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Abstract
| discuss several aspects of CP non-invariance in the diromtgracting theory of quarks and gluons. |
use a simple effective Lagrangian technique to map out tiemeof quark masses where CP symmetry is
spontaneously broken. | then turn to the possible expliitf®lation arising from a complex quark mass.
After summarizing the definition of the renormalized theasya limit, | argue that attempts to remove the
CP violation by making the lightest quark mass vanish arevetitdefined. | close with some warnings for

lattice simulations.
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I. INTRODUCTION

The SU(3) non-Abelian gauge theory of the strong interastiis quite remarkable in that,
once an arbitrary overall scale is fixed, the only paramets¥ghe quark masses. Using only a
few pseudoscalar meson masses to fix these parametersytfdorban gauge theory describing
qguark confining dynamics is unique. It has been known for stme [] that, as the param-
eters are varied from their physical values, exotic phem@n occur, including spontaneous
breakdown of CP symmetry.

The possibility of a spontaneous CP violation is most ealyonstrated in terms of an effec-
tive chiral Lagrangian. In Sectidd Il | will review this molder the strong interactions with three
qguarks, namely the up, down, and strange quarks. This l&ygrtbundwork for the discussion in
Sectiorfdl of where the CP violating phase arises. Se@discusses how heavier states, most
particularly then’ meson, enter without qualitatively changing the structure

Included among the mass parameters of the strong intenaasca complex phase which, if
present, explicitly violates CP symmetry. This paramepgrears to be extremely smel [2] since
no such violation is seen phenomenologically. A puzzle fand unification asks why is CP
violation small for the strong interactions but not the wé#k It is sometimes suggested that a
massless up quark would solve this problem, and | turn toi¢kise in sectiollV. There | argue
that asking whether the up quark mass vanishes is not pllysiec@aningful. For this | elucidate
the meaning of the continuum theory and the correspondinganties in defining the quark
mass. These issues remain even with the recently discoeanedly symmetric lattice fermions.
Finally, Sectiorl3 contains some brief remarks, includpassible impacts of the CP violating

structures on lattice gauge simulations.

Il. THE EFFECTIVE MODEL

A CP violating phase appears naturally in the simplest €Biggma model of interacting pseu-
doscalar mesons. In this section | review the basic modellamdtandard connections between
the quark masses and pseudoscalar meson masses. Nothirsgsecdtion is new; | am setting the
stage for later discussion.

To be specific, consider the three flavor theory with its apjnate SU(3) symmetry. Using

three flavors simplifies the discussion, although the CRatiitd) phase can also be demonstrated



for the two flavor theory following the discussion it [4]. | wowith the familiar octet of light
pseudoscalar mesomg with a = 1...8. In a standard way (see for examglz [5]) | consider an
effective field theory defined in terms of the SU(3) valuedugrelement

> =expimgAq/fr) € V(3) (1)

Here theA, are the usual Gell-Mann matrices which generate the flavaugandf;; is a di-
mensional constant with a phenomenological value of ab8Wl18V. | follow the normalization
convention that Txg Ag = 20,5. The neutral pion and the eta meson will play a special roteen

later discussion; they are the coefficients of the commugaererators

1 0 O
A3=|0 -1 O (2)
O 0 O
and
1 0 O
1
AMda=—|0 1 0|, 3
8 73 (3)
0O 0 -2

respectively. In the chiral limit of vanishing quark massee model the interactions of the eight

massless Goldstone bosons with the effective Lagrangiasitge

Lo = %%Tr(au 5T9,2) (4)
The non-linear constraint & onto the group SU(3) makes this theory non-renormalizabigto
be understood only as the starting point for an expansiouigbe interactions in powers of their
momenta. Expanding EJ(4) to second order in the meson figlds the conventional kinetic
terms for our eight mesons.
This theory is invariant under parity and charge conjugnmatibhese operators are represented

by simple transformations
P:3 —» 31
(5)
CP: X —+ ¥
where the operation refers to complex conjugation. The eight meson fields aragscalars.
The neutral pion and the eta meson are both even under changmation.

