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Cronin effect and high p, suppression from Color Glass Condensate*
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We present an analytical understanding of properties of the ratio between gluon distribu-
tions of a nucleus and a proton based on the framework of the Color Glass Condensate.
This ratio is closely related to the nuclear modification factor in the deuteron-Au colli-
sions measured by Brahms experiment at RHIC.

1. Motivation — The Brahms data in deuteron-Au collisions

The Color Glass Condensate has recently come under the spotlight with the ex-
perimental results! for the nuclear modification factor in the deuteron-Au collisions
measured by the Brahms experiment at RHIC. This is because the global behaviour
of the experimental data was qualitatively consistent with the predictions made by
the Color Glass Condensate.?-® However, the detailed mechanism behind the phe-
nomena was not clear at that time, and we have made a detailed analysis based on
analytical calculations. In this talk, I present a summary of our results.

Let me first explain the main results of the Brahms experiment. The nuclear
modification factor is a function of transverse momentum p,; and rapidity y of the
produced hadrons and is defined by

dNagay

d?pd
RdAu(PJ.:Z/) = % (1)
Ncollm

where dNy ., /d*pdy and dN,,/d*pdy are multiplicities of hadrons per unit of phase
space in dAu and pp collisions. This quantity is normalized so that Rga, = 1
corresponds to the ”null effect”, namely, when the dAu collision is simply a collection
of pp collisions, which is expected to be realized at very high transverse momentum.
Therefore, any deviation from 1 indicates something collective which is not seen
in the pp collisions. The Brahms experiment plotted this ratio as a function of
transverse momentum p; at different values of rapidity y (for simplicity, we do
not distinguish between rapidity and pseudo-rapidity). The data show the following
properties:

*Based on the collaboration with Edmond Iancu and Dionysis Triantafyllopoulos.
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1. At mid-rapidity y = 0, the ratio Rga, becomes larger than 1 for p, >
2GeV, and appears to be saturated for higher momentum p; ~ 5GeV.
Since the ratio must go to 1 at extremely high p, , it is natural to say that
there is a peak. This is called the Cronin peak.

2. As the rapidity is increased, the magnitude of the ratio Rga, gets sup-
pressed and becomes smaller than 1 for all the measured transverse mo-
mentum p; < 4 GeV. Besides, the shape of Rj4, looks flat® at high p; and
the peak structure seems to disappear.

3. The ratio Rop(p.,y) of the central to peripheral collisions is also measured
and the data show that, at mid-rapidity y = 0, more central collisions give
larger Cronin effect, while at forward rapidity y = 3.2, more central leads
to more suppression.

In order to have an analytic understanding of these phenomena, we consider the
ratio between the gluon distributions in a nucleus and a proton:

YA (PJ_: y) (2)
A1/3(pp(pJ-7y) .
This quantity is closely related to the nuclear modification factor (1). This is reason-
able because, within the &, factorization formula, the difference between multiplic-
ities of pA and pp collisions comes only from the gluon distributions of the targets.
In fact, the qualitative equivalence of the two quantities is numerically checked.? In
other words, the ratio (2) is a more fundamental quantity which directly measures
nuclear collective effects, and the properties of the ratio (2) are transfered into those
of the nuclear modification factor (1). Therefore, one can analytically understand
the physics behind the Brahms data by investigating the ratio (2).

Rpa(pL,y) =

2. Cronin effect at lower energies

We assume that one can use the McLerran-Venugopalan (MV) model to study the
Cronin effect at lower rapidites, which corresponds to not-so-high energies. This
model is applicable because it is essentially equivalent to the multiple collisions of
the Glauber type, and because one can ignore the effect of quantum evolution.
The nuclear gluon distribution from the MV model with a fixed coupling reads

1 —exp{ - %riQiln;fm}

masNer?

SOA(pJ_) — /dzTJ_ e—’ipl'T‘L , (3)

where A is a non—perturbative scale of order Aqcp, Ne = 3, and Q% = asNepa
A'/3 is proportional to the color charge squared p4 of the valence quarks per unit
transverse area. The saturation scale can be defined by the transvese scale when
the exponent of the integrand above is of the order of 1. This yields

Q3 (4)

Q*(A) = ay,Nopualn =~ A3 1n AY3, (4)

2The experimental data at forward rapidity y = 3.2 have been updated and now show rather a
flat behaviour at high momentum. See the version 2 of Ref. 1.
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Fig. 1. Rpa as a function of the scaled momentum variable z = p% /Q2(A) from the MV model
with fixed coupling. The thick solid line corresponds to the ratio Rp4, while the thin solid line
and dotted line are the saturation and twist contributions, respectively.

