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Two crucial properties of QCD, confinement and chiral symmetry breaking, cannot be un-
derstood within the context of conventional Feynman perturbation theory. Non-perturbative
phenomena enter the theory in a fundamental way at both the classical and quantum lev-
els. Over the years a coherent qualitative picture of the interplay between chiral symmetry,
quantum mechanical anomalies, and the lattice has emerged and is reviewed here.
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4 Confinement, chiral symmetry, and the lattice

1 QCD

Quarks interacting with non-Abelian gauge fields are now widely accepted as the basis of the
strong nuclear force. This quantum field theory is known under the somewhat whimsical name
of Quantum Chromodynamics, or QCD®. This system is remarkable in its paucity of parameters.
Once the overall scale is set, perhaps by working in units where the proton mass is unity, the only
remaining parameters are the quark masses. The quarks represent a new level of substructure
within hadronic particles such as the proton.

The viability of this picture relies on some rather unusual features. These include confine-
ment, the inability to isolate a single quark, and the spontaneous breaking of chiral symmetry,
needed to explain the lightness of the pions relative to other hadrons. The study of these phe-
nomena requires the development of techniques that go beyond traditional Feynman perturbation
theory. Here we concentrate on the interplay of two of these, lattice gauge theory and effective
chiral models.

The presentation is meant to be introductory. The aim is to provide a qualitative picture
of how the symmetries of this theory work together rather than to present detailed methods for
calculation. In this first section we briefly review why this theory is so compelling.

1.1 Why quarks

Although an isolated quark has not been seen, we have a variety of reasons to believe in the
reality of quarks as the basis for this next layer of matter. First, quarks provide a rather elegant
explanation of certain regularities in low energy hadronic spectroscopy. Indeed, it was the suc-
cesses of the eightfold way [1] which originally motivated the quark model. Two “flavors’ of
low mass quarks lie at the heart of isospin symmetry in nuclear physics. Adding the somewhat
heavier “strange” quark gives the celebrated multiplet structure described by representations of
the group SU(3).

Second, the large cross sections observed in deeply inelastic lepton-hadron scattering point
to structure within the proton at distance scales of less than 10716 centimeters, whereas the
overall proton electromagnetic radius is of order 10~13 centimeters [2]. Furthermore, the angular
dependences observed in these experiments indicate that any underlying charged constituents
carry half-integer spin.

Yet a further piece of evidence for compositeness lies in the excitations of the low-lying
hadrons. Particles differing in angular momentum fall neatly into place along the famous “Regge
trajectories” [3]. Families of states group together as orbital excitations of an underlying ex-
tended system. The sustained rising of these trajectories with increasing angular momentum
points toward strong long-range forces between the constituents.

Finally, the idea of quarks became incontrovertible with the discovery of heavier quark
species beyond the first three. The intricate spectroscopy of the charmonium and upsilon families
is admirably explained via potential models for non-relativistic bound states. These systems rep-
resent what are sometimes thought of as the “hydrogen atoms” of elementary particle physics.
The fine details of their structure provides a major testing ground for quantitative predictions
from lattice techniques.

@1If you prefer not to confuse this with the 4000 Angstroms typical of color, you could regard this as an acronym for
Quark Confining Dynamics.
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Fig. 1.1. A tube of gluonic flux connects quarks and anti-quarks. The strength of this string is 14 tons.

1.2 Gluons and confinement

Despite its successes, the quark picture raises a variety of puzzles. For the model to work so well,
the constituents should not interact so strongly that they loose their identity. Indeed, the question
arises whether it is possible to have objects display point-like behavior in a strongly interacting
theory. The phenomenon of asymptotic freedom, discussed in more detail later, turns out to be
crucial to realizing this picture.

Perhaps the most peculiar aspect of the theory relates to the fact that an isolated quark has
never been observed. These basic constituents of matter do not copiously appear as free particles
emerging from high energy collisions. This is in marked contrast to the empirical observation
in hadronic physics that anything which can be created will be. Only phenomena prevented by
known symmetries are prevented. The difficulty in producing quarks has led to the concept of a
principle of exact confinement. Indeed, it may be simpler to have a constituent which can never
be produced than an approximate imprisonment relying on an unnaturally small suppression
factor. This is particularly true in a theory like the strong interactions, which is devoid of any
large dimensionless parameters.

But how can one ascribe any reality to an object which cannot be produced? Is this just some
sort of mathematical trick? Remarkably, gauge theories potentially possess a simple physical
mechanism for giving constituents infinite energy when in isolation. In this picture a quark-
antiquark pair experiences an attractive force which remains non-vanishing even for asymptot-
ically large separations. This linearly rising long distance potential energy forms the basis of
essentially all models of quark confinement.

For a qualitative description of the mechanism, consider coupling the quarks to a conserved
“gluo-electric” flux. In usual electromagnetism the electric field lines thus produced spread and
give rise to the inverse square law Coulombic field. If one can somehow eliminate massless fields,
then a Coulombic spreading will no longer be a solution to the field equations. If in removing
the massless fields we do not destroy the Gauss law constraint that the quarks are the sources of
electric fields, the electric lines must form into tubes of conserved flux, schematically illustrated
in Fig. 1.1. These tubes begin and end on the quarks and their antiparticles. The flux tube is
meant to be a real physical object carrying a finite energy per unit length. This is the storage
medium for the linearly rising inter-quark potential. In some sense the reason we cannot have
an isolated quark is the same as the reason that we cannot have a piece of string with only one
end. In this picture a baryon would require a string with three ends. It lies in the group theory of
non-Abelian gauge fields that this peculiar state of affairs is allowed.
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Of course a length of real string can break into two, but then each piece has itself two ends.
In the QCD case a similar phenomenon occurs when there is sufficient energy in the flux tube to
create a quark-antiquark pair from the vacuum. This is qualitatively what happens when a rho
meson decays into two pions.

One model for this phenomenon is a type II superconductor containing magnetic monopole
impurities. Because of the Meissner effect [4], a superconductor does not admit magnetic fields.
However, if we force a hypothetical magnetic monopole into the system, its lines of magnetic
flux must go somewhere. Here the role of the “gluo-electric” flux is played by the magnetic
field, which will bore a tube of normal material through the superconductor until it either ends
on an anti-monopole or it leaves the boundary of the system [5]. Such flux tubes have been
experimentally observed in real superconductors [6].

Another example of this mechanism occurs in the bag model [7]. Here the gluonic fields are
unrestricted in the bag-like interior of a hadron, but are forbidden by ad hoc boundary conditions
from extending outside. In attempting to extract a single quark from a proton, one would draw out
a long skinny bag carrying the gluo-electric flux of the quark back to the remaining constituents.

The above models may be interesting phenomenologically, but they are too arbitrary to be
considered as the basis for a fundamental theory. In their search for a more elegant approach, the-
orists have been drawn to non-Abelian gauge fields [8]. This dynamical system of coupled gluons
begins in analogy with electrodynamics with a set of massless gauge fields interacting with the
quarks. Using the freedom of an internal symmetry, the action also includes self-couplings of
the gluons. The bare massless fields are all charged with respect to each other. The confinement
conjecture is that this input theory of massless charged particles is unstable to a condensation of
the vacuum into a state in which only massive excitations can propagate. In such a medium the
gluonic flux around the quarks should form into the flux tubes needed for linear confinement.
While this has never been proven analytically, strong evidence from lattice gauge calculations
indicates that this is indeed a property of these theories.

The confinement phenomenon makes the theory of the strong interactions qualitatively rather
different from the theories of the electromagnetic and weak forces. The fundamental fields of the
Lagrangean do not manifest themselves in the free particle spectrum. Physical particles are all
gauge singlet bound states of the underlying constituents. In particular, an expansion about the
free field limit is inherently crippled at the outset. This is perhaps the prime motivation for the
lattice approach.

In the quark picture, baryons are bound states of three quarks. Thus the gauge group should
permit singlets to be formed from three objects in the fundamental representation. This motivates
the use of SU(3) as the underlying group of the strong interactions. This internal symmetry
must not be confused with the broken SU (3) represented in the multiplets of the eightfold way.
Ironically, one of the original motivations for quarks has now become an accidental symmetry,
arising only because three of the quarks are fairly light. The gauge symmetry of importance to
us now is hidden behind the confinement mechanism, which only permits observation of singlet
states.

The presentation here assumes, perhaps too naively, that the nuclear interactions can be con-
sidered in isolation from the much weaker effects of electromagnetism, weak interactions, and
gravitation. This does not preclude the possible application of the techniques to the other interac-
tions. Indeed, unification may be crucial for a consistent theory of the world. To describe physics
at normal laboratory energies, however, it is only for the strong interactions that we are forced to
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go beyond well-established perturbative methods. Thus we frame the discussion around quarks
and gluons.

1.3 Perturbation theory is not enough

The best evidence we have for confinement in a non-Abelian gauge theory comes by way of
Wilson’s [9, 10] formulation on a space time lattice. At first this prescription seems a little
peculiar because the vacuum is not a crystal. Indeed, experimentalists work daily with highly
relativistic particles and see no deviations from the continuous symmetries of the Lorentz group.
Why, then, have theorists spent so much time describing field theory on the scaffolding of a
space-time lattice?

The lattice should be thought of as a mathematical trick. It provides a cutoff removing the
ultraviolet infinities so rampant in quantum field theory. On a lattice it makes no sense to consider
momenta with wavelengths shorter than the lattice spacing. As with any regulator, it must be
removed via a renormalization procedure. Physics can only be extracted in the continuum limit,
where the lattice spacing is taken to zero. As this limit is taken, the various bare parameters of
the theory are adjusted while keeping a few physical quantities fixed at their continuum values.

But infinities and the resulting need for renormalization have been with us since the begin-
nings of relativistic quantum mechanics. The program for electrodynamics has had immense
success without recourse to discrete space. Why reject the time-honored perturbative renormal-
ization procedures in favor of a new cutoff scheme?

Perturbation theory has long been known to have shortcomings in quantum field theory. In
a classic paper, Dyson [11] showed that electrodynamics could not be analytic in the coupling
around vanishing electric charge. If it were, then one could smoothly continue to a theory where
like charges attract rather than repel. This would allow creating large separated regions of charge
to which additional charges would bind with more energy than their rest masses. This would
mean there is no lowest energy state; creating matter-antimatter pairs and separating them into
these regions would provide an inexhaustible source of free energy.

The mathematical problems with perturbation theory appear already in the trivial case of zero
dimensions. Consider the toy path integral

Z(m,g) = /d(b exp(—m?¢® — go*). (1.1)
Formally expanding and naively exchanging the integral with the sum gives
Z(m,g) =Y cig' (1.2)
with
(_1)1 —m2¢? ,4i (—1)1(42)'
“T de ¢ = m2iti (1.3)

A simple application of Sterling’s approximation shows that at large order these coefficients grow
faster than any power. Given any value for g, there will always be an order in the series where
the terms grow out of control. Note that by scaling the integrand we can write

Z(m,g) =g */* / dé exp(—m?¢? /g~ 12 — ¢*). (1.4)
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This explicitly exposes a branch cut at the origin, yet another way of seeing the non analyticity
at vanishing coupling.

Thinking non-perturbatively sometimes reveals somewhat surprising results. For example,
the ¢ theory of massive scalar bosons coupled with a cubic interaction seems to have a sensible
perturbative expansion after renormalization. However this theory almost certainly doesn’t exist
as a quantum system. This is because when the field becomes large the cubic term in the inter-
action dominates and the theory has no minimum energy state. The Euclidean path integral is
divergent from the outset since the action is unbounded both above and below.

Perhaps even more surprising, it is widely accepted, although not proven rigorously, that
a ¢* theory of bosons interacting with a quartic interaction also does not have a non-trivial
continuum limit. The expectation here is that with a cutoff in place, the renormalized coupling
will display an upper bound as the bare coupling varies from zero to infinity. If this upper bound
then decreases to zero as the cutoff is removed, then the renormalized coupling is driven to zero
and we have a free theory.

This issue is sometimes discussed in terms of what is known as the “Landau pole” [12]. In
non-asymptotically free theories, such as ¢* and quantum electrodynamics, there is a tendency
for the effective coupling to rise with energy. A simple analysis suggests the possibility of the
coupling diverging at a finite energy. Not allowing this would force the coupling at smaller
energies to zero.

The importance of non-perturbative effects is well understood in a class of two dimensional
models that can be solved via a technique known as “bosonization” [13, 14]. This includes
massless two dimensional electrodynamics, i.e. the Schwinger model [15], the sine-Gordon
model [16], and the Thirring model [17]. These solutions exploit a remarkable mapping between
fermionic and bosonic fields in two dimensions. This mapping is also closely related to the
solution to the two dimensional Ising model [18]. The Schwinger model in particular has several
features in common with QCD. First of all it confines, i.e. the physical “mesons’ are bound states
of the fundamental fermions. With multiple “flavors” the theory has a natural current algebra [19]
and the spectrum in the presense of a small fermion mass has both multiple light “pions” and a
heavier eta-prime meson. Finally, the massive theory naturally admits the introduction of a CP
violating parameter.

Returning to the main problem, QCD, we are driven to the lattice by the necessary preva-
lence of non-perturbative phenomena in the strong interactions. Most predominant of these is
confinement, but issues related to chiral symmetry and quantum mechanical anomalies, to be
discussed in later sections, are also highly non-perturbative. The theory at vanishing coupling
constant has free quarks and gluons and bears no resemblance to the observed physical world of
hadrons. Renormalization group arguments explicitly demonstrate essential singularities when
hadronic properties are regarded as functions of the gauge coupling. To go beyond the diagram-
matic approach, one needs a non-perturbative cutoff. Herein lies the main virtue of the lattice,
which directly eliminates all wavelengths less than the lattice spacing. This occurs before any
expansions or approximations are begun.

This situation contrasts sharply with the great successes of quantum electrodynamics, where
perturbation theory is central. Most conventional regularization schemes are based on the Feyn-
man expansion; some process is calculated diagrammatically until a divergence is met, and the
offending diagram is regulated. Since the basic coupling is so small, only a few terms give
good agreement with experiment. While non-perturbative effects are expected, their magnitude
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is exponentially suppressed in the inverse of the coupling.

On a lattice, a field theory becomes mathematically well-defined and can be studied in various
ways. Conventional perturbation theory, although somewhat awkward in the lattice framework,
should recover all conventional results of other regularization schemes. Discrete space-time,
however, allows several alternative approaches. One of these, the strong coupling expansion,
is straightforward to implement. Remarkably, confinement is automatic in the strong coupling
limit because the theory reduces to one of quarks on the end of strings with finite energy per unit
length. While this realization of the flux tube picture provides insight into how confinement can
work, unfortunately this limit is not the continuum limit. The latter, as we will see later, involves
the weak coupling limit. To study this one can turn to numerical simulations, made possible by
the lattice reduction of the path integral to a conventional but large many-dimensional integral.

Non-perturbative effects in QCD introduce certain interesting aspects that are invisible to
perturbation theory. Most famous of these is the possibility of having an explicit CP violating
term in the theory. In the classical theory this involves adding a total derivative term to the action.
This can be rotated away in the perturbative limit. However, as we will discuss extensively later,
in the quantum theory there are dramatic physical consequences.

Non-perturbative effects also raise subtle questions on the meaning of quark masses. Or-
dinarily the mass of a particle is correlated with how it propagates over long distances. This
approach fails due to confinement and the fact that a single quark cannot be isolated. With mul-
tiple quarks, we will also see that there is a complicated dependence of the theory on the number
of quark species. As much of our understanding of quantum field theory is based on perturbation
theory, several of these effects remain controversial.

This picture has evolved over many years. One unusual result is that, depending on the param-
eters of the theory, QCD can spontaneously break CP symmetry. This is tied to what is known
as Dashen’s phenomenon [20], first noted even before the days of QCD. In the mid 1970’s, 't
Hooft [21] elucidated the underlying connection between the chiral anomaly and the topology of
gauge fields. This connection revealed the possible explicit CP violating term, usually called ©,
the dependence on which does not apper in perturbative expansions. Later Witten [22] used large
gauge group ideas to discuss the behavior on © in terms of effective Lagrangeans. Refs. [23-28]
represent a few of the many early studies of the effects of © on effective Lagrangeans via a mix-
ing between quark and gluonic operators. The topic continues to appear in various contexts; for
example, Ref. [29] contains a different approach to understanding the behavior of QCD at © = 7
via the framework of the two-flavor Nambu Jona-Lasinio model.

All these issues are crucial to understanding certain subtleties with formulating chiral sym-
metry on the lattice. Much of the picture presented here is implicit in the discussion of Ref. [30].
Since then the topic has raised some controversial issues, including the realization that the ambi-
guities in defining quark masses precludes a vanishing up quark mass as a solution to the strong
CP problem [31]. The non-analytic behavior in the number of quark species reveals an inconsis-
tency with one of the popular algorithms in lattice gauge theory [32]. These conclusions directly
follow from the intricate interplay of the anomaly with chiral symmetry. The fact that some of
these issues remain disputed is much of the motivation for this review.

The discussion here is based on a few reasonably uncontroversial assumptions. First, QCD
with Ny light quarks should exist as a field theory and exhibit confinement in the usual way.
Then we assume the validity of the standard picture of chiral symmetry breaking involving a
quark condensate (1)¢)) # 0. The conventional chiral perturbation theory based on expanding
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in masses and momenta around the chiral limit should make sense. We assume the usual result
that the anomaly generates a mass for the 7’ particle and this mass survives the chiral limit.
Throughout we consider Ny small enough to avoid any potential conformal phase of QCD [33].
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2 Path integrals and statistical mechanics

Throughout this review we will be primarily focussed on the Euclidean path integral formulation
of QCD. This approach to quantum mechanics reveals deep connections with classical statistical
mechanics. Here we will explore this relationship for the simple case of a non-relativistic particle
in a potential. Starting with a partition function representing a path integral on an imaginary time
lattice, we will see how a transfer matrix formalism reduces the problem to the diagonalization
of an operator in the usual quantum mechanical Hilbert space of square integrable functions [34].
In the continuum limit of the time lattice, we obtain the canonical Hamiltonian. Except for our
use of imaginary time, this treatment is identical to that in Feynman’s early work [35].

2.1 Discretizing time

We begin with the Lagrangean for a free particle of mass m moving in potential V' (z)

Lz, i) = K(&) + V(z) @.1)

where K (&) = %m:’cQ and 7 is the time derivative of the coordinate x. Note the unconventional
relative positive sign between the two terms in Eq. (2.1). This is because we formulate the path
integral directly in imaginary time. This improves mathematical convergence, yet we are left
with the usual Hamiltonian for diagonalization.

For a particle traversing a trajectory x(t), we have the action

Sz/ﬁL@@w@) 22)

This appears in the path integral

Z = /(da:)e—s. (2.3)

Here the integral is over all possible trajectories z(¢). As it stands, Eq. (2.3) is rather poorly
defined. To characterize the possible trajectories we introduce a cutoff in the form of a time
lattice. Putting our system into a temporal box of total length 7', we divide this interval into
N = % discrete time slices, where a is the timelike lattice spacing. Associated with the ¢’th such
slice is a coordinate ;. This construction is sketched in Figure 2.1. Replacing the time derivative
of x with a nearest-neighbor difference, we reduce the action to a sum

1 Tipl — T 2
S = = —_— V(zi
a % [ 5 < . + V(x;)
The integral in Eq. (2.3) is now defined as an ordinary integral over all the coordinates

7= / (Hm) e 5. (2.5)

This form for the path integral is precisely in the form of a partition function for a statistical
system. We have a one dimensional polymer of coordinates x;. The action represents the inverse

(2.4)
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Fig. 2.1. Dividing time into a lattice of IV slices of timestep a.

temperature times the Hamiltonian of the thermal analog. This is a special case of a deep result,
a D space-dimensional quantum field theory is equivalent to the classical thermodynamics of a
D + 1 dimensional system. In this example, we have one degree of freedom and D is zero; for
the lattice gauge theory of quarks and gluons, D is three and we work with the classical statistical
mechanics of a four dimensional system.