With massless quarks, the underlying quark-gluon theosyahehiral symmetry under

YL — Yo
YR — YrOR

(6)
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Here(gL,gL) isin (SJ(3) x SJ(3)) andy r represent the chiral components of the quark fields,
with flavor indices understood. This symmetry is expecteogtbroken spontaneously to a vector
SU(3) via a vacuum expectation value @[ ¢r. This motivates the sigma model through the
identification

(Ol YRIO) ¢+ VE (7)

The quantityv, of dimension mass cubed, characterizes the strength spihr@aneous breaking

of this symmetry. Thus our effective field transforms undier ¢hiral symmetry as
%9/ Z0R (8)

Our initial Lagrangian density is the simplest non-trive&pression invariant under this symmetry.
The quark masses break the chiral symmetry explicitly. Fiteeranalogy in EqI7), these are
introduced through a 3 by 3 mass matkixappearing in a potential term added to the Lagrangian

density
L =Lo—VRe T(ZM) (9)

Herev is the same dimensionful factor appearing in E. (7). TheatBymmetry of our starting
theory shows the physical equivalence of a given mass misitnxith a rotated matri>g‘,;Mg|_.
Using this freedom we can put the mass matrix into a stanaard.fl will assume it is diagonal

with increasing eigenvalues

m, O 0
M= 0 mg O (10)
0 0 mg

representing the up, down, and strange quark masses. Ndtdih matrix has both singlet and

octet parts under the vector flavor symmetry

my+ my — 2ms
2V3

In general the mass matrix can still be complex. The chinaragtry allows us to move phases

_ Mt Mams Mg

M
3 2

Ag (11)

between the masses, but the determinan¥iois invariant and physically meaningful. Under
charge conjugation the mass term would only be invariakt # M*. If |M| is not real, then its

phase is the famous CP violating parameter usually assdciwith topological structure in the
gauge fields. For the moment | take all quark masses as remle $am looking for spontaneous

CP violation, | consider the case where there is no explieivi®lation.



To lowest order the pseudoscalar meson masses appear ordiggpthe mass term quadrati-
cally in the meson fields. This generates an effective massxar the eight mesons

%aﬁ 0 Re Tr)\a)\BM (12)

The isospin breaking up-down mass difference gives thisixnah off diagonal piece mixing the
T and then

A3g O my—my (13)

The eigenvalues of this matrix give the standard mass oelsiti

My, O §<m+md+rns—\/nﬁ+m§+m§—rmmd—rmrns—mdrns)
mzm:mz,L O my+ My
mg, = Mg Omy+mg (14)

Mg, = Mg, O Mg +ms

m; D§<m+md+rns+\/nﬁ+m§+m§—rmmd—rmrns—mdrns>

Here | label the mesons with their conventional names.
Redundancies in these relations test the validity of theehoBor example, comparing two
expressions for the sum of the three quark masses
3(mf + M)

~1.07 (15)

suggests the symmetry should be good to a few percent. Fuaties of meson masses then give

estimates for the ratios of the quark mas&25 [, 6, 7]. Fosoae combination, look at

m, +me —ma
My Mt ™Ky Ko
md_m,zﬁ—mﬁﬁmﬁo 0.66 (16)

This particular combination is polluted by electromagoeffects; another combination partially

cancels such while ignoring smaifi,myq /ms corrections

my  2m — Moy — g
e i ~0.55 (17)

Later | will comment on a third combination for this ratio.be strange quark, one can take
2rr]s _ m%+ —I_ m%() - m27'l+
my + My e,

~ 26 (18)



1. SPONTANEOUSCP VIOLATION

So far all this is standard. Now | vary the quark masses ankl filoointeresting phenomena.
In particular, | want to find spontaneous breaking of the CRmgtry. Normally theX field
fluctuates around the identity in SU(3). However, for someesof the quark masses this ceases
to be true. When the vacuum expectatiortafeviates from the identity, some of the meson fields
will acquire expectation values. As they are pseudoscalaissnecessarily involves a breakdown
of parity.

To explore this possibility, | concentrate on the lightestson from Eq.[E4), thep. From
Eq. @) we can calculate the product of thigandn masses

mzmmzn O mumg + myms + Mgme. (19)
Whenever
—MsMy
m Ms+ My (20)

the lowest order chiral relation gives a vanishirggmass. For increasingly negative up-quark
masses, our simple expansion around vanishing pseudosta$mn fields fails. The vacuum is
then no longer represented Byfluctuating around the unit matrix. Instead it fluctuatesidlam

SU(3) matrix of form _
€ 0 0

>=| 0 €% 0 (21)
0 0 e'aie
where the phases satisfy

mysSin(@1) = Mg sin(@) = —mssSin(@L + @) (22)

There are two minimum action solutions, differing by flipgithe signs of these angles. The
transition is a continuous one, with going smoothly to the identity as the boundary given by
Eq. &B) is approached.