The saturation scale separates the linear and non-linear regimes. At high transverse
momentum p,; > @Qs(A) which corresponds to the linear regime, the distribution
(3) gives the Bremsstrahlung spectrum:

palpr) =52, for  pL>Qu(A), (5)

Py

which means that at this transverse momentum, the nucleus looks simply a collec-
tion of perturbative nucleons pa = A'/3u,, and thus p4 ~ A'/3p,. On the other
hand, at low transverse momenta p; < Qs(A), the gluon distribution is given by

2

walpL) ~ L {ln QSSA) + (9(1)} , for p; K Qs(A4). (6)
asN, Yan

Note the overall factor 1/a, which becomes large for the weak coupling o < 1.

One can separate the whole integral in eq. (3) into ”saturation” and ”twist”
contributions w4 = %t + ¥t The twist contribution is a part which can be
expanded in powers of Q2?(A4)/p%, and contains the Bremsstrahlung spectrum (5)
as the leading contribution. This twist contribution becomes less and less important
as the momentum becomes small. On the other hand, the saturation part %3¢
remains large at small momentum p, < Qs(A) and is explicitly given by 3¢ (z) =
ﬁI‘(O, z), with z = p? /Q2%(A). At small z, this reproduces eq. (6).

If one takes the Bremsstrahlung spectrum for the proton distribution ¢, (this is
reasonable because the saturation scale of a proton is very small at lower energies
and thus the proton is in the linear regime for the kinematical regime of our interest),
the change of behaviour of the nuclear gluon distribution mentioned above leads to
a nontrivial shape of the ratio Rpa:

RPA L1 p1L K QS(A)
Rpa~IAP>1  p ~ Qu(A) (7)
RPA—)1+ pJ_>>Qs(A)-

In Fig. 1, we have shown the full contribution as well as the saturation and twist con-
sat/twist sat/twist

tributions R’ = ¢’y [pBS where pBS = A3, = u? /p%. Obviously,
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the ratio develops a pronounced peak around the saturation scale. The location and
height of the Cronin peak are essentially determined by the saturation contribution,
and can be computed analytically in an expansion in powers of 1/ In[Q?%(A)/A?]. The
leading order results are zpmaz =~ 0.435, Rpa(2maz) ~ 0.281 In[Q?(A4)/A?]. Note that
the height of the Cronin peak Rpa(2maez) is enhanced for larger A. This is consis-
tent with the behaviour of Rop at mid-rapidity, since the peripheral collision can
be regarded as the collision of the nucleus with smaller A.

3. High p, suppression at large energies

Moving to forward rapidities corresponds to seeing smaller  contribution of the tar-
get. In order to describe the gluon distribution at higher energies, one has to include
the effects of quantum evolution with respect to y = In 1/ into the MV model which
was used for the gluon distribution at lower energy. This can be done by solving the
Balitsky-Kovchegov equation with the MV model as the initial condition. Then, one
finds three kinematical regimes where the gluon distribution shows qualitatively dif-
ferent behaviours. These are the CGC regime p;, < Q5(A,y), in which the gluons
are deeply saturated, the BFKL regime Q;(4,y) < p1 < Q4(A,y), in which the
geometric scaling approximately holds while the evolution is described by the linear
BFKL equation, and the DLA (double log approximation) regime p; > Q,4(4,y),
in which the effect of saturation is totally ignored. Note that the saturation scale
which separates the CGC and BFKL regimes is now energy (rapidity) dependent:

Q3 (4,y) = Q5 (A4) e, ®)

where ¢ ~ 4.88 and &, = a;N./m. The scale Q4(A,y) which separates the BFKL
and DLA regimes is given by

Q7 (A, y) = Q3(4,9)/Q3(A). 9)

More precisely, this scale gives the upper limit of the geometric scaling® and has
nothing to do with the DLA regime. However, since, in the fixed coupling case, the
upper kinematical limit for the BFKL equation happens to roughly coincide with
Q4(A,y), one can practically use Q4(A,y) as the separation scale for the BFKL and
DLA regimes. The same thing does not occur in the running coupling case.