We will now show that the evaluation of this partition function is equivalent to diagonalizing
a quantum mechanical Hamiltonian obtained from the action via canonical methods. This is done
with the use of the transfer matrix.

2.2 The transfer matrix

The key to the transfer-matrix analysis is to note that the local nature of the action permits us to
write the partition function as a matrix product

7 = / [1dw:i ... o (2.6)

where the transfer-matrix elements are

Ty = exp [_;ﬁa(m' - %(V(aj’) L V(). 2.7)

The transfer matrix itself is an operator in the Hilbert space of square integrable functions with
the standard inner product

W) = / day™ () (). 2.8)
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We introduce the non-normalizable basis states |z) such that

) = /d:cw ) |z) (2.9)
(2'|z) = d(2" — @) (2.10)

1:/d:c )z, @.11)
Acting on the Hilbert space are the canonically conjugate operators p and & that satisfy

Z|x) = x|x)
[ ) ] —1
e Y|y = |z + y). (2.12)

The operator 7' is defined via its matrix elements
(@'|T|x) = T o (2.13)

where T}, is given in Eq. (2.7). With periodic boundary conditions on our lattice of N sites,
the path integral is compactly expressed as as a trace over the Hilbert space

Z=TrTVN. (2.14)

Expressing 7" in terms of the basic operators p, & gives
T— / dy e~V (20) —aV(8)/2 g—iby (—aV(@)/2, (2.15)

To prove this, check that the right hand side has the appropriate matrix elements. The integral
over y is Gaussian and gives

2ma 1/2 Py ) R
T = (> e—aV(a:)/Qe—ap /(2m)e—aV(z)/2. (216)
m

The connection with the usual quantum mechanical Hamiltonian appears in the small lattice
spacing limit. When a is small, the exponents in the above equation combine to give

2ra\ /2 H 2
T = (> emaHFO(7) (2.17)
m
with
ﬁQ
o= o + V(). (2.18)

This is just the canonical Hamiltonian operator following from our starting Lagrangean.

The procedure for going from a path-integral to a Hilbert-space formulation of quantum
mechanics consists of three steps. First define the path integral with a discrete time lattice.
Then construct the transfer matrix and the Hilbert space on which it operates. Finally, take the
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logarithm of the transfer matrix and identify the negative of the coefficient of the linear term in
the lattice spacing as the Hamiltonian. Physically, the transfer matrix propagates the system from
one time slice to the next. Such time translations are generated by the Hamiltonian.

The eigenvalues of the transfer matrix are related to the energy levels of the quantum system.
Denoting the ¢’th eigenvalue of 1" by );, the path integral or partition function becomes

Z=> AN (2.19)

As the number of time slices goes to infinity, this expression is dominated by the largest eigen-
value )\0

Z =AY x [1 + O(exp[~Nlog(Ao/\1)])]- (2.20)

In statistical mechanics the thermodynamic properties of a system follow from this largest eigen-
value. In ordinary quantum mechanics the corresponding eigenvector is the lowest eigenstate of
the Hamiltonian. This is the ground state or, in field theory, the vacuum |0). Note that in this
discussion, the connection between imaginary and real time is trivial. Whether the generator of
time translations is H or ¢H, we have the same operator to diagonalize.

In statistical mechanics one is often interested in correlation functions between the statistical
variables at different points. This corresponds to a study of the Green’s functions of the cor-
responding field theory. These are obtained upon insertion of polynomials of the fundamental
variables into the path integral.

An important feature of the path integral is that a typical path is non-differentiable [36,37].
Consider the discretization of the time derivative

Tit1 — X4
T~ ——.
a

2.21)

The kinetic term in the path integral controls how close the fields are on adjacent sites. Since this
appears as simple Gaussian factor exp(—(z;41 — x;)?m/a) we see that

%m<i2> = O(1/ma). (2.22)

This diverges as the lattice spacing goes to zero.

One can obtain the average kinetic energy in other ways, for example through the use of the
virial theorem or by point splitting. However, the fact that the typical path is not differentiable
means that one should be cautious about generalizing properties of classical fields to typical
configurations in a numerical simulation. We will see that such questions naturally arise when
considering the topological properties of gauge fields.
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3 Quark fields and Grassmann integration

Of course since we are dealing with a theory of quarks, we need additional fields to represent
them. There are subtle complications in defining their action on a lattice; we will go into these
in some detail later. For now we just assume the quark fields ) and 1) are associated with the
sites of the lattice and carry suppressed spinor, flavor, and color indices. Being generic, we take
an action which is a quadratic form in these fields ¢(D + m)i. Here we formally separate
the kinetic and mass contributions. For the path integral, we are to integrate over 1 and ) as
independent Grassmann variables. Thus v and ) on any site anti-commutes with v and ) on
any other site.

Grassmann integration is defined formally as a linear function satisfying a shift symmetry.
Consider a single Grassmann variable . Given any function f of ¥, we impose

L/wmwoz/ﬁwﬂw+x) 3.1)

where x is another fixed Grassmann variable. Since the square of any Grassmann variable van-
ishes, we can expand f in just two terms

F() = a+b. (3.2)

Assuming linearity on inserting this into Eq. (3.1) gives

(/dq/)w)a—&—(/dwl)b:(/dwu))a—&-(/dz/zl)(ax—kb). (3.3)

This immediately tells us f diy 1 must vanish. The normalization of f d 1 is still undetermined;
the convention is to take this to be unity. Thus the basic Grassmann integral of a single variable
is completely determined by

/wwz (34)
/ dip1=0. (3.5)

Note that the rule for Grassmann integration seems quite similar to what one would want for
differentiation. Indeed, it is natural to define derivatives as anticommuting objects that satisfy

d

@ =1 (3.6)
d
W 1=0. 3.7

This is exactly the same rule as for integration. For Grassmann variables, integration and differ-
entiation are the same thing. It is a convention what we call it. For the path integral it is natural
to keep the analogy with bosonic fields and refer to integration. On the other hand, for both
fermions and bosons we refer to differentiation when using sources in the path integral as a route
to correlation functions.
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We can make changes of variables in a Grassmann integration in a similar way to ordinary
integrals. For example, if we want to change from v to x = a1}, the above integration rules

imply
/ d(W) f(av) = a / 4001 () (3.8)

or simply d(ay)) = dx = %dw. We see that the primary difference from ordinary integration
is that the Jacobean is inverted. If we consider a multiple integral and take y = M with M a
matrix, the transformation generalizes to

dxzzcuAlw)zzdm%AI)dw. (3.9)

A particularly important consequence is that we can formally evaluate the Gaussian integrals that
appear in the path integral as

1

N — —1
_®Wﬂwn_®“w+m))' (3.10)

[ v exp (5D + my)
The normalization is fixed by the earlier conventions. Note that in the path integral formulation
1 and 1 represent independent Grassmann fields; in the next subsection we will discuss the
connection between these and the canonical anti-commutation relations for fermion creation and
annihilation operators in a quantum mechanical Hilbert space..

In practice Eq. (3.10) allows one to replace fermionic integrals with ordinary commuting
fields ¢ and ¢ as

/ AT oxp (B(D +m)) o / ddd oxp (B(D +m)~'6). G

This forms the basis for most Monte Carlo algorithms, although the intrinsic need to invert the
large matrix D 4+ m makes such simulations extremely computationally intensive. This approach
is, however, still much less demanding than any known way to deal directly with the Grassmann
integration in path integrals [38].

3.1 Fermionic transfer matrices

The concept of continuity is lost with Grassman variables. There is no meaning to saying that
fermion fields at nearby sites are near each other. This is closely tied to the doubling issues
that we will discuss later. But is also raises interesting complications in relating Hamiltonian
quantum mechanics with the Euclidian formulation involving path integrals. Here we will go
into how this connection is made with an extremely simple zero space-dimensional model.

Anti-commutation is at the heart of fermionic behavior. This is true in both the Hamiltonian
operator formalism and the Lagrangean path integral, but in rather complementary ways. Starting
with a Hamiltonian approach, if an operator a' creates a fermion in some normalized state on the
lattice or the continuum, it satisfies the basic relation

[a,a']; = aa’ +afa = 1. (3.12)
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This contrasts sharply with the fields in a path integral, which all anti-commute

[x. x4+ = 0. (3.13)

The connection between the Hilbert space approach and the path integral appears through the
transfer matrix formalism. For bosonic fields this is straightforward [34], but for fermions certain
subtleties arise related to the doubling issue [39].

To be more precise, consider a single fermion state created by the operator a', and an an-
tiparticle state created by another operator bf. For an extremely simple model, consider the
Hamiltonian

H =m(a'a +b'b). (3.14)

Here m can be thought of as a “mass” for the particle. What we want is an exact path integral
expression for the partition function

Z = Tre PH. (3.15)

Of course, since the Hilbert space generated by a and b has only four states, this is trivial to work
out: Z =14 2e7™ 4 ¢=26™ However, we want this in a form that easily generalizes to many
variables.

The path integral for fermions uses Grassmann variables. We introduce a pair of such, x and
x ', which will be connected to the operator pair a and a', and another pair, ¢ and &%, for b, bf.
All the Grassmann variables anti-commute. Integration over any of them is determined by the
simple formulas mentioned earlier

/dxlzo; /dxle. (3.16)

For notational simplicity combine the individual Grassmann variables into spinors

Y= (?O; = (x"¢); (3.17)
To make things appear still more familiar, introduce a “Dirac matrix”

o = ( é _(1’ ) (3.18)
and the usual

¥ =9l (3.19)
Then we have

P =x"x +¢le (3.20)

where the minus sign from using ¢' rather than ¢ in defining 1 is removed by the ~ factor. The
temporal projection operators

1

Pi:i

(1£0) (3.21)
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arise when one considers the fields at two different locations

XIXG + €165 = Vi Puas + %, P (3.22)

The indices ¢ and j will soon label the ends of a temporal hopping term; this formula is the basic
transfer matrix justification for the Wilson projection operator formalism that we will return to
in later sections.

3.2 Normal ordering and path integrals

For a moment ignore the antiparticles and consider some general operator f(a,a') in the Hilbert
space. How is this related to an integration in Grassmann space? To proceed we need a con-
vention for ordering the operators in f. We adopt the usual normal ordering definition with the
notation : f(a,a’) : meaning that creation operators are placed to the left of destruction opera-
tors, with a minus sign inserted for each exchange. In this case a rather simple formula gives the
trace of the operator as a Grassmann integration

Tr :f(a,aT) 1= /dxdee2XTXf(X7xT). (3.23)

To verify, just check that all elements of the complete set of operators {1,a,a’,afa} work.
However, this formula is actually much more general; given a set of many Grassmann variables
with one pair associated with each of several fermion states, this immediately generalizes to the
trace of any normal ordered operator acting in a many fermion Hilbert space.

What about a product of several normal ordered operators? This leads to the introduction of
multiple sets of Grassmann variables and the general formula

Tr (: fila',a):: falal,a) ... : fn(a®,a) )
= [ dx1dx}...dx, dx eXT(X1+xn) X3 (x2=X1) X (Xn—Xn-1)

X< fi(x3sx1) f2(x3, X2) - fu (Xins X )- (3.24)

The positive sign on X, in the first exponential factor indicates the natural occurrence of anti-
periodic boundary conditions; 1.e. we can define xy = —x,,. With just one factor, this formula
reduces to Eq. (3.23). Note how the “time derivative” terms are “one sided;” this is how doubling
is eluded.

This exact relationship provides the starting place for converting our partition function into a
path integral. The simplicity of our example Hamiltonian allows this to be done exactly at every
stage. First we break “time” into a number N of “slices”

Z=Tr (e*ﬁH/N)N . (3.25)

Now we need normal ordered factors for the above formula. For this we use

eaaTa =1+ (ea _ 1)aTa = e(ea_l)“Ta :, (326)



Quark fields and Grassmann integration 19

which is true for arbitrary .’ This is all the machinery we need to write

Z = / (dipdp)e® (3.27)
where
S= U, (e PN = 1)y + U, Pytbn 1 + %y Pt (3.28)
=1

Note how the projection factors of P automatically appear for handling the reverse convention
of y versus £ in our field ¢). Expanding the first term gives the —3m /N factor appearing in the
Hamiltonian form for the partition function.

It is important to realize that if we consider the action as a generalized matrix connecting
fermionic variables

S =M, (3.29)

the matrix M is not symmetric. The upper components propagate forward in time, and the
lower components backward. Even though our Hamiltonian was Hermitean, the matrix appearing
in the corresponding action is not. With further interactions, such as gauge field effects, the
intermediate fermion contributions to a general path integral may not be positive, or even real.
Of course the final partition function, being a trace of a positive definite operator, is positive.
Keeping the symmetry between particles and antiparticles results in a real fermion determinant,
which in turn is positive for an even number of flavors. We will later see that some rather
interesting things can happen with an odd number of flavors.

For our simple Hamiltonian, this discussion has been exact. The discretization of time adds
no approximations since we could do the normal ordering by hand. In general with spatial
hopping or more complex interactions, the normal ordering can produce extra terms going as
O(1/N?). In this case exact results require a limit of a large number of time slices, but this is a
limit we need anyway to reach continuum physics.

(®)The definition of normal ordering gives : (afa)? := 0.
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4 Lattice gauge theory

Lattice gauge theory is currently the dominant path to understanding non-perturbative effects.
As formulated by Wilson, the lattice cutoff is quite remarkable in preserving many of the basic
ideas of a gauge theory. But just what is a gauge theory anyway? Indeed, there are many ways
to think of what is meant by this concept.

At the most simplistic level, a Yang-Mills [8] theory is nothing but an embellishment of
electrodynamics with isospin symmetry. Being formulated directly in terms of the underlying
gauge group, this is inherent in lattice gauge theory from the start.

At a deeper level, a gauge theory is a theory of phases acquired by a particle as it passes
through space time. In electrodynamics the interaction of a charged particle with the electro-
magnetic field is elegantly described by the wave function acquiring a phase from the gauge
potential. For a particle at rest, this phase is an addition to its energy proportional to the scalar
potential. The use of group elements on lattice links directly gives this connection; the phase
associated with some world-line is the product of these elements along the path in question. For
the Yang-Mills theory the concept of “phase” is generalized to a rotation in the internal symmetry
group.

A gauge theory is also a theory with a local symmetry. Gauge transformations involve ar-
bitrary functions of space time. Indeed, with QCD we have an independent SU (3) symmetry
at each point of space time. With the Wilson action formulated in terms of products of group
elements around closed loops, this symmetry remains exact even with the cutoff in place.

In perturbative discussions, the local symmetry forces a gauge fixing to remove a formal
infinity coming from integrating over all possible gauges. For the lattice formulation, however,
the use of a compact representation for the group elements means that the integration over all
gauges becomes finite. To study gauge invariant observables, no gauge fixing is required to
define the theory. Of course gauge fixing can still be done, and must be introduced to study
more conventional gauge variant quantities such as gluon or quark propagators. But physical
quantities should be gauge invariant; so, whether gauge fixing is done or not is irrelevant for
their calculation.

One aspect of a continuum gauge theory that the lattice does not respect is how a gauge
field transforms under Lorentz transformations. In a continuum theory the basic vector potential
can change under a gauge transformation when transforming between frames. For example, the
Coulomb gauge treats time in a special way, and a Lorentz transformation can change which
direction represents time. The lattice, of course, breaks Lorentz invariance, and thus this concept
loses meaning.

Here we provide only a brief introduction to the lattice approach to a gauge theory. For
more details one should turn to one of the several excellent books on the subject [40-44]. We
postpone until later a discussion of issues related to lattice fermions. These are more naturally
understood after exploring some of the peculiarities that must be manifest in any non-perturbative
formulation.

4.1 Link variables

Lattice gauge theory is closely tied to two of the above concepts; it is a theory of phases and
it exhibits an exact local symmetry. Indeed it is directly defined in terms of group elements
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representing the phases acquired by quarks as they hop around the lattice. The basic variables
are phases associated with each link of a four dimensional space time lattice. For non-Abelian
case, these variables become an elements of the gauge group, i.e. U;; € SU(3) for the strong
interactions. Here ¢ and j denote the sites being conneted by the link in question. We suppress
the group indices to keep the notation under control. These are three by three unitary matrices
satisfying

Uiy = Uj* = (Us)"- @.1)
The analogy with continuum vector fields A, is
Usite, = €904 (4.2)

Here a represents the lattice spacing and g is the bare coupling considered at the scale of the
cutoff.

In the continuum, a non-trivial gauge field arises when the curl (in a four dimensional sense)
of the potential is non zero. This in turn means the phase factor around a small closed loop is not
unity. The smallest closed path in the lattice is a “plaquette,” or elementary square. Consider the
phase corresponding to one such

Up = U12U3U34U41 4.3)

where sites 1 through 4 run around the square in question. In an intuitive sense this measures the
flux through this plaquette Up ~ exp(ia> goF),). This motivates using this quantity to define
an action. For this, look at the real part of the trace of Up

ReTrtUp = N — a*gg Tr F,, F, + O(a®). (4.4)

The overall added constant NV is physically irrelevant. This leads directly to the Wilson gauge
action

S(U) == ReTrUp. (4.5)
P

Now we have our gauge variables and an action. To proceed we turn to a path integral as an
integral over all fields of the exponentiated action. For a Lie group, there is a natural measure
that we will discuss shortly. Using this measure, the path integral is

7= / (dU)e=PS (4.6)

where (dU) denotes integration over all link variables. This leads to the conventional contin-
uum expression & [ d*z Tr F),, F,, if we choose 3 = 2N/gg for group SU(N) and use the
conventionally normalized bare coupling gg.

Physical correlation functions are obtained from the path integral as expectation values.
Given an operator B(U) which depends on the link variables, we have

1
(B) = / (dU)B(U)e= 5@, @)
Because of the gauge symmetry, discussed further later, this only makes physical sense if B is

invariant under gauge transformations.
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4.2 Group Integration

The above path integral involves integration over variables which are elements of the gauge
group. For this we use a natural measure with a variety of nice properties. Given any function
f(g) of the group elements g € G, the Haar measure is constructed so as to be invariant under
“translation” by an arbitrary fixed element g; of the group

/dg flg) = /dg f(919). (4.8)

For a compact group, as for the SU(N) relevant to QCD, this is conventionally normalized so
that [ dg 1 = 1. These simple properties are enough for the measure to be uniquely determined.

An explicit representation for this integration measure is almost never needed, but fairly
straightforward to write down formally. Suppose a general group element is parameterized by
some variables oy, ...ar,,. Considering here the case SU(N), there are n = N2 — 1 such parame-
ters. Then assume we know some region R in this parameter space that covers the group exactly

once. Define the n dimensional fully antisymmetric tensor €;, . ;, such that, say, €12 ., = L.
Now look at the integral
1= 4 [ {da} £(9(@) 6,00, T (4701,9)-9710:,9)). 49)
R

This has the required invariance properties of Eq. (4.8). The properties of a group imply there
should be a set of parameters o’ depending on « such that g;g(&) = g(a@’). If we change the
integration variables from « to o/, then the epsilon factor generates exactly the Jacobian needed
for this variable change. The normalization factor A is fixed by the above condition [dg 1 = 1.
Once this is done, we have the invariant measure. The above form for the measure will appear
again when we discuss topological issues for gauge fields in Section 7.