In the new vacuum the pseudoscalar meson fields acquire texipecvalues. As the neutral
pion is CP odd, we spontaneously break this symmetry. Thilshave various experimental
consequences, for example eta decay into two pions becdioega since a virtual third pion
can be absorbed by the vacuum. H§. (1) shows the inferreskepiiagram as a function of the up
and down quark masses. Chiral rotations insure a symmetigruhe flipping of the signs of both

guark masses.



FIG. 1: The phase diagram of quark-gluon dynamics as a fomai the two lightest quark masses. The
shaded region exhibits spontaneous CP breaking. The diatjoes withm, = +my trace where we have
three degenerate pions due to isospin symmetry. The n@itramass vanishes on the boundary of the CP

violating phase.

At first sight the appearance of such a phase at negative ufx guass seems surprising.
Naively in perturbation theory the sign of a fermion mass barmotated away by a redefinition
Y — ¥ . However this rotation is anomalous, making the sign of tinerky mass observable. A
more general complex phase in the mass would also have phgsiasequences, i.e. explicit CP
violation. With real quark masses the underlying LagrangsaCP invariant, but there exists a
large region where the ground state spontaneously breeksytinmetry.

Vafa and Witten[I8] argued on rather general conditions @Rtcould not be spontaneously
broken in the strong interactions. However their argumeaikes positivity assumptions on the
path integral measure. When a quark mass is negative, tmeofedeterminant need not be posi-
tive for all gauge configurations; in this case the assumptfail.

The possible existence of this phase was anticipated omttieel some time ago by Aokili10].
For the one flavor case he found this parity breaking phaseWiilson lattice gauge fermions. He
went on to discuss also two flavors, finding both flavor andtpagimmetry breaking. This case
is now regarded as a lattice artifact of Wilson fermions. &oeview of these issues see [11].

In conventional discussions of CP non-invariance in thengfiinteractions.|9] appears a phase

€ appearing on tunneling between topologically distinctgesfield configurations. The famous
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U(1) anomaly formally allows us to move this phase into thedwrinant of the quark mass matrix.
After then rotating all phases into the up quark, we see tbatsspontaneous breaking of CP is
occurring at an angl@ = 1. It does not, however, occur for up quark masses greateraimam-
zero minimum value. There exists a finite region wath- T that does not undergo this symmetry
breaking. The chiral model indicates a smooth behavioremgtimrk mass when it is in the vicinity
of zero. Indeed, from the effective Lagrangian point of vigwe real and imaginary parts of the
guark mass are completely independent parameters. Thacabeé experimental evidence for
strong CP violation suggests that the imaginary part of therkjmass matrix vanishes, but says
nothing about the real part.

An interesting special case occurs when the up and down guerke the same magnitude
but opposite sign for their masses, iy, = —my. In this situation it is illuminating to rotate
the minus sign into the phase of the strange quark. Then tladmlown quark are degenerate,
and we have restored an exact vecddr(2) flavor symmetry. The excitation spectrum will show
three degenerate pions, but they will not be massless duéabd might be thought of a vacuum

condensate of eta particles.

V. INCLUDING THE n'

The above discussion was entirely in terms of the light psscalar mesons that become Gold-
stone bosons in the chiral limit. One might wonder how higstates can influence this phase
structure. Of particular concern is timg¢ meson associated with the anomaltld) symmetry
present in the classical quark-gluon Lagrangian. Nonupleative processes, including topologi-
cally non-trivial gauge field configurations, are well knotengenerate a mass for this particle. |
will now argue that while this state can shift masses due tongiwith the lighter mesons, it does
not make a qualitative difference in the existence of a phasespontaneous CP violation.

The easiest way to introduce théinto the effective theory is to promote the group elenient

to an element of) (3) via an overall phase factor. Thus | generalize Bj. (1) to
S =expimAa/fr+in'/fn) € U(3) (23)

Our starting kinetic Lagrangian in Edd (4) would have thistioke also be massless. One way to

fix this deficiency is to mimic the anomaly with a term propontal to the determinant af
f2
Lo= Z"Tr(ﬁuZTﬁuZ) —Clz|. (24)
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The parameteC parameterizes the strength of the anomaly inltg) factor.
Now if we include the mass term exactly as before, additiomaing occurs between thg’,

the mp, and then. The corresponding mixing matrix takes the form

my + My "‘Qg‘d my — My

my—y my+my+4ms My+My—2mg (25)
V3 3 V3
my — My 7”“”}@‘2”‘5 Ma

wherem, characterizes the contribution of the non-perturbatiyesjas to they’ mass. This should
have a value of order the strong interaction scale; in padicit should be large compared to at
least the up and down quark masses. The two by two matrix ingper left of this expression is
exactly what is diagonalized to find the neutral pion and edasas in EqL4).

