈O(z,y)〉τ
]
,

∂

∂τ
〈N(x,y)〉τ =

ᾱs

2π

∫
d2z Mxyz

[
〈N(x,z)〉τ + 〈N(z,y)〉τ −〈N(x,y)〉τ (3.5)

−〈N(x,z)〉τ 〈N(z,y)〉τ + 〈O(x,z)〉τ 〈O(z,y)〉τ
]
.

The first of these equations has been already proposed in Ref. [6], as a plausible
non-linear generalization of the BFKL equation in the C-odd channel. As for
Eq. (3.5), this is the BK equation supplemented by a new term describing the
merging of two odderons.

• One of the significant consequences of the nonlinear effects in the factorized
evolution equation (3.4) is that the odderon amplitude 〈O〉τ will decay into
zero with increasing energy. This is most easily seen by noting that when the
pomeron amplitude 〈N〉τ is close to 1 (deeply in saturation regime which is
expected to realize at high energy), the nonlinear terms in Eq. (3.4) cancel
the first two terms on the r.h.s. and the resulting equation for 〈O〉τ simply
implies decrease of the solution. Therefore, as one goes to higher energies, the
odderon contribution becomes less and less important.

3.2. The 3-quark–CGC scattering

Since we know the full non-linear expression of the relevant operator (2.12) for the
3-quark–CGC scattering, there is no difficulty at conceptual level in deriving the
evolution equation. A straightforward application of the JIMWLK equation (or its
simplified version) to this operator automatically leads to the result. However, the
resulting equation turned out to be complicated and not very illuminating: Through
their non-linear terms, they couple the 3-quark odderon operator to other types
of operators with different color structures. Therefore, in this talk, we rather show
the evolution equation for the weak-field version of the 3-quark odderon operator,
Eq. (2.16). This is indeed sufficient to discuss the correspondence with the BKP
equation [4, 5], which is a linear evolution equation for the odderon exchange.



After a straightforward but lengthy calculation, the following linear evolution
equation for 〈Oxyz〉τ ≡ 〈O(x,y,z)〉τ is obtained

∂

∂τ
〈Oxyz〉τ =

3αs

4π2

∫
d2w Mxyw

(
〈Oxwz〉τ + 〈Owyz〉τ −〈Oxyz〉τ

−〈Owwz〉τ −〈Oxxw〉τ −〈Oyyw〉τ −〈Oxyw〉τ
)

+
{

2 cyclic permutations
}
. (3.6)

Note that this is a closed equation for 〈Oxyz〉τ , which was expected from the
viewpoint of gauge invariance: the only gauge invariant C-odd operators available
are Oxyz and O(x,y) = Oxyy (cf. Eq. (2.15)). The linear combination of O’s in
the integrand vanishes at the points w = x and w = y where lie the poles of the
dipole kernel Mxyw, so the poles are harmless. Also, one can easily check that
the above equation is consistent with the relation (2.15) between the dipole and
the 3-quark odderon amplitudes: if one sets z = y, Eq. (3.6) reduces indeed to the
BFKL equation which is the evolution equation of the dipole-CGC scattering in
the weak-field regime.

Now we come to the final point: the comparison of our result (3.6) with the
BKP equation. First of all, our result (3.6) does not look equivalent to the BKP
equation. In fact, within our framework, the BKP equation rather appears as the
evolution equation for the 3-point Green’s function defined by

fτ (x,y,z)≡ dabc〈αa
xα

b
yαc

z〉τ . (3.7)

Indeed, the evolution equation for this Green’s function reads

∂

∂τ
fτ (x,y,z) =

ᾱs

4π

∫
d2wMxyw

(
fτ (x,w,z)+fτ (w,y,z)−fτ (x,y,z)−fτ (w,w,z)

)

+
{

2 cyclic permutations
}

. (3.8)

Notice that this equation is nothing but the Fourier transform of the BKP equation
which is usually written in the momentum space. Since the 3-quark odderon
operator Eq. (2.16) can be represented as a linear combination of the 3-point
Green’s functions, the equivalence between our result (3.6) and the BKP equation
is essentially established. However, there is a caveat when we write Eq. (3.8). In
fact, since the Green function fτ (x,y,z) is not gauge invariant as it is, if one applied
the original JIMWLK equation to this operator, one would obtain a result which
is different from Eq. (3.8) and is even ill-defined due to infra-red divergences (the
evolution equation (3.8) is finite and well-defined). Instead of doing this, we have
derived Eq. (3.8) from the simplified version of the JIMWLK equation which is
free of any infra-red divergences and is justified for gauge invariant operators. This
means that we can use the simplified version of the JIMWLK equation to gauge
variant operators as far as we finally consider gauge invariant quantities (infra-red
divergences are canceled among themselves in the final result). In other words, the
use of the simplified JIMWLK equation for the Green function corresponds to a
kind of regularization of the resulting evolution equation.
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