Several interesting properties of the Haar measure are easily found. If the group is compact,
the left and right measures are equal

/ng flg) = /ng flagr) = /dLg1 /ngz f(g291) = /dLg f(9). (4.10)

This also shows the measure is unique since any left invariant measure could be used. (For a
non-compact group the normalization can differ.) A similar argument shows

/dg flg) = /dg flg™). (4.11)

For a discrete group, [ dg is simply a sum over the elements. For U(1) = {e?|0 < § < 2r}
the measure is simply an integral over the circle

27 9 )
/dg f(g):/0 dff(e”). (4.12)

2m
For SU(2), group elements take the form

g ={ag+id-&laj +a* =1} (4.13)
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and the measure is
1
[ #t0) = = [ d¥a sie)s(a - 1), @.14)

In particular, SU(2) is a 3-sphere.
Some integrals are easily evaluated if we realize that group integration picks out the “singlet”
part of a function. Thus

/ dgRay(g) =0 (4.15)

where R(g) is any irreducible matrix representation other than the trivial one, R = 1. For the
group SU (3) one can write

/ dg Trg Trgt =1 (4.16)
/dg (Trg)® =1 4.17)

from the well known formulae 3 ® 3 =1®8and3®3®3=1®8® 8 ® 10.
A simple integral useful for the strong coupling expansion is

/dg 9i5 (9w = Lijn- (4.18)

The group invariance says we can multiply the indices arbitrarily by a group element on the left
or right. There is only one combination of the indices that can survive for SU (V)

Iijri = 61101 /N. (4.19)

The normalization here is fixed since tracing over jk should give the identity matrix. Another
integral that has a fairly simple form is

1
/dg Givjr Gizga -+ Jinin = 37y Cirewin Cinin - (4.20)

This is useful for studying baryons in the strong coupling regime.

4.3 Gauge invariance

The action of lattice gauge theory has an exact local symmetry. If we associate an arbitrary group
element g; with each site ¢ of the lattice, the action is unchanged if we replace

Uij — g5 'Uijg;. (4.21)
One consequence is that no link can have a vacuum expectation value [45].

(Ui) = g; "(Uij)g; = 0. 4.22)
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Generalizing this, unless one does some sort of gauge fixing, the correlation between any two
separated U matrices is zero. Indeed many things familiar from perturbation theory often vanish
without gauge fixing, including such fundamental objects as quark and gluon propagators!

An interesting consequence of gauge invariance is that we can forget to integrate over a tree
of links in calculating any gauge invariant observable [39]. An axial gauge represents fixing all
links pointing in a given direction.¥’ Note that this sort of gauge fixing allows the reduction of
two dimensional gauge theories to one dimensional spin models. To see this, pick the tree to be
a non-intersecting spiral of links starting at the origin and extending out to the boundary. Links
transverse to this spiral interact exactly as a one dimensional system. This also shows that two
dimensional gauge theories are exactly solvable. Construct the transfer matrix along this one
dimensional system. The partition function is the sum of the eigenvalues of this matrix each
raised to the power of the volume of the system.

The trace of any product of link variables around a closed loop is the famous Wilson loop.
These quantities are by construction gauge invariant and are the natural observables in the lattice
theory. The well known criterion for confinement is whether the expectation of the Wilson loop
decreases exponentially in the loop area.

More general gauges can be introduced using an analogue of the Fadeev-Popov factor. If
B(U) is gauge invariant, then

1 1

B) =5 [aw)e*Bw) = [ e BE)s©)/ow) (423)

where f(U) is an arbitrary gauge fixing function and

o(U) = / (dg) (97 Vi) 4.24)

is the integral of the gauge fixing function f over all gauges. A possible gauge fixing scheme
might be to ask that some function % of the links vanishes. In this case we could take f = §(h)
and then ¢ = [(dg)d(h). The integral of a delta function of another function is generically a
determinant ¢ = det(dg/0h). A determinant can generally be written as an integral over a set
of auxiliary “ghost” fields. Pursuing this yields the usual Fadeev-Popov picture [46].

Gauge fixing in the continuum raises several subtle issues if one wishes to go beyond pertur-
bation theory. Given some gauge fixing condition A = 0 and the corresponding f = d(h), it is
desirable that this function vanish only once on any gauge orbit. Otherwise one should correct
for the over counting due to what are known of as “Gribov copies” [47]. This turns out to be
non-trivial with most perturbative gauges in practice, such as the Coulomb or Landau gauge.
One of the great virtues of the lattice approach is that by not fixing the gauge, these issues are
sidestepped.

On the lattice gauge fixing is unnecessary and usually not done if one only cares about mea-
suring gauge invariant quantities such as Wilson loops. But this does have the consequence that
the basic lattice fields are far from continuous. The correlation between link variables at dif-
ferent locations vanishes. The locality of the gauge symmetry literally means that there is an
independent symmetry at each space time point. If we consider a quark-antiquark pair located at

@ Using a tree with small highly-serrated leaves might be called a “light comb gauge.”



Lattice gauge theory 25

different positions, they transform under unrelated symmetries. Thus concepts such as separat-
ing the potential between quarks into singlet and octet parts are meaningless unless some gauge
fixing is imposed.

4.4 Numerical simulation

Monte Carlo simulations of lattice gauge theory have come to dominate the subject. We will
introduce some of the basic algorithms in Section 5. The idea is to use the analogy to statistical
mechanics to generate in a computer memory sets of gauge configurations weighted by the expo-
nentiated action of the path integral. This is accomplished via a Markov chain of small weighted
changes to a stored system. Various extrapolations are required to obtain continuum results; the
lattice spacing needs to be taken to zero and the lattice size to infinity. Also, such simulations be-
come increasingly difficult as the quark masses become small; thus, extrapolations in the quark
mass are generally necessary. It is not the purpose of this review to cover these techniques;
indeed, the several books mentioned at the beginning of this section are readily available. In
addition, the proceedings of the annual Symposium on Lattice Field Theory are available on-line
for the latest results.

While confinement is natural in the strong coupling limit of the lattice theory, we will shortly
see that this is not the region of direct physical interest. For this a continuum limit is necessary.
The coupling constant on the lattice represents a bare coupling defined at a length scale given
by the lattice spacing. Non-Abelian gauge theories possess the property of asymptotic freedom,
which means that in the short distance limit the effective coupling goes to zero. This remarkable
phenomenon allows predictions for the observed scaling behavior in deeply inelastic processes.
The way quarks expose themselves in high energy collisions was one of the original motivations
for a non-Abelian gauge theory of the strong interactions.

In addition to enabling perturbative calculations at high energies, the consequences of asymp-
totic freedom are crucial for numerical studies via the lattice approach. As the lattice spacing
goes to zero, the bare coupling must be taken to zero in a well determined way. Because of
asymptotic freedom, we know precisely how to adjust our simulation parameters to take take the
continuum limit!

In terms of the statistical analogy, the decreasing coupling takes us away from high temper-
ature and towards the low temperature regime. Along the way a general statistical system might
undergo dramatic changes in structure if phase transitions are present. Such qualitative shifts in
the physical characteristics of a system can only hamper the task of demonstrating confinement in
the non-Abelian theory. Early Monte Carlo studies of lattice gauge theory have provided strong
evidence that such troublesome transitions are avoided in the standard four dimensional SU(3)
gauge theory of the nuclear force [48].

Although the ultimate goal of lattice simulations is to provide a quantitative understanding of
continuum hadronic physics, along the way many interesting phenomena arise which are peculiar
to the lattice. Non-trivial phase structure does occur in a variety of models, some of which do
not correspond to any continuum field theory. We should remember that when the cutoff is still
in place, the lattice formulation is highly non-unique. One can always add additional terms that
vanish in the continuum limit. In this way spurious transitions might be alternatively introduced
or removed. Physical results require going to the continuum limit.
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4.5 Order parameters

Formally lattice gauge theory is like a classical statistical mechanical spin system. The spins U;;
are elements of a gauge group GG. They are located on the bonds of our lattice. Can this system
become “ferromagnetic”’? Indeed, as mentioned above, this is impossible since (U) = 0 follows
from the links themselves not being gauge invariant [45].

But we do expect some sort of ordering to occur in the U(1) theory. If this is to describe
physical photons, there should be a phase with massless particles. Strong coupling expansions
show that for large coupling this theory has a mass gap [9]. Thus a phase transition is expected,
and has been observed in numerical simulations [49]. Exactly how this ordering occurs remains
somewhat mysterious; indeed, although people often look for a “mechanism for confinement,”
it might be interesting to rephrase this question to “how does a theory such as electromagnetism
avoid confinement.”

The standard order parameter for gauge theories and confinement involves the Wilson loop
mentioned above. This is the trace of the product of link variables multiplied around a closed
loop in space-time. If the expectation of such a loop decreases exponentially with the area of
the loop, we say the theory obeys an area law and is confining. On the other hand, a decrease
only as the perimeter indicates an unconfined theory. This order parameter by nature is non-
local; it cannot be measured without involving arbitrarily long distance correlations. The lattice
approach is well known to give the area law in the strong coupling limit of the pure gauge theory.
Unfortunately, with dynamical quarks this ceases to be a useful measure of confinement. As a
loop becomes large, it will be screened dynamically by quarks “popping” out of the vacuum.
Thus we always will have a perimeter law.

Another approach to understanding the confinement phase is to use the mass gap. As long as
the quarks themselves are massive, a confining theory should contain no physical massless par-
ticles. All mesons, glueballs, and nucleons are expected to gain masses through the dimensional
transmutation phenomenon discussed later. As with the area law, the presence of a mass gap is
easily demonstrated for the strong coupling limit of the pure glue theory.

If the quarks are massless, this definition also becomes a bit tricky. In this case we expect
spontaneous breaking of chiral symmetry, also discussed extensively later. This gives rise to
pions as massless Goldstone bosons. To distinguish this situation from the unconfined theory,
one could consider the number of massless particles in the spectrum by looking at how the
“vacuum” energy depends on temperature using the Stefan-Boltzmann law. With N flavors we
have NJ% — 1 massless scalar Goldstone bosons. On the other hand, were the gauge group SU(N)
not to confine, we would expect N? — 1 massless vector gauge bosons plus N massless quarks,
all of which have two degrees of freedom.
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5 Monte Carlo simulation

As mentioned earlier, Monte Carlo methods have come to dominate work in lattice gauge the-
ory. These are based on the idea that we need not integrate over all fields, but much information
is available already in a few “typical configurations.” For bosonic fields these techniques work
extremely well, while for fermions the methods remain rather tedious. Over the years advances
in computing power have brought some such calculations for QCD into the realm of possibility.
Nevertheless in some situations where the path integral involves complex weightings, the algo-
rithmic issues remain unsolved. In this section we review the basics of the method; this is not
meant to be an extensive review, but only a brief introduction.

5.1 Bosonic fields

A generic path integral

Z = /(dU)e—S (5.1)

on a finite lattice is a finite dimensional integral. One might try to evaluate it numerically. But
it is a many dimensional integral. With SU(3) on 10* lattice we have 4 x 10% links, each
parametrized by 8 numbers. Thus it is a 320,000 dimensional integral. Taking two sample
points for each direction, this already gives

2320000 — 38 % 109329 terms. (5.2)

The age of the universe is only ~ 1027 nanoseconds, so adding one term at a time will take a
while.

Such big numbers suggest a statistical approach. The goal of a Monte Carlo simulation is to
find a few “typical” equilibrium configurations with probability distribution

p(C) ~ P8O, (5.3)

On these one can measure observables of choice along with their statistical fluctuations.
The basic procedure is a Markov process

C—-C —... 5.4

generating a chain of configurations that eventually should approach the above distribution. In
general we take a configuration C' to a new one with some given probability P(C — C”). As
a probability, this satisfies 0 < P < 1 and )., P(C — C’) = 1.5 For a Markov process, P
should depend only on the current configuration and have no dependence on the history.

The process should bring us closer to “equilibrium” in a sense shortly to be defined. This
requires at least two things. First, equilibrium should be stable; i.e. equilibrium is an “eigen-
distribution” of the Markov chain

> P(C = C)e ) = 75O, (5.5)
C/

®)For continuous groups the sum really means integrals.
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Second, we should have ergodicity; i.e. all possible states must in principle be reachable.

A remarkable result is that these conditions are sufficient for an algorithm to approach equi-
librium, although without any guarantee of efficiency. Suppose we start with an ensemble of
states, E, characterized by the probability distribution p(C'). A distance between ensembles is
easily defined

D(E,E')=)_|p(C) —p'(C)]. (5.6)
C

This is positive and vanishes only if the ensembles are equivalent. A step of our Markov process
takes ensemble E into another E’ with

(€)= P(C"— C)p(C"). (5.7)
=

Now assume that P is chosen so that the equilibrium distribution p.,(C) = e=9(“)/Z is an
eigenvector of eigenvalue 1. Compare the new distance from equilibrium with the old

D(E' Ee) = 3 P(C) — pea(C) = 32 |3 P(C = C)p(O) — pegl©))] . (5.8)
C

c | C

Now the absolute value of a sum is always less than the sum of the absolute values, so we have

D(E',Eeq) <Y > P(C = C)[(p(C) = peq(C))]. (5.9)

c

Since each C' must go somewhere, the sum over C’ gives unity and we have

D(E', Eug) < 3 |(0(C) ~ peql(C))| = D(E, E.y). (5.10)
C

Thus the algorithm automatically brings one closer to equilibrium.

How can one be sure that equilibrium is an eigen-ensemble? The usual way in practice
invokes a principle of detailed balance, a sufficient but not necessary condition. This states that
the forward and backward rates between two states are equal when one is in equilibrium

Peq(C)P(C — C") = peg(C")P(C" — C). (5.11)

Summing this over C’ immediately gives the fact that the equilibrium distribution is an eigen-
ensemble.

The famous Metropolis et al. approach [50] is an elegant and simple way to construct an algo-
rithm satisfying detailed balance. This begins with a trial change on the configuration, specified
by a trial probability Pr(C — C"). This is required to be constructed in a symmetric way, so
that
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This by itself would just tend to randomize the system. To restore the detailed balance, the trial
change is conditionally accepted with probability

A(C,C") = min(1, peg(C) /peq(C)). (5.13)

In other words, if the Boltzmann weight gets larger, make the change; otherwise, accept it with
probability proportional to the ratio of the Boltzmann weights. An explicit expression for the
final transition probability is

P(C — C") = Pr(C — C")A(C,C")

+6(C,C") (1 — Y Pr(C— C"A(C, c”)) . (5.14)
cr
The delta function accounts for the possibility that the change is rejected.

For lattice gauge theory with its U variables in a group, the trial change can be most easily
set up via a table of group elements T = {g1,...9,}. The trial change consists of picking
an element randomly from this table and using Ur = gU. These can be chosen arbitrarily
with two conditions: (1) multiplying them together in various combinations should generate
the whole group and (2) for each element in the table, its inverse must also be present, i.e.
g € T = g—* € T. The second condition is essential for having the forward and reverse trial
probabilities equal. An interesting feature of this approach is that the measure of the group is not
used in any explicit way; indeed, it is generated automatically.

Generally the group table should be weighted towards the identity. Otherwise the acceptance
gets small and you never go anywhere. But this weighting should not be too extreme, because
then the motion through configuraton space becomes slow. Usually the width of the table is
adjusted to give an acceptance of order 50%. For free field theory the optimum can be worked
out, it is a bit less. In general a big change with a small acceptance can sometimes be better than

small changes; this appears to be the case with simulating self avoiding random walks [51].
The acceptance criterion involves the ratio ’;L(%))
eq

of this ratio in equilibrium. This is

. An interesting quantity is the expectation

Peq(C”) _ , , B
<peq(C)> _XC:I)SQ(C);PT(C_’C)peq(c)/peq(c) =1 (5.15)
since
D_Pr(C—C) =3 Pr(C'—C)=1 (5.16)
¢ c

and ), peq(C’) = 1. Of course the average acceptance is not unity since it is expectation of
the minimum of this ratio and 1. However monitoring this expectation provides a simple way to
follow the approach to equilibrium.

A full Monte Carlo program consists of looping over all the lattice links while considering
such tentative changes. To improve performance there are many tricks that have been developed
over the years. For example, in a lattice gauge calculation the calculation of the “staples” inter-
acting with a given link takes a fair amount of time. This makes it advantageous to apply several
Monte Carlo “hits” to the given link before moving on.
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5.2 Fermions

The numerical difficulties with fermionic fields stem from their being anti-commuting quantities.
Thus it is not immediately straightforward to place them on a computer, which is designed to
manipulate numbers. Indeed, the Boltzmann factor with fermions is formally an operator in
Grassmann space, and cannot be directly interpreted as a probability. All algorithms in current
use eliminate the fermions at the outset by a formal analytic integration. This is possible because
most actions in practice are, or can easily be made, quadratic in the fermionic fields. The fermion
integrals are then over generalized gaussians. Unfortunately, the resulting expressions involve the
determinant of a large, albeit sparse, matrix. This determinant introduces non-local couplings
between the bosonic degrees of freedom, making the path integrals over the remaining fields
rather time consuming.

For this brief overview we will be quite generic and assume we are interested in a path integral
of form

7= / (dA)(d4) (dT) exp(—Sc(A) — TD(AWY). (5.17)

Here the gauge fields are formally denoted A and fermionic fields ¢ and 7). Concentrating on
fermionic details, in this section we ignore the technicality that the gauge fields are actually group
elements. All details of the fermionic formulation are hidden in the matrix D(A). While we call
A a gauge field, the algorithms are general, and have potential applications in other field theories
and condensed matter physics.

In the section on Grassmann integration we found the basic formula for a fermionic Gaussian
integral

/ (dvdi) e~ PV = | D) (5.18)

where (diydi)) = dipy dip, . .. dw, dip,,. Using this, we can explicitly integrate out the fermions
to convert the path integral to

Z = /(dA) |D| e=5¢ = /(dA) exp(—S, + Tr log(D)). (5.19)

This is now an integral over ordinary numbers and therefore in principle amenable to Monte
Carlo attack.

For now we assume that the fermions have been formulated such that | D| is positive and thus
the integrand can be regarded as proportional to a probability measure. This is true for several of
the fermion actions discussed later. However, if | D| is not positive, one can always double the
number of fermionic species, replacing D by DD. We will see in later sections that the case
where D is not positive can be rather interesting, but how to include such situations in numerical
simulations is not yet well understood.

Direct Monte Carlo study of the partition function in this form is still not practical because
of the large size of the matrix D. In our compact notation, this is a square matrix of dimension
equal to the number of lattice sites times the number of Dirac components times the number of
internal symmetry degrees of freedom. Thus, it is typically a hundreds of thousands by hundreds
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of thousands matrix, precluding any direct attempt to calculate its determinant. It is, however,
generally an extremely sparse matrix because most popular actions do not directly couple distant
sites. All the Monte Carlo algorithms used in practice for fermions make essential use of this
fact.

Some time ago Weingarten and Petcher [52] presented a simple “exact” algorithm. By intro-
ducing “pseudofermions” [53, 54], an auxiliary set of complex scalar fields ¢, one can rewrite
the path integral in the form

2= [(@a)as doyexp(~56 - 6D ). (5.20)

Thus a successful fermionic simulation would be possible if one could obtain configurations of
fields ¢ and A with probability distribution

P(A,¢) x exp(=Sg — ¢*D~'¢). (5.21)

To proceed we again assume that D is a positive matrix so this distribution is well defined.

For an even number of species, generating an independent set of ¢ fields is actually quite
easy. If we consider a field x that is gaussianly randomly selected, i.e. P(x) ~ e’XQ, then the
field ¢ = Dy is distributed as desired for two flavors P(¢) ~ e~ (P7'9)  The hard part of the
algorithm is the updating of the A fields, which requires knowledge of how ¢*D~'¢ changes
under trial changes in A.

5.3 The conjugate-gradient algorithm

While D! is the inverse of an enormous matrix, one really only needs ¢* D~'¢, which is just
one matrix element of this inverse. Furthermore, with a local fermionic action the matrix D is
extremely sparse, the non-vanishing matrix elements only connecting nearby sites. In this case
there exist quite efficient iterative schemes for finding the inverse of a large sparse matrix applied
to a single vector. Here we describe one particularly simple approach.