The boundary of the CP violating phase occurs where thermdatant of this matrix vanishes.
This modifies Eq.IZI9) to

MG, O M(Mymg + mymms-+ mgms) — my(mg — ms)? — my(m, — me)? — m(my — mg)? (26)

The boundary shifts slightly from the earlier result, bull gtasses through the origin leaving

Fig. @) qualitatively unchanged.

V. CANTHE UP QUARK BE MASSLESS?

A oft proposed solution to the strong CP problend [1.2,113, E&ksavhethem, = 0. From the
effective Lagrangian point of view, this appears to be aifi@gl setting of two parameters to zero,
the real and imaginary parts of the quark mass. It is only tieginary part that should vanish
for CP to be a good symmetry, at least when the up quark massgerithan the value giving
spontaneous breaking.

While phenomenology, i.e. EJE]17), seems to suggest tieaiphquark is not massless, there
remains a lot of freedom in extracting that ratio from theyakescalar meson masses. From
Eq. @), the sum of thg and p masses squared should be proportional to the sum of the three
quark masses. Subtracting off the neutral kaon mass sheaNé |just the up quark. Thus moti-
vated, look at

m, 3(M3+mg)/2—2mg
e m2n+ — m§+ n mﬁo ~ —0.8 (27)
Thus even the sign of the up quark mass is ambiguous. Atteimgtsend the naive quark mass

ratio estimates to higher orders in the chiral expansioretshown that there are fundamental
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ambiguities in the definition of the quark massss [5]. Butcsitions on a vanishing up quark
mass continue, so it is interesting to ask if this has physnaaning. In this section | investigate
precisely what is meant by a quark mass, and wiyat O would mean.

If two quark masses were to vanish simultaneously, then wed\tave exactly massless pions,
Goldstone bosons for the resulting exact flavored chiralsgtry. Here | concentrate on whether
the concept of a single massless quark has any meaning. Wdaldd carry along the baggage
of the heavier quarks, let me simplify the discussion andsctar the theory reduced to a single
flavor of quark. I will conclude that the question of whethgrcould vanish is not well posed.

Because renormalization is required, the concept of anétyhg basic Lagrangian” does
not exist in quantum field theory. Instead there are somechagierlying symmetries, and the
continuum theory is defined in terms of those and a few renlizathparameters. In practice this
must be carried out as a limiting process on a cutoff versioim@ theory. As the lattice is the
only well understood non-perturbative cutoff, it providee most natural framework for such a
definition. But any regulator must accomodate the knownatlinomalies, and thus there must
be chiral symmetry breaking terms in the cutoff theory. Ehekiral breaking effects come in
many guises. With a Pauli-Villars scheme, there is a heagylator field. With dimensional
regularization the anomaly is hidden in the fermionic measudror Wilson lattice gauge theory
there is the famous Wilson term. With domain wall fermiorer¢his a residual mass from a finite
fifth dimension. With overlap fermions things are hidden iccanbination of the measure and a
certain non-uniqueness of the operator. | will return te thst case shortly.

The renormalization process tunes all relevant bare paessas a function of the cutoff to fix
a set of renormalized quantities. In the case of the strotegantions, the bare gauge coupling
is driven to zero by asymptotic freedom. Its cutoff depermeeis absorbed into an overall scale
via the phenomenon of dimensional transmutatioh [15]. Tilg other parameters of the strong
interactions are the quark masses. For these one inputs@aféiele masses to finally determine
the continuum theory uniquely. For the three flavor theoeyrtiost natural observables to fix these
parameters are the pseudoscalar meson masses.

In the one flavor theory there are no Goldstone bosons, bugiveasniesons and baryons should
exist. | need some physical parameter with which to carrytb@trenormalization of the quark
mass. For this purpose | choose the ratio of the lightestrbasass to the lightest baryon mass.

