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Extending graphene structure to four dimensions gives

e a two-favor lattice fermion action

e oOne exact non-singlet chiral symmetry
e protects mass renormalization

e strictly local action

e only nearest neighbor hopping

e fast for simulations
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Graphene electronic structure remarkable
e low excitations described by a massless Dirac equation
e two “flavors” of excitation
e versus four of naive lattice fermions

e massless structure robust

e relies on a “chiral” symmetry

e tied to a non-trivial mapping of S; onto S,

Four dimensional extension
e 3 coordinate carbon replaced by 5 coordinate “atoms”
e generalize topology to mapping S3 onto S5
e complex numbers replaced by quaternions
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Chiral symmetry versus the lattice “
e Lattice is a regulator ‘”‘W
e removes all infinities n
e lattice symmetries survive guantization
e Classical U(1) chiral symmetry broken by quantum effects
e any valid lattice formulation must not have U (1) axial symmetry
e But we want flavored chiral symmetries to protect masses
e Wilson fermions break all these
e staggered require four flavors for one chiral symmetry

e overlap, domain wall non-local, computationally intensive

Graphene fermions do it in the minimum way allowed!
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Carbon and valence bond theory for dummies

Carbon has 6 electrons
e two tightly bound in the 1s orbital
e second shell: one 2s and three 2p orbitals

In a molecule or crystal, external fields mix the 2s and 2p orbitals

Carbon likes to mix the outer orbitals in two distinct ways
e 4 sp? orbitals in a tetrahedral arrangement

e methane CH,4, diamond ('

e 3 sp? orbitals in a planar triangle plus one p
e benzene CsHg, graphite C' H

e the sp? electrons tightly held in “sigma” bonds
e the p electron can hop around in “pi” orbitals
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Review of graphene structure

A two dimensional hexagonal planar structure of carbon atoms
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e http://online.kitp.ucsb.edu/online/bblunch/castroneto/
e A. H. Castro Neto et al., arXiv:0709.1163

Held together by strong “sigma’” bonds, sp?
One “pi”’ electron per site can hop around

Consider only nearest neighbor hopping in the pi system
e tight binding approximation
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Fortuitous choice of coordinates helps solve

Form horizontal bonds into “sites” involving two types of atom
e “a” on the left end of a horizontal bond
“b” on the right end

e all hoppings are between type a and type b atoms

Label sites by non-orthogonal coordinates z; and z»
e axes at 30 degrees from horizontal
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Hamiltonian

H=K Z a;rzl,xgb$19$2 + bL,mQamlax?
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e hops always between a and b sites

Go to momentum (reciprocal) space
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Hamiltonian breaks into two by two blocks
dp1 dp2 - 0 =z a
H =K T bJ[ ~'P1,pP2
/ 27‘(‘ Qﬂ- aplapz P1,p2 ) ¥ 0 bp17p2

e Where 2 =14 e "1 4 gTiP2

~ 0
H<p17p2):K< * g)

A

Fermion energy levels at E(p1,p2) = + K|z
e energy vanishes only when |z| does

e exactly two points p1 = p2 = +27/3
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Topological stability
e contour of constant energy near a zero point
e phase of z wraps around unit circle
e cannot collapse contour without going to |z| = 0
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No band gap allowed
e Graphite is black and a conductor
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Hexagonal structure hidden in deformed coordinates
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Connection with chiral symmetry
e b — —bchanges sign of H

0

= z : : 1 0
o H(p1,p2) =K (Z* O) anticommutes with o3 = (O _1)

e 03 — 75 In four dimensions

No-go theorem
e periodicity of Brillouin zone
e non-trivial wrapping around one zero must unwrap around another

e two zeros is the minimum possible
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Four dimensions

Want Dirac operator D to put into path integral action ) D)
e require “~5 Hermiticity”
e v5Dv5 = Dt
e work with Hermitean “Hamiltonian” H = ~5D
e not the Hamiltonian of the three dimensional Minkowski theory

Require same form as the two dimensional case

ff(pu)ZK(O* g)

zZ

e four component momentum, (p1, p2, p3, p4)
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To keep topological argument a4

e extend z to quaternions

® z—ap+ia-o

o |2 =%, a

H(p,) now a four by four matrix
e “energy” eigenvalues still E(p,) = £K|z|
e constant energy surface topologically an Ss

e surrounding a zero should give non-trivial mapping
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Implementation
e not unique

e extend 1+ e~ 1 + ¢P2 to a sum of quaternion pieces
z =B(4C — cos(p1) — cos(p2) — cos(p3) — cos(pa))

+ 0, (sin(p1) + sin(pz) — sin(ps) — sin(py))

+ i0y (sin(py) — sin(pz) — sin(ps) + sin(ps))

+ i0.(sin(py) — sin(p2) + sin(ps) — sin(ps))

e B and C are constants to be determined
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Zero at |z| = 0 requires all components to vanish, four relations

_i_
5

o O O

sin(p1 S1 (pg) — Sin(p3) — sin(p4)

)

in(p1) — sin(pz) — sin(ps) + sin(ps) =
in(p1) — sin(ps) + Sm(pg) — sin(py) =
cos(py) + COS(pz) + cos(ps) + cos(ps) = 4C