The conjugate gradient method to find £ = D~'¢ works by finding the minimum over & of
the function | D& — ¢|%. The solution is iterative; starting with some &y, a sequence of vectors is
obtained by moving to the minimum of this function along successive directions d;. The clever
trick of the algorithm is to choose the d; to be orthogonal in a sense defined by the matrix D itself;
in particular (Dd;, Dd;) = 0 whenever ¢ # j. This last condition serves to eliminate useless
oscillations in undesirable directions, and guarantees convergence to the minimum in a number
of steps equal to the dimension of the matrix. There are close connections between the conjugate
gradient inversion procedure and the Lanczos algorithm for tridiagonalizing sparse matrices.

The procedure is a simple recursion. Select some arbitrary initial pair of non-vanishing vec-
tors go = dg. For the inversion problem, convergence will be improved if these are a good guess
to D~ '¢. Then generate a sequence of further vectors by iterating

gi+1 = (Dgi, Dd;)g; — (9:,9:) D' Dd;
dit1 = (Dd;, Dd;)giv1 — (Dd Dgiy1)d;. (5.22)

This construction assures that g; is orthogonal to g;11 and (Dd;, Dd;11) = 0. It should also
be clear that the three sets of vectors {dy, ...dx }, {go, ...gx }, and {do, ...(DT D)*dy} all span the
same space.
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The remarkable core of the algorithm, easily proved by induction, is that the set of g; are all
mutually orthogonal, as are Dd;. For an N dimensional matrix, there can be no more than N
independent orthogonal vectors. Thus, ignoring round-off errors, the recursion in Eq. (15) must
terminate in N or less steps with the vectors g and d vanishing from then on. Furthermore, as
the above sets of vectors all span the same space, in a basis defined by the g; the matrix DT D is
in fact tri-diagonal, with (Dg;, Dg;) vanishing unless ¢ = j & 1.

To solve ¢ = D¢ for &, simply expand in the d;

£=3 auds (5.23)

The coefficients are immediately found from the orthogonality conditions
a; = (Dd;, ¢)/(Dd;, Dd;). (5.24)

Note that if we start with the solution dy = D~ !¢, then we have a; = J;0.

This discussion applies for a general matrix D. If D is Hermitean, then one can work with
better conditioned matrices by replacing the orthogonality condition for the d; with (d;, Dd;)
vanishing for i # j.

In practice, at least when the correlation length is not too large, this procedure adequately
converges in a number of iterations which does not grow severely with the lattice size. As
each step involves vector sums with length proportional to the lattice volume, each conjugate
gradient step takes a time which grows with the volume of the system. Thus the overall algorithm
including the sweep over lattice variables is expected to require computer time which grows as
the square of the volume of the lattice. Such a severe growth has precluded use of this algorithm
on any but the smallest lattices. Nevertheless, it does show the existence of an exact algorithm
with considerably less computational complexity than would be required for a repeated direct
evaluation of the determinant of the fermionic matrix.

Here and below when we discuss volume dependences, we ignore additional factors from
critical slowing down when the correlation length is also allowed to grow with the lattice size.
The assumption is that such factors are common for the local algorithms treated here. In addition,
such slowing occurs in bosonic simulations, and we are primarily concerned here with the extra
problems presented by the fermions.

5.4 Hybrid Monte Carlo

One could imagine making trial changes of all lattice variables simultaneously, and then ac-
cepting or rejecting the entire new configuration using the exact action. The problem with this
approach is that a global random change in the gauge fields will generally increase the action
by an amount proportional to the lattice volume, and thus the final acceptance rate will fall ex-
ponentially with the volume. The acceptance rate could in principle be increased by decreasing
the step size of the trial changes, but then the step size would have to decrease with the volume.
Exploration of a reasonable region of phase space would thus require a number of steps growing
as the lattice volume. The net result is an exact algorithm which still requires computer time
growing as volume squared.

So far this discussion has assumed that the trial changes are made in a random manner. If,
however, one can properly bias these variations, it might be possible to reduce the volume squared
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behavior. The “hybrid Monte Carlo” scheme [55] does this with a global accept/reject step on
the entire lattice after a microcanonical trajectory.

The trick here is to add yet further auxiliary variables in the form of “momentum variables”
p conjugate to the gauge fields A. Then we look for a coupled distribution

P(p, A, ¢) = e H@A0) (5.25)
with

H=p*/2+V(A) (5.26)
and

V(A) = —S,(A) — ¢*D ¢ (5.27)

The basic observation is that this is a simple classical Hamiltonian for the conjugate variables A
and p, and evolution using Newton’s laws will conserve energy. For the gauge fields one sets up
a “trajectory” in a fictitious “Monte Carlo” time variable 7 and consider the classical evolution

i - OV (A)
Pi _ _
&~ B = (5.28)

Under such evolution an equilibrium ensemble will remain in equilibrium.

An approximately energy conserving algorithm is given by a “leapfrog” discretization of
Newton’s law. With a microcanonical time discretization of size J, this involves two half steps in
momentum sandwiching a full step in the coordinate A

Py =p+3 F(A)/2
A= A+5p,
P =ps+IF(A)/2 (5.29)

or combined

A =A+6p+8° F(A))2
P =p+0(F(A)+ F(A"))/2. (5.30)

Even for finite step size 0, this is an area preserving map of the (A, p) plane onto itself. The
scheme iterates this mapping several times before making a final Metropolis accept/reject deci-
sion. This iterated map also remains reversible and area preserving. The computationally most
demanding part of this process is calculating the force term. The conjugate gradient algorithm
mentioned above can accomplish this.

The important point is that after each step the momentum remains exactly the negative of
that which would be required to reverse the entire trajectory and return to the initial variables.
If at some point on the trajectory we were to reverse all the momenta, the system would exactly
reverse itself and return to the same set of states from whence it came. Thus a final acceptance
with the appropriate probability still makes the overall procedure exact. After each accept/reject
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step, the momenta p can be refreshed, their values being replaced by new Gaussian random
numbers. The pseudofermion fields ¢ could also be refreshed at this time. The goal of the
procedure is to use the micro-canonical evolution as a way to restrict changes in the action so
that the final acceptance will remain high for reasonable step sizes.

This procedure contains several parameters which can be adjusted for optimization. First is
Npic, the number of micro-canonical iterations taken before the global accept/reject step and
refreshing of the momenta p. Then there is the step size §, which presumably should be set to
give a reasonable acceptance. Finally, one can also vary the frequency with which the auxiliary
scalar fields ¢ are updated.

The goal of this approach is to speed flow through phase space by replacing a random walk
of the A field with a coherent motion in the dynamical direction determined by the conjugate
momenta. A simple estimate [56] suggests a net volume dependence proportional to V%/4 rather
the naive volume squared without these improvements.

As mentioned above, using pseudofermions is simplest if the fermion matrix is a square, re-
quiring an even number of species. Users of the hybrid algorithm without the global accept-reject
step have argued for adjusting the number of fermion species by inserting a factor proportional
to the number of flavors in front of the pseudofermionic term when the gauge fields are updated.
This modification is simple to make, but raises some theoretical issues that will be discussed later.
In particular, it is crucial that the underlying fermion operator break any anomalous symmetries
associated with the reduced theory.

Despite the successes of these fermion algorithms, the overall procedure still seems some-
what awkward, particularly when compared with the ease of a pure bosonic simulation. This
appears to be tied to the non-local actions resulting from integrating out the fermions. Indeed,
had one integrated out a set of bosons coupled quadratically to the gauge field, one would again
have a non-local effective action, indicating that this analytic integration was not a good idea.
Perhaps we should step back and explore algorithms before integrating out the fermions.

An unsolved problem is to find a practical simulation approach to fermionic systems where
the corresponding determinant is not always positive. This situation is of considerable inter-
est because it arises in the study of quark-gluon thermodynamics when a chemical potential is
present. All known approaches to this problem are extremely demanding on computer resources.
One can move the phase of the determinant into the observables, but then one must divide out the
average value of this sign. This is a number which is expected to go to zero exponentially with
the lattice volume; thus, such an algorithm will require computer time growing exponentially
with the system size. Another approach is to do an expansion about zero baryon density, but
again to get to large chemical potential will require rapidly growing resources. New techniques
are badly needed to avoid this growth; hopefully this will be a particularly fertile area for future
algorithm development.
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6 Renormalization and the continuum limit

Asymptotic freedom is a signature feature of the theory of the strong interactions. Interactions
between quarks decrease at very short distances. From one point of view this allows perturbative
calculations in the high energy limit, and this has become an industry in itself. But the concept is
also of extreme importance to lattice gauge theory. Indeed, asymptotic freedom tells us precisely
how to take the continuum limit. This chapter reviews the renormalization group and this crucial
connection to the lattice. When fermions are present their masses must also be renormalized, but
the renormalization group also tells us exactly how to do this.

6.1 Coupling constant renormalization

At the level of tree Feynman diagrams, relativistic quantum field theory is well defined and
requires no renormalization. However as soon as loop corrections are encountered, divergences
appear and must be removed by a regularization scheme. In general the theory then depends
on some cutoff, which is to be removed with a simultaneous adjustment of the bare parameters
while keeping physical quantities finite.

For example, consider a lattice cutoff with spacing a. The proton mass 1m,, is a finite physical
quantity, and on the lattice it will be some, a priori unknown, function of the cutoff a, the bare
gauge coupling g and the bare quark masses. For the quark-less theory we could use the lightest
glueball mass for this purpose. The basic idea is to hold enough physical properties constant to
determine how the coupling and quark masses behave as the lattice spacing is reduced.

As the quark masses go to zero the proton mass is expected to remain finite; thus, to simplify
the discussion, temporarily ignore the quark masses. Thus consider the proton mass as a func-
tion of the gauge coupling and the cutoff, m,(g, a). Holding this constant as the cutoff varies
determines how g depends on a. This is the basic renormalization group equation

d 0 d 0
gomplal@).a) =0 =agtmy(g.0) +a () Some.a) 6.1)

By dimensional analysis, the proton mass should scale as ™! at fixed bare coupling. Thus we
know that

0
a%mp(gaa) = _mp(g7a)' (62)

The “renormalization group function”
dg my(g,a
Blg) = a¥ = _Tw(0:0)_ 6.3)

=a = —
da %mp(gva)

characterizes how the bare coupling is to be varied for the continuum limit. Note that this partic-
ular definition is independent of perturbation theory or any gauge fixing.

As renormalization is not needed until quantum loops are encountered, 3(g) vanishes as g*
when the coupling goes to zero. Define perturbative coefficients from the asymptotic series

B(g) = Bog® + Brg” + ... (6.4)
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Politzer [57] and Gross and Wilczek [58, 59] first calculated the coefficient 3y for non-Abelian
gauge theories, with the result

1

50:16?(11]\1/3—21\@/3) (6.5)
where the gauge group is SU(N) and N denotes the number of fermionic species. As long as
Ny < 11N/2 this coefficient is positive. Assuming we can reach a region where this first term
dominates, decreasing the cutoff corresponds to decreasing the coupling. This is the heart of
asymptotic freedom, which tells us that the continuum limit of vanishing lattice spacing requires
taking a limit towards vanishing coupling. The two loop contribution to Eq. (6.4) is also known
[60,61]

2
P = (1(;2) (34N?/3 — 10NNy /3 — Ny(N* = 1)/N). (6.6)

In general the function 5(g) depends on the regularization scheme in use. For example it
might depend on what physical property is held fixed as well as details of how the cutoff is
imposed. Remarkably, however, these first two coefficients are universal. Consider two different
schemes each defining a bare coupling as a function of the cutoff, say g(a) and ¢'(a). The
expansion for one in terms of the other will involve all odd powers of the coupling. In the weak
coupling limit each formulation should reduce to the classical Yang-Mills theory, and thus to
lowest order they should agree

g =g+cg®+0(g°). 6.7)
We can now calculate the new renormalization group function
dg’ 9Og
/ / = —_— = —
Flg)=a 99 (9)
= (14 3¢g”)(Bog” + b1g°) + O(3”)
= Bog” + Prg"” +O(g"”). (6.8)

Through order g’ % the dependence on the parameter ¢ cancels. This, however, does not continue
to higher orders, where alternate definitions of the beta function generally differ. We will later
comment further on this non-uniqueness.

The renormalization group function determines how rapidly the coupling decreases with cut-
off. Separating variables

dg
d(log(a)) = 6.9
(log(a)) Bog® + Brg° + O(g7) ©2)
allows integration to obtain
1 ﬁl 2
log(aA) = — + —=lo + 0 (6.10
g(al) e’ T B g(g9) +O(g”) )

where A is an integration constant. This immediately shows that the lattice spacing decreases
exponentially in the inverse coupling

a =z 125 g IR (14 0(g?)). (6.11)
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Remarkably, although the discussion began with the beta function obtained in perturbation the-

ory, the right hand side of Eq. (6.11) has an essential singularity at vanishing coupling. The

renormalization group provides non-perturbative information from a perturbative result.
Dropping the logarithmic corrections, the coupling as a function of the cutoff reduces to

9 1
~ 20 log(1/Aa)

showing the asymptotic freedom result that the bare coupling goes to zero logarithmically with
the lattice spacing in the continuum limit.

The integration constant A is defined from the bare charge and in a particular cutoff scheme.
Its precise numerical value will depend on details, but once the scheme is chosen, it is fixed
relative to the scale of the quantity used define the physical scale. In the above discussion this
was the proton mass. The existence of a scheme dependence can be seen by considering two
different bare couplings as related in Eq. (6.7). The relation between the integration constants is

g 6.12)

, c

log(A"/A) T (6.13)

The mass m of a physical particle, perhaps the proton used above, is connected to an inverse

correlation length in the statistical analogue of the theory. Measuring this correlation length in

lattice units, we can consider the dimensionless combination £ = 1/am. For the continuum

limit, we want this correlation length to diverge. Multiplying Eq. (6.11) by the mass tells us how
this divergence depends on the lattice coupling

ma=¢! = %efl/gﬁ“fg’ﬁl/ﬁg(l +0(¢g%)). (6.14)

Conversely, if we know how a correlation length £ of the statistical system diverges as the cou-
pling goes to zero, we can read off the particle mass in units of A as the coefficient of the behavior
in this equation. This exemplifies the close connection between diverging correlation lengths in
a statistical system and the continuum limit of the corresponding quantum field theory.

We emphasize again the exponential dependence on the inverse coupling appearing in Eq.
(6.14). This is a function that is highly non-analytic at the origin. This demonstrates quite
dramatically that QCD cannot be fully described by perturbation theory.

6.2 A parameter free theory

This discussion brings us to the remarkable conclusion that, ignoring the quark masses, the strong
interactions have no free parameters. The cutoff is absorbed into g(a), which in turn is absorbed
into the renormalization group dependence. The only remaining dimensional parameter A serves
to set the scale for all other masses. In the theory considered in isolation, one may select units
such that A is unity. After such a choice, all physical mass ratios are determined. Coleman and
Weinberg [62] have given this process, wherein a dimensionless parameter g and a dimensionful
one a manage to “‘eat” each other, the marvelous name “dimensional transmutation.”

In the theory including quarks, their masses represent further parameters. Indeed, these are
the only parameters in the theory of the strong interactions. In the limit where the quark masses
vanish, referred to as the chiral limit, we return to a zero parameter theory. In this approximation
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to the physical world, the pion mass is expected to vanish and all dimensionless observables
should be uniquely determined. This applies not only to mass ratios, such as of the rho mass to
the proton, but as well to quantities such as the pion-nucleon coupling constant, once regarded as
a parameter for a perturbative expansion. As the chiral approximation has been rather successful
in the predictions of current algebra, we expect an expansion in the small quark masses to be a
fairly accurate description of hadronic physics. Given a qualitative agreement, a fine tuning of
the small quark masses should give the pion its mass and complete the theory.

The exciting idea of a parameter-free theory is sadly lacking from most treatments of the
other interactions such as electromagnetism or the weak force. There the coupling o ~ 1/137
is treated as a parameter. One might optimistically hope that the inclusion of the appropriate
non-perturbative ideas into a unified scheme would ultimately render o and the quark and lepton
masses calculable.

6.3 Including quark masses

Above we concentrated on the flow of the bare coupling as one takes the continuum limit. Of
course with massive quarks in the theory, the bare quark mass is also renormalized. Here we
extend the above discussion to see how the two bare parameters flow together to zero in a well

defined way.
Including the mass flow, the renormalization group equations become
dg _ _ 3 5 .
adf = B(g) = Pog® + £1g° + . .. + non-perturbative
a
dm 2 4 :
o= = my(g) = m(y09” + 719~ + .. .) + non-perturbative. (6.15)
a

Now we have three perturbative coefficients 3y, (31, 7o which are scheme independent and
known [57-61,63,64]. For SU(3) we have
Bo = 542 = 0654365977 (Np =1)
By = ST = 0036091343 (Nj=1) (6.16)

0= .0506605918

For simplicity we work with N degenerate quarks, although this is easily generalized to the
non-degenerate case. It is important to recognize that the “non-perturbative” parts fall faster
than any power of g as g — 0. As we will discuss later, unlike the perturbative pieces, the
non-perturbative contributions to -y in general need not be proportional to the quark mass.

As with the pure gauge theory discussed earlier, these equations are easily solved to show

1 2 2
a = Xefl/wog gfﬁl/ﬁg(l _|_0(92))

m = Mg"/P(1+0(g?)). (6.17)

The quantities A and M are “integration constants” for the renormalization group equations.
Rewriting these relations gives the coupling and mass flow in the continuum limit ¢ — 0

9 1

~ m —0 “asymptotic freedom”

9
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m(a)

9(a)

Fig. 6.1. In the continuum limit both the bare coupling and bare mass for QCD flow to zero.

1 Y0/ Bo

Here A is usually regarded as the “QCD scale” and M as the “renormalized quark mass.” The
resulting flow is sketched in Fig. 6.1.

The rate of this flow to the origin is tied to the renormalization group constants, which can
be obtained from the inverted equations

6—1/250!]29—51 /83

A = lim (6.19)
a—0 a
M = lim mg~0/Po. (6.20)

Of course, as discussed for A above, the specific numerical values of these parameters depend on
the detailed renormalization scheme.

Defining 3(g) and (g) is most naturally done by fixing some physical quantities and adjust-
ing the bare parameters as the cutoff is removed. Because of confinement we can’t use the quark
mass itself, but we can select several physical particle masses m;(g, m, a) to hold fixed. This
leads to the constraint

8mi

dm;i(g,m,a) Omy omy
a =0= Blg) + 5 —m(g) +a—5-. (6.21)

da g

For simplicity, continue to work with degenerate quarks of mass m. Then we have two bare pa-
rameters (g, m), and we need to fix two quantities. ® Natural candidates are the lightest baryon
mass, denoted here as m,,, and the lightest boson mass, m,. Then we can explicitly rearrange
these relations to obtain a somewhat formal but explicit expression for the renormalization group

® Actually there is a third parameter related to CP conservation. Here we assume CP is a good symmetry and ignore
this complication. This issue will be further discussed in later sections.
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Note that this particular definition includes all perturbative and non-perturbative effects. In addi-
tion, this approach avoids any need for gauge fixing.

Once given m,,, m,, and a renormalization scheme, then the dependence of the bare param-
eters on the cutoff is completely fixed. The physical masses are mapped onto the integration
constants

A= A(mp, my) (6.23)
M = M(my, my). (6.24)

(6.22)

Formally these relations can be inverted to express the masses as functions of the integration
constants, m; = m;(A, M). Straightforward dimensional analysis tells us that the masses must
take the form

As we will discuss in more detail in later sections, for the multi-flavor theory we expect the
pions to be Goldstone bosons with m2 ~ m,. This tells us that the above function for the
pion should exhibit a square root singularity f(x) ~ x/2. This relation removes any additive
ambiguity in defining the renormalized quark mass M. As will be discussed in more detail later,
this conclusion does not persist if the lightest quark becomes non-degenerate.