As both are expected to be stable, this precludes any anpigom particle widths. Calling the
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FIG. 2: Defining the continuum limit. For one flavor strongdrections | consider the ratio of the lightest
boson to lightest baryon masses as my renormalized panariféith the cutoff in place, we flow towards
the origin along a curve of constant renormalized quarigfow the contour where this ratio vanishes lies

the region of spontaneous CP violation.

lightest boson thg and the baryomp | define

_ M

r =
Mp

(28)

| expect to be able to adjust this parameter via the quark,madgsh should be tuned to give the
desired value. It should be possible to give this ratio ariyesthroughout the range from= 0 at
the boundary of the above CP violating phase t8 i the heavy quark limit.

With the lattice cutoff in place, | can in principle deterraithis ratio given any values for the
bare quark mass and bare coupling. For pedagogy, let me ttnade parameters for the lattice
spacinga and the quark mass in lattice unitsga. Both of these quantities go to zero in the
continuum limit. The renormalization prescription is tdes a desired value afand follow the
contour with this value in théa, my) plane towards the origin. This process is sketched in Big. (2
Perturbative divergences in the bare quark mass appear fadhthat these contours approach the
origin with zero slope.

When the lattice spacing is non-zero, we expect artifactaityp between different lattice pre-
scriptions. In particular, the precise locations of thestantr contours will vary between different

formulations. Holding the bare quark mass at zero will ceogariety ofr contours, with none ob-
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viously favored as the origin is approached. Different thachemes will give different continuum
limits for m, = 0, and thus asking that the up quark mass vanishes is physical

With two or more degenerate flavors there will be one specialaur where the lightest meson
does represent a Goldstone boson. With the Wilson fermiondtation, the quark mass axis is
represented by the hopping parameter. As this cutoff brefaikal symmetry, the critical hopping
parameter, where the meson mass vanishes, is renormalagdr@m its value in the continuum
limit.

Recently there has been considerable progress with l&¢tingon formulations that preserve
a remnant of exact chiral symmeti.[11]. With such, the twedtaheory will have the = 0
contour preserved as tme; = 0 axis. However, for the one flavor theory, this axis will Istié
expected to cut through various valuesrofAn interesting question is whether as we take the
lattice spacing to zero along this axis, some physical vafuewill be picked out as special and
corresponding to vanishing quark mass. That this is unfit@lows from the non-uniqueness of
these chiral lattice operators. For example, the overlapaipr [[155] is constructed by a projection
process from the conventional Wilson lattice operator. Hteer has a mass parameter which is
to be chosen in a particular domain. On changing this paemm&e still have a good symmetry
in the sense of the Ginsparg-Wilson relatibr [17], but theteors of constantin Fig. @) will be
expected to shift around. Thus the horizontal axis is noeetgu to select one contour as special.

Again, holdingm, = 0 is not expected to give a unique continuum theory.

VI. FINAL REMARKS

While | have been exploring rather unphysical regions irapeter space, these observations
do raise some issues for practical lattice calculationsaofrtinic physics. Current simulations
are done at relatively heavy values for the quark massess i$hhecause the known fermion
algorithms tend to converge rather slowly at light quark seas Extrapolations by several tens of
MeV are needed to reach physical quark masses, and theapaations tend to be made in the
context of chiral perturbation theory. The presence of a ©Rting phase quite near the physical
values for the quark masses indicates a strong variationervécuum state with a rather small
change in the up quark mass; indeed, less than a 10 MeV chatigetraditionally determined up
guark mass can drastically change the low energy spectrurat 8fmulations consider degenerate

quarks, and chiral extrapolations so far have been quiteesstul. But some quantities, namely
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certain baryonic properties.[18], do seem to require rastr@ng variations as the chiral limit is
approached. These effects and the strong dependence on goaik mass may be related.
Another issue is the validity of current simulation algbnits with non-degenerate quarks. With
an even number of degenerate flavors the fermion determisi@ositive and can contribute to a
measure for Monte Carlo simulations. With light non-degatequarks the positivity of this de-
terminant is not guaranteed. Indeed, the CP violation caaramnly when the fermions contribute
large phases to the path integral. Current algorithms falinig with non-degenerate quarks take
a root of the determinant with multiple flavors. In this pres@ny possible phases are dropped.
Such an algorithm is incapable of seeing any of the CP vimgthenomena discussed here. This
point may not be too serious in practice since the up and dawarkg are nearly degenerate and
the strange quark is fairly heavy. But these issues shoul@ s a warning that things might not

work as well as we want.
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