In each regime, the gluon distribution of a nucleus is approximately given by

1, @(4y)

va(pL,y) ~ , if p, € CGC (10)

asN, pﬁ_
1 (@4 Pl :
~ 2 1 A f BFKL (11
eaen) = i (L) {mtval, i o emrkL
HA ~ 2 /)2 i
oo, = exp {1y bt /341 it p.eDLA (12)
1

where v ~ 0.63 and A is some undetermined constant of the order of 1. The differ-
ence 1—vy ~ (.37 is called the anomalous dimension. Note that the gluon distribution
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Fig. 2. Left: Evolution map for the proton and nucleus. Right: R} 4 in the double BFKL regime
as a function of z = p% /Q2(A,y). The solid lines correspond to y = 0.75+0.3n, with n = 0,...,4
from top to bottom. The dashed line is the asymptotic (y — oo) profile.

in the CGC and BFKL regimes is a function of Q2(4,y)/p?% : This is the geometric
scaling. The same property cannot be seen in the DLA regime. One can obtain the
gluon distribution for the proton target by putting A = 1.

Since we have three different regimes for both the nucleus and the proton, and
the saturation scale of the nucleus is much larger than that of the proton by a factor
of AY3: Q%(A,y) = AY3Q2%(p,y), one has to treat totally six different kinematical
regimes as is indicated in Fig. 2 (left). However, since we know the analytic ex-
pression of the gluon distribution in each regime, it is now easy to form the ratio
Rpa. To see the behaviour of the ratio Rp4 at high momentum, let us consider
the ”double BFKL regime” where both the nucleus and proton are in the BFKL
regime described by eq. (11). The result is shown in Fig. 2 (right). As the rapidity
is increased, the ratio is more and more suppressed. For all the rapidities consid-
ered here, the ratio is a monotonically increasing function of z = p% /Q%(A,y). This
global behaviour is consistent with the Brahms data at forward rapidity.

Physically, the suppression of the ratio Rp4 is induced by the mismatch between
the evolution speeds of the nucleus and proton. For the same (large) transverse
momentum, the nucleus is always closer to saturation than the proton. The proton
has more phase space to evolve and ¢, in the denominator of the ratio grows faster,
while the nucleus evolves only slowly. Therefore, in effect, the ratio is suppressed as
the energy is increased.

One can also prove that the ratio is a decreasing function of A, which is consistent
with the experimental results for Rop at forward rapidity.

4. Effects of running coupling

As we go to higher rapidities, the effects of a running coupling becomes important.
Here we discuss how the previous results are modified if one includes the effects of
a running coupling as(Q?) = bo/ In(Q?/Aycp)-

Since the MV model is a classical approximation, eq. (3) is a priori written for
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a fixed coupling a;. However, to be consistent with the running coupling evolution,
we need to define the running coupling version of the MV model. Formally, this is
obtained from eq. (3) by replacing as — a,(4/r%) within the denominator of the
integrand, and also within Q%:

1—e i71Q% 4

In —
mwhoNer? ra A2’

(PA(p_L) — /dQT_J_ e—’ipJ_-TJ_ (13)

where Q% = boN.u4 has now a slightly different meaning as compared to the fixed
coupling case, but is still proportional to A'/3. Here Q% plays the role of saturation
scale Q2(A) = Q% o« A'/3. One can again separate the integral into the saturation
and twist contributions, and all the qualitative properties of the Cronin peak are
the same as in the fixed coupling case.

The main difference in the quantum evolution is the change of the energy and
A dependences of the saturation scale (cf: eq. (8)): %7

Q5 (4,y) ~ Adyep exp {\/2cby + (in Qg(A)/A%QCD)2} ) (14)

where b = 12N./(11N, — 2N¢) and ¢ ~ 4.88 is the same number as in eq. (8).
Namely, as the rapidity is increased, the saturation scale grows slower than in the
fixed coupling case, and the nuclear A dependence becomes weaker and weaker and
eventually disappears.” For example, due to this properties, the ratio goes to the
universal value R,4 — 1/A'/3 at very high energy for a wide region of momenta.

5. Conclusion

We have presented an analytical understanding of the Cronin effect and high p, sup-
pression of the ratio Rp4 (2). All the properties observed in R4 are consistent with
the nuclear modification factor measured by the Brahms experiment. Therefore, we
can naturally conclude that the CGC picture can be one of the most plausible ex-
planations of the Brahms data. This conclusion is now further confirmed by more
quantitative analyses by other people.?
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