6.4 Which beta function?

Thus far our discussion of the renormalization group has been in terms of the bare charge with a
cutoff in place. This is the natural procedure in lattice gauge theory; however, there are alternative
approaches to the renormalization group that are frequently used in the continuum theory. We
now make some comments on connection between the lattice and the continuum approaches.

An important issue is that there are many different ways to define a renormalized coupling;
it should first of all be an observable that remains finite in the continuum limit

lim g (1, a, 9(a)) = gr(p)- (6.26)

Here p is a dimensionful energy scale introduced to define the renormalized coupling. The
subscript r is added to distinguish this coupling from the bare one. For perturbative purposes
one might use a renormalized three-gluon vertex in a particular gauge and with all legs at a given
scale of momentum proportional to x. But many alternatives are possible; for example, one
might use as an observable the force between two quarks at separation 1/.

Secondly, to be properly called a renormalization of the classical coupling, g, should be
normalized such that it reduces to the bare coupling in lowest order perturbation theory for the
cutoff theory

gr(p,a,9) = g+ O(g*). (6.27)
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Beyond this, the definition of g, is totally arbitrary. In particular, given any physical observable
H defined at scale p and satisfying a perturbative expansion

H(p,a,9) = ho + hig* + O(g*) (6.28)

we can define a corresponding renormalized coupling

91 (1) = (H () — ho)/ha. (6.29)

As the energy scale goes to infinity, this renormalized charge should go to zero. But with a
different observable, we will generally obtain a different functional behavior for this flow. From
this flow of the renormalized charge we can define a renormalized beta function

dg, (1)
ou

Br=—p (6.30)

We now draw a remarkable connection between the renormalized renormalization group
function ,(g,) and the function 3(g) defined earlier for the bare coupling. When the cutoff
is still in place, the renormalized coupling is a function of the scale p of the observable, the
cutoff a, and the bare coupling g. Since we are working with dimensionless couplings, g, can
depend directly on i and a only through their product. This simple application of dimensional
analysis implies

dgr
o

9,
a

o — 3, (6.31)

g

g9

Now, in the continuum limit as we take a to zero and adjust g appropriately, g,- should become a
function of the physical scale p alone. Indeed, we could use g,-(u) itself as the physical quantity
to hold fixed for the continuum limit. Then we obtain

aagr n agra@ N
da dg Oda

0. (6.32)

Using this in an analysis similar to that in Eq. (6.8), we find

Br(gr) = Bogp + Brgl + O(gy). (6.33)

Where [y and [3; are the same coefficients that appear in Eq. (6.4). Both the renormalized and
the bare (3 functions have the same first two coefficients in their perturbative expansions. Indeed,
it was through consideration of the renormalized coupling that 5y and 3, were first calculated.
It is important to reiterate the considerable arbitrariness in defining both the bare and the
renormalized couplings. Far from the continuum there need be no simple relationship between
different formulations. Once one leaves the perturbative region, even such things as zeros in the
[ functions are not universal. For one extreme example, it is allowed to force the beta function to
consist of only the first two terms. In this case, as long as N is small enough that 3; > 0, there is
explicitly no other zero of the beta function except at g = 0. On the other hand, one might think
it natural to define the coupling from the force between two quarks. When dynamical quarks are
present, at large distances this falls exponentially with the pion mass at large distances. In this
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case the beta function must have another zero in the vicinity of where the screening sets in. Thus,
even the existence of zeros in the beta function is scheme dependent. The only exception to this
is if a zero occurs in a region of small enough coupling that perturbation theory can be trusted.
This has been conjectured to happen for a sufficient number of flavors [33].

The perturbative expansion of (3,. has important experimental consequences. If, as expected,
the continuum limit is taken at vanishing bare coupling and the renormalized coupling is small
enough that the first terms in Eq. (6.33) dominate, then the renormalized coupling will be driven
to zero logarithmically as its defining scale p goes to infinity. Not only does the bare coupling
vanish, but the effective renormalized coupling becomes arbitrarily weak at short distances. This
is the physical implication of asymptotic freedom; phenomena involving only short-distance ef-
fects may be accurately described with a perturbative expansion. Indeed, asymptotically free
gauge theories were first invoked for the strong interactions as an explanation of the apparently
free parton behavior manifested in the structure functions associated with deeply inelastic scat-
tering of leptons from hadrons.

The dependence of the integration constant A on the details of the renormalization scheme
carries over to the continuum renormalization group as well. Given a particular definition of the
renormalized coupling g, (i), its behavior as r goes to zero will involve a scale A, in analogy
to the scale in the bare coupling. Hasenfratz and Hasenfratz [65, 66] were the first to perform
the necessary one loop calculations to relate A from the Wilson lattice gauge theory with A,.
defined from the three-gluon vertex in the Feynman gauge and with all legs carrying momentum
p?%. They found

A, (575 SU(2)
A ( 83.5 SU(3) ) 639

for the pure gauge theory. Note that not only is A scheme dependent, but that different definitions
can vary by rather large factors. The original calculation of these numbers was rather tedious.
They have been verified with calculationally more efficient techniques based on quantum fluctu-
ations around a slowly varying classical background field [67].

6.5 Flows and irrelevant operators

We now briefly discuss another way of looking at the renormalization group as relating theories
with different lattice spacings. Given one lattice theory, one could imagine generating another
with a larger lattice spacing by integrating over all links except those on some subset of the
original lattice, thus generating an equivalent theory with, say, a larger lattice spacing. While
this is conceptually possible, to do it exactly in more than one dimension will generate an infinite
number of couplings. If we could keep track of such, the procedure would be “exact,” but in
reality we usually need some truncation. Continuing to integrate out degrees of freedom, the
couplings flow and might reach some “fixed point” in this infinite space. With multiple couplings,
there can be an attractive “sheet” towards which couplings flow, and then they might continue
to flow towards a fixed point, as sketched in Fig. 6.2. If the fixed point has only one attractive
direction, then two different models that flow towards that same fixed point will have the same
physics in the large distance limit. This is the concept of universality; i.e. exponents are the same
for all models with the same attractor.
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Fig. 6.2. A generic renormalization group flow. In general this occurs in an infinite dimensional space.

Some hints on this process come from dimensional analysis, although, in ignoring non-
perturbative effects that might occur at strong coupling, the following arguments are not rigorous.
In d dimensions a conventional scalar field has dimensions of M “=*. Thus the coupling constant
A in an interaction of form [ d?z A\¢™ has dimensions of M d=n3%  On a lattice of spacing a,
the natural unit of dimension is the inverse lattice spacing. Thus without any special tuning, the
renormalized coupling at some fixed physical scale would naturally run as A\ ~ an T, As
long as the exponent in this expression is positive, i.e.

L2
"=a2

we expect the coupling to become “irrelevant” in the continuum limit. The fixed point is driven
towards zero in the corresponding direction. If d exceeds four, this is the case for all interactions.
(We ignore ¢° in 6 dimensions because of stability problems.) This suggests that four dimensions
is a critical case, with mean field theory giving the right qualitative critical behavior for all larger
dimensions. In four dimensions we have several possible “renormalizable” couplings which are
dimensionless, suggesting logarithmic corrections to the simple dimensional arguments. Indeed,
four-dimensional non-Abelian gauge theories display exactly such a logarithmic flow; this is
asymptotic freedom.

This simple dimensional argument applied to the mass term suggests it would flow towards
infinity in all dimensions. For a conventional phase transition, something must be tuned to a
critical point. In statistical mechanics this is the temperature. In field theory language we usually
remap this onto a tuning of the bare mass term, saying that the transition occurs as bare masses
go through zero. For a scalar theory this tuning for a continuum limit seems unnatural and is one
of the unsatisfying features of the standard model, driving particle physicists to try to unravel
how the Higg’s mechanism really works.

In non-Abelian gauge theories with multiple massless fermions, chiral symmetry protects
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the mass from renormalization, avoiding any special tuning. Indeed, as we have discussed, be-
cause of dimensional transmutation, all dimensionless parameters in the continuum limit are
completely determined by the basic structure of the initial Lagrangean, without any continuous
parameters to tune. In the limit of vanishing pion mass, the rho to nucleon mass ratio should
be determined from first principles; it is the goal of lattice gauge theory to calculate just such
numbers.

As we go below four dimensions, this dimensional argument suggests that several couplings
can become “relevant,” requiring the renormalization group picture of flow towards a non-trivial
fixed point. Above two dimensions the finite number of renormalizable couplings corresponds to
the renormalization group argument for a finite number of “universality classes,” corresponding
to different basic symmetries.

One might imagine dimensionality as being a continuously variable parameter. Then just
below four dimensions a renormalizable coupling becomes “super-renormalizable” and a new
non-trivial fixed point breaks away from vanishing coupling. Near four dimensions this point is
at small coupling, forming the basis for an expansion in 4 — d. This has become a major industry,
making remarkably accurate predictions for critical exponents in three dimensional systems [68].

An important consequence of this discussion is that a lattice action is in general highly non-
unique. One can always add irrelevant operators and expect to obtain the same continuum limit.
Alternatively, one might hope to improve the approach the continuum limit by a judicious choice
of the lattice action.

The renormalization group is indeed a rich subject. We have only touched on a few issues that
are particularly valuable for the lattice theory. Perhaps the most remarkable result of this section
is how a perturbative analysis of the renormalization-group equation gives rise to information on
the non-perturbative behavior in the particle masses, as exhibited in Eq. (6.14).



Classical gauge fields and topology 45

7 Classical gauge fields and topology

The above renormalization group analysis demonstrates that non-perturbative effects are crucial
to understanding the continuum limit of QCD on the lattice. However, the importance of go-
ing beyond the perturbation expansion for non-Abelian gauge theories was dramatically exposed
from a completely different direction with the discovery of non-trivial classical solutions char-
acterized by an essential singularity at vanishing coupling. Here we review these solutions and
some of the interesting consequences for the Dirac operator.

We start with some basic definitions to establish notation in continuum language. Being
ultimately interested in QCD, we concentrate on the gauge group SU (V). This group has N2 —1
generators denoted A*. They are traceless N by N matrices and satisfy the commutation relations

AN = i foBT N\, (7.1)
involving the group structure constants f*57. By convention, these generators are orthogonalized
and normalized

TrAC N = %W. (7.2)

For SU(2) the generators would be the spin matrices A* = o /2, and the structure constants the
three indexed antisymmetric tensor f%7 = €297,

Associated with the each of the generators A* is a gauge potential Af (z). For the classical
theory, assume these are differentiable functions of space time and vanish rapidly at infinity. For
the quantum theory this assumption of differentiability is a subtle issue to which we will later
return. The notation simplifies a bit by defining a matrix valued field A

Ay = AR (7.3)
The covariant derivative is a matrix valued differential operator defined as
D, =0, +1igA,. (7.4)

Given the gauge potential, the corresponding matrix valued field strength is
Fl = _?’[D#, D,] = 8,4, — 0, A, +ig[A,, A)) = DA, — DA, (7.5)

We define the dual field strength as

- 1
Fp,l/ = 56/1,11;7an0' (7.6)
with €,,,,,, being the antisymmetric tensor with €1234 = 1.
In terms of the field strength, the classical Yang-Mills action is

1
S = 3 / d*z Tr F,, Fp,, (7.7)
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and the classical equations of motion are

D,F,, =0. (7.8)
This defines the classical Yang-Mills theory.
The Jacobi identity
[A,[B,C]] + [B,[C, A]| + [C,[A,B]] =0 (7.9)

applied to the covariant derivative implies that
Ep,VpUDVFpO' =0 (7.10)

or DHF v = 0. This immediately implies that any self-dual or anti-self-dual field with F' = +F
automatically satisfies the classical equations of motion. This is an interesting relation since
F = F is linear in derivatives of the gauge potential. This leads to a multitude of known
solutions [69], but here we concentrate on just the simplest non-trivial one.

This theory is, after all, a gauge theory and therefore has a local symmetry. We previously
discussed this in the lattice context. There it was originally motivated by the continuum gauge
transformations of the classical theory, which we now review. Let h(x) be a space dependent
element of SU(NV) in the fundamental representation. Assume that h is differentiable. Now
define the gauge transformed field

i
AP — BT AR — EhT(aﬂh). (7.11)

This transformation takes a simple form for the covariant derivative

hiD,h =D =0, +igA]. (7.12)
Similarly for the field strength we have

FM) = hiF,,h. (7.13)

Thus the action is invariant under this transformation, S(A) = S(A™).

7.1 Surface terms

A remarkable feature of this formalism is that the combination Tr F'F is a total derivative. To
see this first construct

o1
FF = 56 (20,40 +igAuA,) (20, A5 +igA,A,)

1
= 5o (40,A,0,A5 + 4ig(0,A))ApAs — * AL AVALAL) (7.14)

If we take a trace of this quantity, the last term will drop out due to cyclicity. Thus

TeFF = 20,€,p0Tr (A,0,A, +igA,A,A,) = 20,K, (7.15)
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where we define
K, = €upoTr (A,0,A5 + 2igAL AL AL) . (7.16)

Note that although Tr FFis gauge invariant, this is not true for K ,.
Being a total derivative, the integral of this quantity

/ d*z %TrFF (7.17)

would vanish if we ignore surface terms. What is remarkable is that there exist finite action
gauge configurations for which this does not vanish even though the field strengths all go to zero
rapidly at infinity. This is because the gauge fields A,, that appear explicitly in the current K,
need not necessarily vanish as rapidly as F},,.

These surface terms are closely tied to the topology of the gauge potential at large distances.
As we want the field strengths to go to zero at infinity, the potential should approach a pure gauge
form A, — Zth19,h. In this case

K, — —g—ie#,,p(,Tr(hTﬁuh)(hfaph)(hmdh). (7.18)
Note the similarity of this form to that for the group measure in Eq. (4.9). Indeed, it is invariant if
we take h — h'h with I/ being a constant group element. The surface at infinity is topologically
a three dimensional sphere S3. If we concentrate on SU(2), this is the same as the topology
of the group space. For larger groups we can restrict 4 to an SU(2) subgroup and proceed
similarly. Thus the integral of K, over the surface reduces to the integral of h over a sphere
with the invariant group measure. This can give a non-vanishing contribution if the mapping of
h onto the sphere at infinity covers the entire group in a non-trivial manner. Mathematically,
one can map the S3 of infinite space onto the S3 of group space an integer number of times, i.e.
II3(SU(2)) = Z. Thus we have

1 -
/d‘*g; 5TrFF x v (7.19)

where v is an integer describing the number of times h(x) wraps around the group as x covers
the sphere at infinity. The normalization involves the surface area of a three dimensional sphere
and can be worked out with the result

82y

92

/ d*z %TrFF = (7.20)
For groups larger than SU(2) one can deform A to lie in an SU(2) subgroup, and thus this
quantization of the surface term applies to any SU ().

If we were to place such a configuration into the path integral for the quantum theory, we
might expect a suppression of these effects by a factor of exp(—872/g?). This is clearly non-
perturbative, however this factor strongly underestimates the importance of topological effects.
The problem is that we only need to excite non-trivial fields over the quantum mechanical vac-
uum, not the classical one. The correct suppression is indeed exponential in the inverse coupling
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squared, but the coefficient in the exponent can be determined from asymptotic freedom and
dimensional transmutation. We will return to this point in Subsection 10.3.

The combination TrF'F is formally a dimension four operator, the same as the basic gauge
theory action density TrF' F'. This naturally leads to the question of what would happen if we
consider a new action which also includes this parity odd term. Classically it does nothing since
it reduces to the surface term described above. However quantum mechanically this is no longer
the case. As we will discuss extensively later, the physics of QCD depends quite non-trivially
on such a term. An interesting feature of this new term follows from the quantization of the
resulting surface term. Because of the above quantization and an imaginary factor in the path
integral, physics is periodic in the coefficient of %TrFF. Although discussing the consequences
directly with such a term in the action is traditional, we will follow a somewhat different path in
later sections and introduce this physics through its effects on fermions.

7.2 An explicit solution

To demonstrate that non-trivial winding solutions indeed exist, specialize to SU(2) and find an
explicit example. To start, consider the positivity of the norm of F' + F

0< /d% (F+F)?= 2/d4$ F?+ 2/d4x FF. (7.21)

This means that the action is bounded below by [ d*z %’I‘rFF and this bound is reached only if
F = +F. As mentioned earlier, reaching this is sufficient to guarantee a solution to the equations
of motion. We will now explicitly construct such a self dual configuration.

Start with a gauge transformation function which is singular at the origin but maps around
the group at a constant radius

t+i7- 7 - Tuxy,
Va2 |z

Here we define the four component object 7,, = {1,47}. Considering space with the origin
removed, construct the pure gauge field

h(:z:“) =

(7.22)

B, = —ht,h = — (T2 — 2, T - 2)/|2). (7.23)
9 g
Because this is nothing but a gauge transformation of a vanishing gauge field, the corresponding
field strength automatically vanishes
0B, — 0,B,, +ig[B,, B,] = 0. (7.24)

This construction gives a unit winding at infinity. However this gauge field is singular at the
origin where the winding unwraps. If we smooth this singularity at x = 0 with a field of form

A, = f(2*)B,. (7.25)

where f(0) = 0 and f(oo) = 1, this will remove the unwrapping at the origin and automatically
leave a field configuration with non-trivial winding. The idea is to find a particular f(z?) such
that A also gives a self dual field strength and thereby is a solution to the equations of motion.
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We have set things up symmetrically under space-time rotations about the origin. This con-
nection with O(4) is convenient in that we only need to verify the self duality along a single
direction. Consider this to be the time axis, along which self duality requires

Fo1(Z =0,t) = £F53(Z = 0,1). (7.26)
A little algebra gives

Fo=(f— 0.8, —0,B,) + 2f'(x,B, — x,B,,). (7.27)
So along the time axis we have

27’1

Fou = 2ft P = (f =) (728)
Thus the self duality condition reduces to a simple first order differential equation
2f'(z) = *(f = f*). (7.29)
This is easily solved to give
1
f(z) = m (7.30)

where p is an arbitrary constant of integration. To have the function vanish at the origin we take
the minus solution. The resulting form for the gauge field
Ay = — = i (7.31)
g+ '
is the self dual instanton. The parameter p controls the size of the configuration. Its arbitrary
value is a consequence of the conformal invariance of the classical theory. Switching & and A'
gives a solution with the opposite winding.

7.3 Zero modes and the Dirac operator

A particularly important and intriguing aspect of the above field configuration is that it supports
an exact zero mode for the classical Dirac operator. We will later discuss the rigorous connection
between the gauge field winding and the zero modes of the Dirac operator. Here, however, we
will verify this connection explicitly for the above solution. Thus we look for a spinor field ¥ (x)
satisfying

YuDpto(x) = v (O + igAy) h(z) = 0 (7.32)

where we insert the gauge field from Eq. (7.31). The wave function %) is a spinor in Dirac space
and a doublet in SU(2) space; i.e. it has 8 components. Similarly, v, A, is an 8 by 8 matrix,
with a factor of four from spinor space and a factor of two from the internal gauge symmetry.
The solution entangles all of these indices in a non-trival manner.
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Since we don’t want a singularity in ¢ at the origin, it is natural to look for a solution of form

Y(x) = p(lz))V (7.33)

where p is a scalar function of the four dimensional radius and V' is a constant vector in spinor
and color space. As before, it is convenient to look for the solution along the time axis. There
A vanishes and we have

1
t (7.34)

A=-———
g B+ 2

Then the equation of interest reduces to

d t

Y07 () = T U(E). (7.35)

7t2+p27

The 8 by 8 matrix 7 - ¥ is readily diagonalized giving the eigenvalues {—3,1,1,1,1,1,1, 3}.
Only the +3 eigenvalue gives a normalizable solution

w@)=¢%®eXp<—3/d L ). (7.36)

o B2+ p?