N

@)

o first three imply sin(p;) = sin(p,) Vi, j
e cos(p;) = £ cos(p;)

e last relation requires C' < 1

e if C'>1/2, only two solutions

e p; =p,; = tarccos(C)
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As in two dimensions
e expand about zeros
e identify Dirac spectrum

e rescale for physical momenta

Expanding about the positive solution
® Du— ]5 + qu
e p = acos(C)

e define S =sin(p) = v1 — C?
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The quaternion becomes

2 =BS(q1 + q2 + q3 + q4)
+iCox(q1 + g2 — q3 — qa)
+iCoy(q1 — g2 — g3 + qa)
+iCo,(q1 —q2 +q3 — qa) + 0(92)

Introduce a gamma matrix convention

., ({0
7_0“80_(5 0)

0
74—-@@1—(_@. 0)

V5 = Oz ® 1= Y17Y27Y37V4 = dlag(lv 17 _17 _1)
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The Dirac operator becomes
D =C(q1 + g2 — g3 — q1)im
+C(q1 — g2 — g3 + q4)i2
+C(q1 — g2 + g3 — qa)i73
+BS(q1 + g2 + g3 + q4)ivs + O(q?)

Reproducing the Dirac equation if we take

ki =C(q1 + 92 — g3 — u)
ko =Clq1 —q2 — g3 + qu)
ks =C(q1 — q2 +q3 — qa)
ke =BS(q1 + g2+ q3 + q4)
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Position space rules from identifying ¢*?? terms with hopping
e 0N site action: 4i BOYyatp
e hop in direction 1: Y (+1 + Y2 + vz — iBya)y;

Y

Y

e hopindirection 4: ¢, (=71 + 72 — 3 — iBy4)Y;

e Mminus the conjugate for a reverse hop

e hopindirection2:  ¢,(4+v1 — 2 — 3 — iBs
e hopindirection3:  4¢,;(—y — 2 +73 — By

)
)
)
)

e a mixture real and imaginary coefficients for the ~’s
e 5 exactly anticommutes with D

e D is purely anti-Hermitean

e 4 nhot symmetrically treated to v
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The k coordinates should be orthonormal

e the ¢'s are not in general

gi-q; _ B?S*-C7
\q|2 o B2S2 1 3(C2

If B=C'/S the q axes are also orthogonal
e allows gauging with simple plaguette action

e Borici B=1,C=8=1/V2
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Alternative choice for B and C' from graphene analogy
e extend Brillouin zone to include neighboring zones
e zeros of z in momentum space form a lattice
e (give each zero 5 symmetrically arranged neighbors
e C =cos(m/5), B=+/5
e interbond angle 6 satisfies cos(0) = —1/4
e O =m—acos(1/2) =104.4775... degrees

e 4-d generalization of the diamond lattice
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The physical lattice structure

Graphene: one bond splits into two in two dimensions
e O =m—acos(1/2) =120 degrees

iterating ._.< . Q

e smallest loops are hexagons
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Diamond: one bond splits into three in three dimensions
e tetrahedral environment
e 0 =m—acos(1/3) =109.4712... degrees

iterating o < .
e smallest loops are cyclohexane chairs /

: Eﬁéﬁﬁﬁﬁﬂﬁﬁfﬁijﬁaikl\ggggﬁi LER
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4-d graphene: one bond splits into four
e 5-fold symmetric environment
e O =m—acos(1/4) =104.4775... degrees

iterating ’—< e Q

e smallest loops are again hexagonal chairs /
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Issues and guestions

Requires a multiple of two flavors
e can split degeneracies with Wilson terms

Only one exact chiral symmetry
e notthe full SU(2) ® SU(2)
e enough to protect mass
e 7y a Goldstone boson
e 74 only approximate

Not unique
e only need z(p) with two zeros
e Borici’s variation with orthogonal coordinates
e C =cos(m/5), B=+/5
e approximate “pentahedral” symmetry
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192 element hypercubic symmetry group reduced to 48 elements

e natural time axis along major hypercube diagonals

e 24 element tetrahedral symmetry in space

e permutation of links in positive direction

e half of these elements have negative parity

e time reversal exchanges positive and negative links

e 2 x 24 = 48 element discrete symmetry group
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Do we need additional parameters to tune?  Bedaque, Buchoff, Tibursi, Walker-Loud
e no full space-time symmetry
e speed of light for fermions and gluons may differ
e In general the gauge action requires both 4 and 6 link terms
e for BS = C four link terms should be adequate
o C =cos(n/5), B=+/5
e approximate “pentahedral” symmetry
e 4-d generalization of diamond

e should constrain 6 link terms
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Zero modes from gauge field topology only approximate
e the two flavors have opposite chirality
e their zero modes can mix through lattice artifacts

e similar to staggered, but 2 rather than 4 flavors

Comparison with staggered
e Dboth have one exact chiral symmetry
e both have only approximate zero modes from gauge topology
e four component versus one component fermion field
e two versus four flavors

e rooting approximation not required for two light flavors
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Summary

Extension of graphene and diamond lattices in 2 and 3 dimensions:
e a two-flavor lattice Dirac operator
e oOne exact chiral symmetry
e protects from additive mass renormalization
e eigenvalues purely imaginary for massless theory
e Iin complex conjugate pairs
e strictly local
e should be very fast to simulate
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