For general x,, this becomes

2 3/2
¢@)¢®)(ﬁﬁﬁﬁ) : (7.37)

At large x this goes at 73 so its square is normalizable. None of the other eigenvalues of 7 - 7
go to zero fast enough for normalization; thus, the solution is unique.

We see the appearance of a direct product of two SU(2)’s, one from spin and one from
isospin. As we rotate around the origin, for the large eigenvalue these rotate together as an
overall singlet. The other positive eigenvalues of 7 - 7 represent the triplet combination while the
negative eigenvalues come from antiparticle states.

This zero eigenvalue of D is robust under smooth deformations of the gauge field. This is
because the anti-commutation of D with 5 says that all non-zero eigenvalues of D occur in
conjugate pairs. Without bringing in another eigenvalue, the isolated one at zero cannot move. In
the next subsection we will demonstrate the general result that for arbitrary smooth gauge fields
the number of zero modes of the Dirac operator is directly given by the topological winding
number.

7.4 The index theorem

We have seen that associated with a particular topologically non-trivial gauge configuration is a
zero action solution to the Dirac equation. Here we will give a simple derivation of the general
index theorem relating zero modes of the Dirac operator to the overall topology of the gauge
field. We continue to work directly with the naive continuum Dirac operator. We assume for
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this section that the gauge fields are smooth and differentiable. While this is unlikely to be true
for typical fields in the path integral, the main purpose here is to show that robust zero modes
must already exist in the classical theory. We will later see that the generalization of these zero
modes to the quantum theory is intimately tied to certain quantum mechanical anomalies crucial
to non-perturbative physics.

The combination of the anti-Hermitean character of the classical Dirac operator D = v, D,,
along with its anti-commutation with -5 shows that the non-zero eigenvalues of D all occur in
complex conjugate pairs. In particular, if we have

D) = Aly) (7.38)
then we immediately obtain the conjugate eigenvector from
Ds [¢) = =As[¢). (7.39)

Since |1) and 75|1)) have different eigenvalues under the anti-Hermitean operator D, they must
be orthogonal

(W)sly) = 0. (7.40)

On the other hand, any exact zero eigenmodes need not be paired. Furthermore, restricted to
the space of zero eigenmodes, 75 and D commute and can be simultaneously diagonalized. The
eigenvalues of ~5 are all either plus or minus unity. Combining all these ideas together gives
a simple method to count the number of zero modes of the Dirac operator weighted by their
chirality. In particular we have the relation

V=n4g —n_ = TI"'}/5€D2/A2 (7.41)

where ny denotes the number of zero modes with eigenvalue 1 under 5. Here the parameter
A is introduced to control the behavior of the trace as the eigenvalues go to infinity. It can be
thought of as a regulator, although the above equation is independent of its value.

To proceed, we first write the square of the Dirac operator appearing in the above exponential

D% = 0% — g*A? 4 2igA,0, +ig(9,A,) — ga,“,FW (7.42)

where [7,,,7,] = 2io,,. Expanding Eq. (7.41) for the winding number in powers of the gauge
field, the first non-vanishing term appears in the fourth power of the Dirac operator. This involves
two powers of the sigma matrices through the relation

Tr V50 uvOpo = 4€uupa- (7.43)

Thus our expression for the winding number becomes
2
v = Tryse? /N = Lo e /N o By Fpo + O(A) (7.44)

where Tr,, . refers to the trace over space and color, the trace over the spinor index having been
done to give the factor of the antisymmetric tensor. It is the trace over the space index that will
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give a divergent factor removing the A~* prefactor. Higher order terms go to zero rapidly enough
with A to be ignored.

The factor ¢?°/A” serves to mollify traces over position space. Consider some function f(x)
as representing a a diagonal matrix in position space M (x,z') = f(z)d(z — z'). The formal
trace would be TrM = [ dzM (z,z), but this diverges since it involves a delta function of zero.
Writing the delta function in terms of its Fourier transform

2 /A2 d4 in(z—z') —p2/A2 A4 (r—z)2A2
e /A 5(x—x'):/(27£4ew (@=al)g=p"/A = 53¢ (@—a’)"A"/4 (7.45)

shows how this “heat kernel” spreads the delta function. This regulates the desired trace

A? 4
Tr, f(x) = 1672 /d xf(x). (7.46)
Using this to remove the spatial trace in the above gives the well known relation
g’ 4 g9’ 4 =
V= 3972 Trc/d T€uvpo Py Fpe = @Trc/d B F,. (7.47)

As discussed earlier, this integral involves a total derivative that can be partially integrated into an
integral over spatial infinity that counts the topological winding of the gauge field. Thus counting
the zero modes of the Dirac operator in a given configuration is an equivalent way to determine
this topology. The index theorem represents the fact that Eq. (7.20) and Eq. (7.47) have identical
content despite rather different derivations.

7.5 Topology and eigenvalue flow

There is a close connection between the zero modes of the Dirac operator in the Euclidean path
integral and a flow of eigenvalues of the fermion Hamiltonian in Minkowski space. To see how
this works it is convenient to work in the temporal gauge with Ag = 0 and separate out the
space-like part of the Dirac operator

—

D = 7000 + o H(A(t)). (7.48)

Consider A as some time dependent gauge field through which the fermions propagate. Assume
that at large positive or negative times this background field reduces to a constant. Without a
mass term, the continuum theory Hamiltonian H commutes with v5 and anti-commutes with 7.
Therefore its eigenvalues appear in pairs of opposite energy and opposite chirality; i.e. if we have

Hp=FE¢

V59 = +¢ (7.49)
then

Hyo¢ = —Ev¢

Y59 = FY09- (7.50)
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Fig. 7.1. An energy eigenvalue that changes in sign between the distant past and future.

Now suppose we diagonalize I at some given time
H(A()$i(t) = Bi(t)i(t) (7.51)

where the wave function ¢(t) implicitly depends on space, spinor, and color indices. Suppose
further that we can find some eigenvalue that changes adiabatically from negative to positive in
going from large negative to large positive time, as sketched in Fig. 7.1. From this particular
eigenstate construct the four dimensional field

Y(t) = e o PU (). (7.52)

Because of the change in sign of the energy, the exponential factor function goes to zero at both
positive and negative large times, as sketched in Fig. 7.2.
If we now consider the four dimensional Dirac operator applied to this function we obtain

(7080 + Yo H (A(t)))¥(t) = O(3oe(t)). (7.53)

If the evolution is adiabatic, the last term is small and we have an approximate zero mode. The
assumption of adiabaticity is unnecessary in the chiral limit of zero mass. Then the eigenvalues
of D are either real or occur in complex conjugate pairs. Any unaccompanied eigenvalue of
D occurs robustly at zero. This is another manifestation of the index theorem; we can count
Euclidean-space zero modes by studying the zero crossings appearing in the eigenvalues of the
Minkowski-space Hamiltonian.

In the above construction, the evolving eigenmode of H is accompanied by another of op-
posite energy and chirality. Inserted into Eq. (7.52), this will give a non-normalizable form for
the four dimensional field. Thus we obtain only a single normalizable zero mode for the Eu-
clidean Dirac operator. Note that if a small mass term is included, the up going and down going
Hamiltonian eigenstates will mix and the crossing is forbidden.

This eigenvalue flow provides an intuitive picture of the anomaly [70]. Start at early times
with a filled Dirac sea and all negative-energy eigenstates filled and then slowly evolve through
one of the above crossings. In the process one of the filled states moves to positive energy, leaving
a non-empty positive energy state. At the same time the opposite chirality state moves from
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Fig. 7.2. The adiabatic evolution gives rise to a normalizable zero mode of the four dimensional Dirac
operator.

positive to negative energy. As long as the process is adiabatic, we wind up at large time with
one filled positive-energy state and one empty negative-energy state. As these are of opposite
chirality, effectively chirality is not conserved. The result is particularly dramatic in the weak
interactions, where anomalies are canceled between quarks and leptons. This flow from negative
to positive energy states results in baryon non-conservation, although at an unobservably small
rate [21].
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8 Chiral symmetry

Much older a tool than the lattice, ideas based on chiral symmetry have historically provided
considerable insight into how the strong interactions work. In particular, this concept is crucial to
our understanding of why the pion is so much lighter than the rho, despite them both being made
of the same quarks. Combining these ideas with the lattice has provided considerable insight
into many non-perturbative issues in QCD. Here we review the basic ideas of chiral symmetry
for the strong interactions. A crucial aspect of this discussion is the famous anomaly and its
consequences for the 7' meson.

The classical Lagrangean for QCD couples left and right handed quark fields only through
mass terms. Thus naively the massless theory has independent conserved currents associated
with each handedness. For N; massless flavors, this would be an independent U (NNy) symmetry
associated with each chirality, giving what is often written in terms of axial and vector fields
as an U(Ny)y @ U(Ny)a symmetry. As is well known, this full symmetry does not survive
quantization, being broken to a SU (Ny)y @ SU(N;) 4®U (1) g, where the U (1) g represents the
symmetry of baryon number conservation. The only surviving axial symmetries of the massless
quantum theory are non-singlet under flavor symmetry.

This breaking of the classical U(1) axial symmetry is closely tied to the possibility of intro-
ducing into massive QCD a CP violating parameter, usually called ©. For an extensive review,
see Ref. [71]. While such a term is allowed from fundamental principles, experimentally it ap-
pears to be extremely small. This raises an unresolved puzzle for attempts to unify the strong
interactions with the weak. Since the weak interactions do violate CP, why is there no residue of
this remaining in the strong sector below the unification scale?

One goal of this section is to provide a qualitative understanding of the role of the © param-
eter in meson physics. We concentrate on symmetry alone and do not attempt to rely on any
specific form for an effective Lagrangean. We build on the connection between © and a flavor-
singlet Z, symmetry that survives the anomaly. We will see that, when the lightest quarks are
made massive and degenerate, a first order transition must occur when © passes through 7. This
transition is quite generic, but can be avoided under limited conditions with one quark consider-
ably lighter than the others. This discussion should also make it clear that the sign of the quark
mass is physically relevant for an odd number of flavors. This is a non-perturbative effect that is
invisible to naive diagrammatic treatments.

Throughout this section we use the language of continuum field theory. Of course underlying
this we must assume some non-perturbative regulator has been imposed so that we can make
sense of various products of fields, such as the condensing combination o = ). For a mo-
mentum space cutoff, assume that it is much larger than Agcp. Correspondingly, for a lattice
cutoff imagine that the lattice spacing is much smaller than 1/Agcp. In this section we ignore
any lattice artifacts that should vanish in the continuum limit. We will return to such issues later
when we discuss lattice fermions.
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8.1 Effective potentials

We begin with an elementary review of the concept of effective potentials in quantum field theory.
In generic continuum field theory language, consider the path integral for a scalar field

Z = /d¢e*5<¢>. (8.1)

After adding in some external sources
Z(J) = /dsbe’s(d’)*”, (8.2)

general correlation functions can be found by differentiating with respect to J. Here we use
a shorthand notation that suppresses the space dependence; i.e. J¢ = [daJ(x)¢(x) in the
continuum, or J¢ = > . J;¢; on the lattice.

One can think of J as an external force pulling on the field. Such a force will tend to drive
the field to have an expectation value

oF

<¢>J = _W

(8.3)
where the free energy in the presence of the source is defined as F'(J) = —log(Z(J)).

Now imagine inverting Eq. (8.3) to determine what value of the force J would be needed to
give some desired expectation value ®; i.e. we want to solve

oF
O(J) = =——= 4
(J) = (D) s(a) 97 (8.4)

for J(®). In terms of this formal solution, construct the “Legendre transform”

V(®) = F(J(®)) + dJ(P) (8.5)
and look at

ov oJ oJ

o5 = —lopt I+ Oss = (8.6)

If we now turn off the sources, this derivative vanishes. Thus the expectation value of the field
in the absence of sources occurs at an extremum of V' (®). This quantity V is referred to as the
“effective potential.”

An interesting formal property of this construction follows from looking at the second deriva-
tive of V'

o’V oJ
Actually, it is easier to look at the inverse
oo 0*F
= (¢%) — (0)* = (6 — (#))*) > 0. (8.8)

aJ a2
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Thus this second derivative is never negative! This first of all shows we are actually looking for a
minimum and not a maximum of V, but it also implies that V(&) can only have ONE minimum!

This convexity property is usually ignored in conventional discussions, where phase transi-
tions are signaled by jumps between distinct minima of the potential.. So what is going on? Are
phase transitions impossible? Physically, the more you pull on the field, the larger the expecta-
tion of ® will become. It won’t go back. The proper interpretation is that we must do Maxwell’s
construction. If we force the expectation of ¢ to lie between two distinct stable phases, the sys-
tem will phase separate into a heterogeneous mixture. In this region the effective potential is
flat. Note that there is no large volume limit required in the above discussion. However other
definitions of V' can allow a small barrier at finite volume due to surface tension effects. A mixed
phase must contain interfaces, and their energy represents a small barrier.

8.2 Goldstone Bosons

Now we turn to a brief discussion on some formal aspects of Goldstone Bosons. Suppose we
have a field theory containing a conserved current

8ﬂjll« =0 (8.9)
so the corresponding charge Q = [ d3xjo(z) is a constant

Q B
o = —illQ) =0, (8.10)

Here H is the Hamiltonian for the system under consideration. Suppose, however, that for some
reason the vacuum is not a singlet under this charge

Q|0) # 0. (8.11)

Then there must exist a massless particle in the theory. Consider the state
exp(id / dngo(sr:)e_“z)m) (8.12)

where € is a convenient cutoff and # some parameter. As epsilon goes to zero this state by
assumption is not the vacuum, but since the Hamiltonian commutes with @), the expectation
value of the Hamiltonian goes to zero (normalize so the ground state energy is zero). We can
thus find a state that is not the vacuum but with arbitrarily small energy. The theory has no mass
gap. This situation of having a symmetry under which the vacuum is not invariant is referred to
as “spontaneous symmetry breaking.” The low energy states represent massless particles called
Goldstone bosons [72].

Free massless field theory is a marvelous example where everything can be worked out. The
massless equation of motion

OuOud =0 (8.13)
can be written in the form

0uju=0 (8.14)
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where
Ju = 0,0. (8.15)

The broken symmetry is the invariance of the Lagrangean L = [ d4x(8“q5)2 /2 under constant
shifts of the field

¢ — d+c. (8.16)

Note that jo = Jp¢p = = is the conjugate variable to ¢. Since it is a free theory, one could work
out explicitly

(0] exp(i6 / Bajo(x)e=<=/2)(0). 8.17)

We can, however, save ourselves the work using dimensional analysis. The field ¢ has dimen-
sions of inverse length, while j, goes as inverse length squared. Thus 6 above has units of
inverse length. These are the same dimensions as 2. Now for a free theory, by Wick’s theorem,
the answer must be Gaussian in §. We conclude that the above overlap must go as

exp(—CH?/eh) (8.18)

where C' is some non-vanishing dimensionless number. This expression rapidly goes to zero as
epsilon becomes small, showing that the vacuum is indeed not invariant under the symmetry. In
the limit of € going to zero, we obtain a new vacuum that is not even in the same Hilbert space.
The overlap of this new state with any local polynomial of fields on the original vacuum vanishes.

It is perhaps interesting to note that the canonical commutation relations [m(x), ¢(y)] =
16(x — y) imply for the currents

) ) .d
lo(@), 4i(y)] = —zd—é(x - y). (8.19)
x
In a Hamiltonian formulation, equal time commutators of different current components must
involve derivatives of delta functions. This is a generic property and does not depend on the
symmetry being spontaneously broken [73].

8.3 Pions and spontaneous symmetry breaking

We now extend the effective potential to a function of several relevant meson fields in QCD.
Intuitively, V' represents the energy of the lowest state for a given field expectation, as discussed
more formally earlier via a Legendre transformation. Here we will ignore the result that effec-
tive potentials must be convex functions of their arguments. As discussed, this issue is easily
understood in terms of a Maxwell construction involving the phase separation that will occur if
one asks for a field expectation in what would otherwise be a concave region. Thus we will use
the traditional language of spontaneous symmetry breaking corresponding to having an effective
potential with more than one minimum. When the underlying theory possesses some symmetry
but the individual minima do not, spontaneous breaking comes about when the vacuum selects
one of the minima arbitrarily. The discussion here closely follows that in Ref. [74].
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V(9)

e o

Fig. 8.1. Spontaneous chiral symmetry breaking is represented by a double well effective potential with
the vacuum settling into one of two possible minima. In this minimum chiral symmetry is broken by the
selection of a specific value for the quark condensate.

We work here with the composite scalar and pseudoscalar fields

o~y
Ta ~ WPAaV5t (8.20)
n ~ipys.

Here the )\, are the generators for the flavor group SU(Ny). They are generalizations of the
usual Gell-Mann matrices from SU (3); however, now we are concerned with the flavor group,
not the internal symmetry group related to confinement. As mentioned earlier, we must assume
that some sort of regulator, perhaps a lattice, is in place to define these products of fields at
the same point. Indeed, most of the quantities mentioned in this section are formally divergent,
although we will concentrate on those aspects that survive the continuum limit.

To simplify the discussion, consider degenerate quarks with a small common mass m. Later
we will work out in some detail the two flavor case for non-degenerate quarks. It is also conve-
nient to initially restrict Ny to be even, saving for later some interesting subtleties arising with
an odd number of flavors. And we assume N is small enough to maintain asymptotic freedom
as well as avoiding any possible conformal phases.

The conventional picture of spontaneous chiral symmetry breaking in the limit of massless
quarks assumes that the vacuum acquires a quark condensate with

() = (o) =v #0. 8.21)

In terms of the effective potential, V(o) should acquire a double well structure, as sketched in
Fig. 8.1. The symmetry under o « —o is associated with the invariance of the action under a
flavored chiral rotation. For example, with two flavors the change of variables

P — €T = iryysy
P — PeTT/2 = iy (8.22)

leaves the massless action invariant but takes o to its negative. Here 73 is the conventional Pauli
matrix corresponding to the third component of isospin.
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Fig. 8.2. The flavor non-singlet pseudoscalar mesons are Goldstone bosons corresponding to flat directions
in the effective potential.

Extending the effective potential to a function of the non-singlet pseudoscalar fields gives
the standard picture of Goldstone bosons. These are massless when the quark mass vanishes,
corresponding to NJ% — 1 “flat” directions for the potential. One such direction is sketched
schematically in Fig. 8.2. For the two flavor case, these rotations represent a symmetry mixing
the sigma field with the pions

o— ocos(¢p) + 7 sin(¢)
7% — —osin(¢) + 7 cos(¢). (8.23)

In some sense the pions are waves propagating through the non-vanishing sigma condensate. The
oscillations of these waves occur in a direction “transverse” to the sigma expectation. They are
massless because there is no restoring force in that direction.

If we now introduce a small mass for the quarks, this will effectively tilt the potential V' (0) —
V(o) — mo. This selects one minimum as the true vacuum. The tilting of the potential breaks
the global symmetry and gives the Goldstone bosons a small mass proportional to the square
root of the quark mass, as sketched in Fig. 8.3. The standard chiral Lagrangean approach is a
simultaneous expansion in the masses and momenta of these light particles.

As discussed earlier, in a Hamiltonian approach Goldstone bosons are associated with con-
served currents with charges that do not leave the vacuum invariant. In the present case these are
the axial currents formally given by the quark bilinears

AS = DAY, y59. (8.24)
Combined with the vector fields

Vi = YA, (8.25)
these give rise to the famous algebra of currents

Ve (@), V& ()] = i fPVy (2)d(a — y)
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Fig. 8.3. A small quark mass term tilts the effective potential, selecting one direction for the true vacuum
and giving the Goldstone bosons a mass proportional to the square root of the quark mass.

[V (2), A5 ()] = i f 277 AY (2)d(x — y)
(A5 (x), A (y)] = i f*PVy ()0 (a — ). (8.26)

with the £ being the structure constants for the internal symmetry group. Indeed, it was this
algebra that motivated Bjorken to propose the idea of scaling in deep inelastic lepton scattering
[75,76].

8.4 The Sigma model

Much of the structure of low energy QCD is nicely summarized in terms of an effective chiral
Lagrangean formulated in terms of a field which is an element of the underlying flavor group. In
this section we review this model for the strong interactions with three quarks, namely up, down,
and strange. The theory has an approximate SU(3) symmetry, broken by unequal masses for the
quarks. We work with the familiar octet of light pseudoscalar mesons 7, with & = 1...8 and
consider an SU(3) valued field

Y =exp(imara/fr) € SU(3). (8.27)

Here the )\, are the usual Gell-Mann matrices which generate the flavor group and f; is a dimen-
sional constant with a phenomenological value of about 93 MeV. We follow the normalization
convention that TrA, A3 = 2d,3. The neutral pion and the eta meson will play a special role
later in this review; they are the coefficients of the commuting generators

1 0 0
=0 -1 0 (8.28)
0 0 0

and

0
\s = 0 1 0 (8.29)
0
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respectively. In the chiral limit of vanishing quark masses, the interactions of the eight massless
Goldstone bosons are modeled with the effective Lagrangean density

2
Lo = I”Tr(GMETaﬂE). (8.30)
The non-linear constraint of X onto the group SU(3) makes this theory non-renormalizable. It is
to be understood only as the starting point for an expansion of particle interactions in powers of
their momenta. Expanding Eq. (8.30) to second order in the meson fields gives the conventional
kinetic terms for our eight mesons.

This theory is invariant under parity and charge conjugation. These operators are represented
by simple transformations

P:yx - x!
CP: ¥ — X% (8.31)

where the operation * refers to complex conjugation. The eight meson fields are pseudoscalars.
The neutral pion and the eta meson are both even under charge conjugation.
With massless quarks, the underlying quark-gluon theory has a chiral symmetry under

YL — gLYrL
YR — gRYR. (8.32)

Here (g1, g1,) isin SU(3) ® SU(3) and 91 i represent the chiral components of the quark fields,
with flavor indices understood. This symmetry is expected to be broken spontaneously to a vector
SU(3) via a vacuum expectation value for ¢, ¢r. This motivates the sigma model through the
identification

(0[¢¥R|0) — vE. (8.33)

The quantity v, of dimension mass cubed, characterizes the strength of the spontaneous breaking
of this symmetry. Thus the effective field transforms under a chiral symmetry of form

Y — gr¥gh. (8.34)

The Lagrangean density in Eq. (8.30) is the simplest non-trivial expression invariant under this
symmetry.

The quark masses break the chiral symmetry explicitly. From the analogy in Eq. (8.33),
these are introduced through a 3 by 3 mass matrix M appearing in a potential term added to the
Lagrangean density

L = Ly — vRe Tr(SM). (8.35)

Here v is the same dimensionful factor appearing in Eq. (8.33). The chiral symmetry of our
starting theory shows the physical equivalence of a given mass matrix M with a rotated matrix
g;r%M gr- Using this freedom we can put the mass matrix into a standard form. We will assume
it is diagonal with increasing eigenvalues

m, O 0

M = 0 mgq O (8.36)
0 0 mg
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representing the up, down, and strange quark masses. Note that this matrix has both singlet and
octet parts under flavor symmetry

My + Mg+ Mg My — My My + Mg — 2myg
A3+ ——mFr
3 2 2v/3

In general the mass matrix can still be complex. The chiral symmetry allows us to move
phases between the masses, but the determinant of M is invariant and physically meaningful.
Under charge conjugation the mass term would only be invariant if M = M*. If | M| is not real,
then its phase is the famous CP violating parameter that we will extensively discuss later. For the
moment, however, we take all quark masses as real.

To lowest order the pseudoscalar meson masses appear on expanding the mass term quadrat-
ically in the meson fields. This generates an effective mass matrix for the eight mesons

Mas x ReTr A AgM. (8.38)

M =

As. (8.37)

The isospin breaking up-down mass difference gives this matrix an off diagonal piece mixing the
7o and the n

M378 X My, — Myg. (839)

The eigenvalues of this matrix give the standard mass relations

2
2
ma o 3 mu+md+ms—\/m3+m3+m§—mumd—mums—mdms

2

2

m;, o 3 mu+md+ms+\/m%—i—mi—&-mg—mumd—mums—mdms

2 _ 2 n

mg+_ m7r270<mu mq

My, = My My + My

2 _ 2

M, = mfoocmd—ﬁ—ms. (8.40)

Here we label the mesons with their conventional names.
Redundancies in these relations test the validity of the model. For example, comparing two
expressions for the sum of the three quark masses
2 2 2
Q(mﬁ+ + mK+ + mKo)
3(m727 +m2))

~ 1.07 (8.41)

suggests the symmetry should be good to a few percent. Further ratios of meson masses then
give estimates for the ratios of the quark masses [77-79]. For one such combination, look at

m2. +m2 —m2
Mo mt T K Ko 066 (8.42)
ma Moy = My, + M,

This particular combination is polluted by electromagnetic effects; another combination that
partially cancels such while ignoring small m,,m4/mg corrections in expanding the square root
in Eq. (8.40) is

2 .2 2 .2
My _ 2o — Mo T, — Mok (8.43)
mg m2, —m2 +m?2 ’ ’
d + K Ko

T



64 Confinement, chiral symmetry, and the lattice

In a moment we will comment on a third combination for this ratio. For the strange quark, one
can take

2 2 2
2m. my +ms. —m
Ms _ Ky ;(0 ™ 96. (8.44)
My + My mis

Of course as discussed earlier the quark masses are scale dependent. While their ratios are
more stable, we will see later how these ratios also acquire some scale dependence. Nevertheless,
from mass differences such as m,, — m, ~ 1.3MeV and mg, — mg, ~ 4.0MeV we conclude
that the up and down quark masses in these effective models are typically of order a few MeV,
while the strange quark mass is of order 100 MeV. These are what are known as “current” quark
masses, related to chiral symmetries and current algebra. In contrast, since the proton is made of
three quarks, some simple quark models consider “constituent” quark masses of a few hundred
Mev; these are substantially larger because they include the energy contained in the gluon fields.

While phenomenology, i.e. Eq. (8.43), seems to suggest that the up quark is not massless,
there remains a lot of freedom in extracting that ratio from the pseudoscalar meson masses.
From Eq. (8.40), the sum of the 1 and 7y masses squared should be proportional to the sum of
the three quark masses. Subtracting off the neutral kaon mass should leave just the up quark.
Thus motivated, look at

My 3(m37 + m?ro)/Q — Qm%ﬁ]

- 2 _ 2 2
myq moy mKJr—i—mK0

~ —0.8 (8.45)

This strange result is probably a consequence of SU(3) breaking inducing eta and eta-prime
mixing, thus lowering the eta mass. But one might worry that depending on what combination
of mesons one uses, even the sign of the up quark mass is ambiguous. Attempts to extend the
naive quark mass ratio estimates to higher orders in the chiral expansion have shown that there
are fundamental ambiguities in the definition of the quark masses [77]. An important message of
later sections is that this ambiguity is an inherent property of QCD.

Note that in Eq. (8.40) the neutral pion mass squared can become negative if

— Mttt (8.46)

My, < —.
mq + mg
This unphysical situation will result in a condensation of the pion field and a spontaneous break-
ing of CP symmetry [80]. This is closely tied to the possibility of a CP violating term in QCD
that we will discuss in later sections.
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9 The chiral anomaly

The picture of pions as approximate Goldstone bosons is, of course, completely standard. It is
also common lore that the anomaly prevents the 1’ from being a Goldstone boson and leaves
it with a mass of order Agcp, even in the massless quark limit. The issue is that the effective
potential V' considered as a function of the fields in Eq. (8.21) must not be symmetric under an
anomalous rotation between 7’ and o

o — ocos(¢) +n sin(¢)
n' — —osin(¢) + 1’ cos(¢). ©.1)

In the next subsection we discuss how this symmetry disappears and its connection to the zero
modes of the Dirac operator.

If we consider the effective potential as a function of the fields o and 7/, it should have a
minimum at o ~ v and 7’ ~ 0. Expanding about that point we expect a qualitative form

V(o) ~m2(o —v)? +m2y* + 0((o —v)*,0'"). 9.2)

We expect both m,, and m,, to remain of order Agcp, even in the chiral limit. And, at least with
an even number of flavors as we are currently considering, there should be a second minimum
with o ~ —v.

At this point one can ask whether we know anything else about the effective potential in the
(o,1") plane. We will shortly see that indeed we do, and the potential has a total of N equivalent
minima in the chiral limit. But first we review how the above minima arise in quark language.

9.1 What broke the symmetry?

The classical QCD Lagrangean has a symmetry under a rotation of the underlying quark fields
) — iP5/ 2y
P — pet/2, (9.3)

This corresponds directly to the transformation of the composite fields given in Eq. (9.1). This
symmetry is “anomalous” in that any regulator must break it with a remnant surviving in the as
the regulator is removed [81-83]. With the lattice this concerns the continuum limit.

The specifics of how the anomaly works depend on the details of the regulator. Here we will
follow Fujikawa [84] and consider the fermionic measure in the path integral. If we make the
above rotation on the field ¢, the measure changes by the determinant of the rotation matrix

dp — e /2 |dypy = e~ 1T/ 2y, (9.4)

Here is where the subtlety of the regulator comes in. Naively 5 is a simple four by four traceless
matrix. If it is indeed traceless, then the measure would be invariant. However, in the regulated
theory this is not the case. This is intimately tied with the index theorem for the Dirac operator
in topologically non-trivial gauge fields.

A typical Dirac action takes the form /(D + m)t with the kinetic term D a function of
the gauge fields. In the naive continuum theory D is anti-Hermitean, DT = —D, and anti-
commutes with 75, i.e. [D,75]+ = 0. What complicates the issue with fermions is the index
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theorem discussed earlier and reviewed in Ref. [85]. If a background gauge field has winding v,
then there must be at least v exact zero eigenvalues of D. Furthermore, on the space spanned
by the corresponding eigenvectors, 5 can be simultaneously diagonalized with D. The net
winding number equals the number of positive eigenvalues of 5 minus the number of negative
eigenvalues. In this subspace the trace of 5 does not vanish, but equals v.

What about the higher eigenvalues of D? We discussed these earlier when we formulated
the index theorem. Because [D, 5]+ = 0, non-vanishing eigenvalues appear in opposite sign
pairs; i.e. if D|y) = A|¢p) then Dys|tp) = —Av5|tb). For an anti-Hermitean D, these modes are
orthogonal with (¢|y5|1)) = 0. As a consequence, s is traceless on the subspace spanned by
each pair of eigenvectors.

So what happened to the opposite chirality states to the zero modes? In a regulated theory
they are in some sense “above the cutoff.”” In a simple continuum discussion they have been
“lost at infinity.” With a lattice regulator there is no “infinity”’; so, something more subtle must
happen. With the overlap [86, 87] or Wilson [10] fermions, discussed in more detail later, one
gives up the anti-Hermitean character of D. Most eigenvalues still occur in conjugate pairs
and do not contribute to the trace of 5. However, in addition to the small real eigenvalues
representing the zero modes, there are additional modes where the eigenvalues are also real
but large. With Wilson fermions these appear as massive doubler states. With the overlap, the
eigenvalues are constrained to lie on a circle. In this case, for every exact zero mode there is
another mode with the opposite chirality lying on the opposite side of the circle. These modes
are effectively massive and break chiral symmetry. The necessary involvement of both small and
large eigenvalues warns of the implicit danger in attempts to separate infrared from ultraviolet
effects. When the anomaly is concerned, going to short distances is not sufficient for ignoring
non-perturbative effects related to topology.

So with the regulator in place, the trace of 5 does not vanish on gauge configurations of non-
trivial topology. The change of variables indicated in Eq. (9.4) introduces into the path integral a
modification of the weighting by a factor

e—i,¢Tr'yg, _ e—i,(éNfz/. (95)
Here we have applied the rotation to all flavors equally, thus the factor of Ny in the exponent.
The conclusion is that gauge configurations that have non-trivial topology receive a complex
weight after the anomalous rotation. Although not the topic of discussion here, note that this
factor introduces a sign problem if one wishes to study this physics via Monte Carlo simulations.
Here we treat all Ny flavors equivalently; this corresponds to dividing the conventionally defined
CP violation angle, to be discussed later, equally among the flavors, i.e. effectively ¢ = ©/Nj.

9.2 A discrete chiral symmetry

We now return to the effective Lagrangean language of before. For the massless theory, the
symmetry under o <~ —o indicates that we expect at least two minima for the effective potential
considered in the 0,7 plane. These are located as sketched in Fig. 9.1. Do we know anything
about the potential elsewhere in this plane? The answer is yes, indeed there are actually Ny
equivalent minima.
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£ £
&Y N

Fig. 9.1. We have two minima in the o, plane located at o = 4v and " = 0. The circles represent that
the fields will fluctuate in a small region about these minima. Can we find any other minima?

It is convenient to separate the left- and right-hand parts of the fermion field

Yun =31 2)y

Vrr= @%(1 Fs5)- (9.6)
The mass term is thus

mipp = m(yY Y + Ypir) 9.7)

and mixes the left and right components.
Using this notation, due to the anomaly the singlet rotation

Y — €Y (9.8)

is not a valid symmetry of the theory for generic values of the angle ¢. On the other hand,
flavored chiral symmetries should survive, and in particular

Y1 — grr = ePetayp 9.9)

is expected to be a valid symmetry for any set of angles ¢,. The point of this subsection is
that, for special special discrete values of the angles, the rotations in Eq. (9.8) and Eq. (9.9) can
coincide. At such values the singlet rotation becomes a valid symmetry. In particular, note that

g =e*™MNs € Zy, C SU(Ny). (9.10)
Thus a valid discrete symmetry involving only o and 7’ is

o — ocos(2m/Ny¢) + n'sin(2w/Ny)
n' — —osin(2r/Ny) + 1 cos(2r /Ny). 9.11)



68 Confinement, chiral symmetry, and the lattice

D,

N (N o
—/ _/

Vo

O3

Fig. 9.2. For four massless flavors we have four equivalent minima in the o, ' plane. This generalizes to
Ny minima with IV flavors.

The potential V' (o, 7') has a Zy, symmetry manifested in Ny equivalent minima in the (o, ')
plane. For four flavors this structure is sketched in Fig. 9.2.

This discrete flavor singlet symmetry arises from the trivial fact that Z is a subgroup of both
SU(N) and U(1). At the quark level the symmetry is easily understood since the quark measure
receives an additional phase proportional to the winding number from every flavor. With N
flavors, these multiply together making

Y — 2Ny 9.12)

a valid symmetry even though rotations by smaller angles are not.

The role of the Z center of SU(N) is illustrated graphically in Fig. 9.3, taken from Ref. [30].
Here we plot the real and the imaginary parts of the traces of 10,000 SU(3) matrices drawn ran-
domly with the invariant group measure. The region of support only touches the U(1) circle at
the elements of the center. All elements lie on or within the curve mapped out by elements of
form exp(i¢Ag). Figure 9.4 is a similar plot for the group SU(4).

9.3 The ’t Hooft vertex

The consequences of non-trivial gauge topology and the connections to the anomaly are often
described in terms of an effective multi fermion interaction referred to as the “ ‘t Hooft vertex.”
To understand the ’t Hooft interaction in path integral language, we begin with a reminder of
the underlying strategy of lattice simulations. Consider the generic path integral, or “partition
function,” for quarks and gluons

2= [ (@A) d)exp (~5,(4) - TD(A)Y). ©.13)
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Im Trg

ReTrg

Fig. 9.3. The real and imaginary parts for the traces of 10,000 randomly chosen SU (3) matrices. All points
lie within the boundary representing matrices of the form exp(i¢As). The tips of the three points represent
the center of the group. The outer curve represents the boundary that would be found if the group was the
full U(1). Taken from Ref. [30].

ImTrg

Fig. 9.4. The generalization of Fig. 9.3 to SU(4). The real and imaginary parts for the traces of 10,000
randomly chosen SU (4) matrices. Taken from Ref. [30].

Here A denotes the gauge fields and 1, 1) the quark fields. The pure gauge part of the action is
Sg(A) and the matrix describing the fermion part of the action is D(A). Since direct numeri-
cal evaluation of the fermionic integrals appears to be impractical, the Grassmann integrals are
conventionally evaluated analytically, reducing the partition function to

7z / (dA) =S [D(A)|. 9.14)



70 Confinement, chiral symmetry, and the lattice

Here | D(A)| denotes the determinant of the Dirac matrix evaluated in the given gauge field. Thus
motivated, the basic lattice approach is to generate a set of random gauge configurations weighted
by exp(—S5,(A)) |[D(A)]. Given an ensemble of such configurations, one then estimates physical
observables by averages over this ensemble.

This procedure seems innocent enough, but it can run into trouble when one has massless
fermions and corresponding zero modes associated with topology. To see the issue, write the
determinant as a product of the eigenvalues \; of the matrix D. In general D may not be a
normal matrix; so, one should pick either left or right eigenvectors at one’s discretion. This is a
technical detail that will not play any further role here. In order to control infrared issues with
massless quarks, introduce a small explicit mass m and reduce the path integral to

7z = / (dA) ¢S TT(ni +m). 9.15)

Now suppose we have a configuration where one of the eigenvalues of D(A) vanishes, i.e.
assume that some \; = 0. This, of course, is what happens with non-trivial topology present.
As we take the mass to zero, any configurations involving such an eigenvalue will drop out
of the ensemble. At first one might suspect this would be a set of measure zero in the space
of all possible gauge fields. However, as discussed above, the index theorem ties gauge field
topology to such zero modes. In general these modes are robust under small deformations of the
fields. Under the traditional lattice strategy the corresponding configurations would then have
zero weight in the massless limit. The naive conclusion is that such configurations are irrelevant
to physics in the chiral limit.

It was this reasoning that "t Hooft showed to be incorrect. Indeed, he demonstrated that it
is natural for some observables to have 1/m factors when zero modes are present. These can
cancel the terms linear in m from the determinant, leaving a finite contribution.

As a simple example, consider the quark condensate in one flavor QCD

— 1

= — [(dA) e % |D| TtD". 9.16
@) = 7 [ (@) D) ©0.16)
Here V represents the system volume, inserted to give an intensive quantity. Expressing the
fermionic factors in terms of the eigenvalues of D reduces this to

() = %/(dA) e (H(Ai—i-m)) ZAJ}Fm 9.17)

%

Now if there is a mode with \; = 0, the factor of m is canceled by a 1/m piece in the trace of
D~!. Configurations containing a zero mode give a constant contribution to the condensate and
this contribution survives in the massless limit. Note that this effect is unrelated to spontaneous
breaking of chiral symmetry and appears even with finite volume.

This contribution to the condensate is special to the one-flavor theory. Because of the anomaly,
this quark condensate is not an order parameter for any symmetry. With more fermion species
there will be additional factors of m from the determinant. Then the effect of the ’t Hooft vertex
is of higher order in the fermion fields and does not appear directly in the condensate. For two
or more flavors the standard Banks-Casher picture [88] of an eigenvalue accumulation leading to
the spontaneous breaking of chiral symmetry should apply.
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Fig. 9.5. The ’t Hooft vertex for Ny flavors is a 2N effective fermion operator that flips the spin of every
flavor.

The conventional discussion of the "t Hooft vertex starts by inserting fermionic sources into
the path integral

Z(n,7) = / (dA) (d) (dip) e~ Ss—PDFmye+In+IY, (9.18)

Differentiation, in the Grasmannian sense, with respect to these sources will generate the expec-
tation for an arbitrary product of fermionic operators. Integrating out the fermions reduces this
to

Z = /(dA) e~ So DM I TT(\; + m). (9.19)

Consider a zero mode g satisfying Dy = 0. In general there is also a left zero mode satisfying
oD = 0. If the sources have an overlap with the mode, that is (7]1)g) # 0, then a factor of
1/m in the source term can cancel the m from the determinant. Although non-trivial topological
configurations do not contribute to Z, their effects can survive in correlation functions. For the
one-flavor theory the effective interaction is bilinear in the fermion sources and is proportional
to

(7o) (g ln).- (9.20)

As discussed earlier, the index theorem tells us that in general the zero mode is chiral; it appears
in either 77, g or ML, depending on the sign of the gauge field winding.

With Ny > 2 flavors, the cancellation of the mass factors in the determinant requires source
factors from each flavor. This combination is the ’t Hooft vertex. It is an effective 2Ny fermion
operator. In the process, every flavor flips its spin, as sketched in Fig. 9.5. Indeed, this is the
chiral anomaly; left and right helicities are not separately conserved.

Because of Pauli statistics, the multi-flavor vertex can be written in the form of a determinant.
This clarifies how the vertex preserves flavored chiral symmetries. With two flavors, call their
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sources u and d, Eq. 9.20 generalizes to

(@lho) (Polu)  (@lho)(old)
(@) (Tolu) (o) (Geld) | ©21)

Note that the effect of the vertex is non-local. In general the zero mode 1), is spread out
over the finite region of the “instanton”, i.e. the size parameter p from the explicit solution given
earlier. This means there is an inherent position space uncertainty on where the fermions are
interacting. A particular consequence is that fermion conservation is only a global symmetry. In
Minkowski space language, this non-locality can be thought of in terms of states sliding in and
out of the Dirac sea at different locations.

9.4 Fermions in higher representations

When the quarks are massless, the classical field theory corresponding to the strong interactions
has a U(1) axial symmetry under the transformation

P — 015
W — e, (9.22)

It is the ’t Hooft vertex that explains how this symmetry does not survive quantization. In this
subsection we discuss how when the quarks are in non-fundamental representations of the gauge
group, discrete subgroups of this symmetry can remain because of additional zeros in the Dirac
operator.

While these considerations do not apply to the usual theory of the strong interactions where
the quarks are in the fundamental representation, there are several reasons to study them any-
way. At higher energies, perhaps as being probed at the Large Hadron Collider, one might well
discover new strong interactions that play a substantial role in the spontaneous breaking of the
electroweak theory. Also, many grand unified theories involve fermions in non-fundamental
representations. As one example, we will see that massless fermions in the 10 representation
of SU(5) possess a Z3 discrete chiral symmetry. Similarly the left handed 16 covering repre-
sentation of SO(10) gives a chiral gauge theory with a surviving discrete Zs chiral symmetry.
Understanding these symmetries may eventually play a role in a discretization of chiral gauge
theories on the lattice.

Here we are generalizing the index theorem relating gauge field topology to zero modes of the
Dirac operator. In particular, fermions in higher representations can involve multiple zero modes
for a given winding. Being generic, consider representation X of a gauge group GG. Denote by
Nx the number of zero modes that are required per unit of winding number in the gauge fields.
That is, suppose the index theorem generalizes to

n, —n; = Nxv (9.23)

where n,. and n; are the number of right and left handed zero modes, respectively, and v is the
winding number of the associated gauge field. The basic 't Hooft vertex receives contributions
from each zero mode, resulting in an effective operator which is a product of 2/Nx fermion fields.
Schematically, the vertex is modified along the lines ¢; p — (¢ ¥r)™*. While this form
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still breaks the U (1) axial symmetry, it is invariant under 1)z — €>™/Nx4)p. In other words,
there is a Z,, discrete axial symmetry.

There are a variety of convenient tools for determining Nx. Consider building up repre-
sentations from lower ones. Take two representations X; and X5 and form the direct product
representation X; ® Xs. Let the matrix dimensions for X; and X» be D; and D, respectively.
Then for the product representation we have

NX1®X2 :leDX2+NX2DX1. (9.24)

To see this, start with X; and X, representing two independent groups G; and G2. With G
having winding, there will be a zero mode for each of the dimensions of the matrix index associ-
ated with X5. Similarly there will be multiple modes for winding in G2. These modes are robust
and all should remain if we now constrain the groups to be the same.

As a first example, denote the fundamental representation of SU(N) as F' and the adjoint
representation as A. Then using F ® F = A @ 1 in the above gives N4 = 2N, as noted some
time ago [89]. With SU (3), fermions in the adjoint representation will have six-fold degenerate
zero modes.

For another example, consider SU (2) and build up towards arbitrary spin s € {0, %, 1, %, S
Recursing the above relation gives the result for arbitrary spin

N, = 5(2s +1)(2s + 2)/3. (9.25)

Another technique for finding Nx in more complicated groups begins by rotating all topo-
logical structure into an SU (2) subgroup and then counting the corresponding SU (2) represen-
tations making up the larger representation of the whole group. An example to illustrate this
procedure is the antisymmetric two indexed representation of SU(N). This representation has
been extensively used in [90-93] for an alternative approach to the large gauge group limit. The
basic N(N — 1)/2 fermion fields take the form

Vap = —pas  a,b€1,2,..N. (9.26)

Consider rotating all topology into the SU(2) subgroup involving the first two indices, i.e. 1 and
2. Because of the anti-symmetrization, the field 112 is a singlet in this subgroup. The field pairs
(11,5, 12,;) form a doublet for each j > 3. Finally, the (N — 2)(/N — 3)/2 remaining fields
do not transform under this subgroup and are singlets. Overall we have N — 2 doublets under
the SU(2) subgroup, each of which gives one zero mode per winding number. We conclude
that the ’t Hooft vertex leaves behind a Z_o discrete chiral symmetry. Specializing to the 10
representation of SU(5), this is the Z3 mentioned earlier.

Another example is the group SO(10) with fermions in the 16 dimensional covering group.
This forms the basis of a rather interesting grand unified theory, where one generation of fermions
is placed into a single left handed 16 multiplet [94]. This representation includes two quark
species interacting with the SU (3) subgroup of the strong interactions, Rotating a topological
excitation into this subgroup, we see that the effective vertex will be a four fermion operator and
preserve a Z5 discrete chiral symmetry.

It is unclear whether these discrete symmetries are expected to be spontaneously broken.
Since they are discrete, such breaking is not associated with Goldstone bosons. But the quark
condensate does provide an order parameter; so, when Nx > 1, any such breaking would be
conceptually meaningful. This could be checked in numerical simulations.
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10 Massive quarks and the Theta parameter

As discussed earlier and illustrated in Fig. 9.2, a quark mass term —ma1) ~ —mo is represented
by a “tilting” of the effective potential. This selects one of the multiple minima in the o, 7" plane
as the true vacuum. For masses small compared to the scale of QCD, the other minima will persist
as extrema, although due to the flat flavor non-singlet directions, some of them will become
unstable under small fluctuations. Counting the minima sequentially with the true vacuum having
n = 0, each is associated with small excitations in the pseudo-Goldstone directions having an
effective mass of m2 ~ m cos(2mn/Ny). Note that when Ny exceeds four, there will be more
than one meta-stable state. However, in the usual case of considering two or three quarks as light,
only one minimum remains locally stable.

10.1 Twisted tilting

Conventionally the mass tilts the potential downward in the positive o direction. However, it is
an interesting exercise to consider tilts in other directions in the o, ' plane. This is accomplished
with an anomalous rotation on the mass term

— mapth — —mcos(¢)P) — imsin(¢)Pysy
~ —mcos(¢)o + msin(g)n’. (10.1)

Were it not for the anomaly, this would just be a redefinition of fields. However the same effect
that gives the 7’ its mass indicates that this new form for the mass term gives an inequivalent
theory. As i1)7y5% is odd under CP, this theory is explicitly CP violating.

The conventional notation for this effect involves the angle © = Ny¢. Then the Zy, sym-
metry amounts to a 27 periodicity in ©. As Fig. 10.1 indicates, at special values of the twisting
angle ¢, there will exist two degenerate minima. This occurs, for example, at ¢ = 7/N ¢ or

N V

D,

Fig. 10.1. With massive quarks and a twisting angle of ¢ = 7/N, two of the minima in the o, 7’ plane
become degenerate. This corresponds to a first order transition at © = 7.
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O,

2

Fig. 10.2. For odd Ny, such as the three flavor case sketched here, QCD is not symmetric under changing
the sign of the quark mass. Negative mass corresponds to taking © = 7.

© = 7. As the twisting increases through this point, there will be a first order transition as the
true vacuum jumps from the vicinity of one minimum to the next.

Because of the Z, symmetry of the massless theory, all the Ny separate minima are phys-
ically equivalent. This means that if we apply our mass term in the direction of any of them,
we obtain the same theory. In particular, for four flavors the usual mass term 1) is equivalent
to using the alternative mass term 4ma)7ys1). This result, however, is true if and only if N risa
multiple of four.

10.2 Odd Ny

One interesting consequence of this picture concerns QCD with an odd number of flavors. The
group SU(Ny) with odd Ny does not include the element —1. In particular, the Zx, struc-
ture is not symmetric under reflections about the 7’ axis. Figure 10.2 sketches the situation for
SU(3). One immediate conclusion is that positive and negative mass are not equivalent. Indeed,
a negative mass with three degenerate flavors corresponds to the © = 7 case and a spontaneous
breaking of CP is expected. In this case there is no symmetry under taking o ~ ) to its
negative. The simple picture sketched in Fig. 8.1 no longer applies.

At © = 7 the theory lies on top of a first order phase transition line. A simple order pa-
rameter for this transition is the expectation value for the n’ field. As this field is odd under
CP symmetry, this shows that negative mass QCD with an odd number of flavors spontaneously
breaks CP.” This does not contradict the Vafa-Witten theorem [95] because in this regime the
fermion determinant is not positive definite.

Note that the asymmetry in the sign of the quark mass is not easily seen in perturbation
theory. Any quark loop in a perturbative diagram can have the sign of the quark mass flipped

(D Dashen’s original paper [20] speculates that this might be related to the parity breaking seen in nature. This presum-
ably requires a new “beyond the standard model” interaction rather than QCD.
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Fig. 10.3. The effective potential for one-flavor QCD with small quark mass has a unique minimum in the
o, n’ plane. The minimum is shifted from zero due to the effect of the *t Hooft vertex.

by a ~5 transformation. It is only through the subtleties of regulating the divergent triangle
diagram [81-83] that the sign of the mass enters.

A remarkable conclusion of these observations is that two physically distinct theories can
have identical perturbative expansions. For example, with flavor SU(3) the negative mass theory
has spontaneous C'P violation, while the positive mass theory does not. Yet both cases have
exactly the same perturbation theory. This dramatically demonstrates what we already knew:
non-perturbative effects are essential to understanding QCD.

A special case of an odd number of flavors is one-flavor QCD [96]. In this case the anomaly
removes all chiral symmetry and there is a unique minimum in the o, plane, as sketched in
Fig. 10.3. This minimum does not occur at the origin, being shifted to (1)1)) > 0 by the *t Hooft
vertex, which for one flavor is just an additive mass shift [97]. Unlike the case with more flavors,
the resulting expectation value for o is not from a spontaneous symmetry breaking; indeed, there
is no chiral symmetry to break in one flavor QCD. Any regulator that preserves a remnant of
chiral symmetry must inevitably fail [32]. Note also that for one-flavor QCD there is no longer
the necessity of a first order phase transition at © = 7. It has been argued [96] that for finite
quark mass such a transition should still occur if the mass is sufficiently negative, but the region
around vanishing mass is not expected to show any singularity.

An unusual feature of one-flavor QCD is that the renormalization of the quark mass is not
multiplicative when non-perturbative effects are taken into account. The additive mass shift is
generally scheme dependent since the details of the instanton effects depend on scale. This is
the basic reason that a massless up quark is not a possible solution to the strong CP problem
[31]. Later we will discuss this in more detail in the context of the two flavor theory with non-
degenerate masses.

Because of this shift in the mass, the conventional parameters © and m are singular coor-
dinates for the one-flavor theory. A cleaner set of variables would be the coefficients of the
two possible mass terms 17y and 7151/ appearing in the Lagrangean. The ambiguity in the
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quark mass is tied to rough gauge configurations with ambiguous winding number. This applies
even to the formally elegant overlap operator that we will discuss later; when rough gauge fields
are present, the existence of a zero mode can depend on the detailed fermion operator in use.
Smoothness conditions imposed on the gauge fields to remove this ambiguity appear to conflict
with fundamental principles, such as reflection positivity [98].

The Zy, symmetry discussed here is a property of the fermion determinant and is indepen-
dent of the gauge field dynamics. In Monte Carlo simulation language, this symmetry appears
configuration by configuration. With N flavors, we always have |D| = |e2™/N:s D| for any
gauge field. This discrete chiral symmetry is inherently discontinuous in N;. This non-continuity
lies at the heart of the issues with the rooted staggered quark approximation. We will return to
this topic in a later section.

10.3 Quark scattering and mass mixing

So far we have worked with degenerate quarks. In general each species introduces another com-
plex mass parameter. Using flavored chiral rotations we can move the phases of the masses
around arbitrarily, leaving only one overall phase, the Theta parameter. Thus once the overall
scale has been set, QCD depends on Ny 4 1 parameters.

Here we explore the rich phase diagram of two-flavor QCD as a function of the most general
quark masses, including the © parameter. This section closely follows the discussion in Ref. [99].
This theory involves three independent parameters. One is CP violating; its strong experimental
limit is the strong CP problem. Here we will characterize the parameters by distinguishing their
transformations under various symmetries. As we define them, the resulting variables are each
multiplicatively renormalized. However non-perturbative effects are not universal, leaving indi-
vidual quark mass ratios with a renormalization scheme dependence. This exposes ambiguities
in matching lattice results with perturbative schemes and the tautology involved in approaches
that attack the strong CP problem via a vanishing mass for the lightest quark.

Before turning on the masses, we reemphasize the qualitative properties expected in massless
two-flavor QCD. Of course, being an interacting quantum field theory, nothing has been proven
rigorously. While the classical theory is conformally invariant, as discussed earlier, confinement
and dimensional transmutation generate a non-trivial mass scale. The theory should, of course,
contain massive stable nucleons. On the other hand, spontaneous chiral symmetry breaking
should give rise to three massless pions as Goldstone bosons. Bound states of glue in general
will acquire a width due to decays into pions. In addition, the two-flavor analog of the eta-prime
meson should acquire its mass from the anomaly.

In this standard picture, the eta-prime and neutral pion involve distinct combinations of
quark-antiquark bound states. In the simple quark model the neutral pseudoscalars involve the
combinations

mo ~ Tysu — dysd
n' ~ Uysu + dysd + glue. (10.2)

Here we include a gluonic contribution from mixing between the 7’ and glueball states. When
the quarks are degenerate, isospin forbids such mixing for the pion.

Projecting out helicity states for the quarks g1, g = (1 £ 75)¢/2, the pseudoscalars are com-
binations of left with right handed fermions, i.e. G;qr — Grqr. Thus, as shown schematically
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Fig. 10.4. Both pion and eta-prime exchange contribute to spin flip scattering between up and down quarks.
Figure from Ref. [99].

Fig. 10.5. Through physical meson exchange, a down quark mass can induce an effective mass for the up
quark. The gluon exchanges can compensate for the pseudoscalar nature of the meson fields. Figure from
Ref. [99].

in Fig. 10.4, meson exchange will contribute to a a spin flip process in a hypothetical quark
scattering experiment. More precisely, the four point function (igurdrdy) is not expected to
vanish. Scalar meson exchange will also contribute to this process, but this is not important for
the qualitative argument below. Of course we must assume that some sort of gauge fixing has
been done to eliminate a trivial vanishing of this function from an integral over gauges. We also
consider this four point function at a scale before confinement sets in.

It is important that the 7 and 7’ are not degenerate. This is due to the anomaly and the fact
that the 7’ is not a Goldstone boson. As we discussed earlier, the my-n’ mass difference can be
ascribed to topological structures in the gauge field. Because the mesons are not degenerate, their
contributions to the above diagram cannot cancel. The conclusion of this simple argument is that
helicity-flip quark-quark scattering is not suppressed in the chiral limit.

Now consider turning on a small down quark mass while leaving the up quark massless. For-
mally such a mass allows one to connect the ingoing and outgoing down quark lines in Fig. 10.4
and thereby induce a mixing between the left and right handed up quark. Such a process is
sketched in Fig. 10.5. Here we allow for additional gluon exchanges to compensate for turning
the pseudoscalar field into a traditional mass term.

So the presence of a non-zero d-quark mass will induce an effective mass for the u quark,
even if the latter initially vanishes. As a consequence, non-perturbative effects renormalize
m,, /mg. If this ratio is zero at some scale, it cannot remain so for all scales. Only in the isospin
limit are quark mass ratios renormalization group invariant. As lattice simulations include all
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perturbative and non-perturbative effects, this phenomenon is automatically included in such an
approach.

This cross talk between the masses of different quark species is a relatively straightforward
consequence of the chiral anomaly and has been discussed several times in the past, usually in
the context of gauge field topology and the index theorem [31, 100—102]. This result is, how-
ever, frequently met with consternation from the community well versed in perturbation theory.
Indeed, Feynman diagrams tend to suppress spin-flip processes as the quark masses go to zero.
The above argument shows that this lore need not apply when anomalous processes come into
play. In particular, mass renormalization is not flavor blind and the concept of mass independent
regularization is problematic. Since the quark masses influence each other, there are inherent
ambiguities defining m,, = 0. This has consequences for the strong CP problem, discussed
further below. Furthermore, a traditional perturbative regulator such as M S is not complete
when m,, # mg. Because of this, the practice of matching lattice calculations to M S is also
problematic.

Given the simplicity of the above argument, it is perhaps somewhat surprising that it contin-
ues to receive criticism. The first complaint sometimes made is that one should work directly
with bare quark masses. This ignores the fact that the bare masses all vanish under renormaliza-
tion. We discussed earlier the renormalization group equation for a quark mass

dmi

a——= =(g)m; = Y09° + O(g"). (10.3)

As asymptotic freedom drives the bare coupling to zero, the bare masses behave as

m ~ g7°/% (14 0(g%) — 0 (10.4)

where [ is the first term in the beta function controlling the vanishing of the bare coupling in the
continuum limit. Since all bare quark masses are formally zero, one must address these questions
in terms of a renormalization scheme at a finite cutoff.

A second frequent objection is that in a mass independent regularization scheme, mass ratios
are automatically constant. Such an approach asks that the renormalization group function v(g)
in Eq. (10.3) be chosen to be independent of the quark species and mass. This immediately
implies the constancy of all quark mass ratios. As only the first term in the perturbative expansion
of v(g) is universal, a mass independent scheme is indeed an allowed procedure. However, such
a scheme obscures the off-diagonal m, effect on m,, discussed above. In particular, by forcing
constancy of bare mass ratios, the ratios of physical particle masses must vary as a function of
cutoff. This will be in a manner that cancels the flow from the process discussed above. The fact
that physical particle mass ratios are not just a function of quark mass ratios is shown explicitly
in subsection 10.6, where we observe that in the chiral limit the combination 1 — mfro Jm2 L I8

2
proportional to %

From a non-perturbative point of view, having physical mass ratios vary with the cutoff seems
rather peculiar; indeed, the particle masses are physical quantities that would be natural to hold
fixed. And, even though a mass independent approach is theoretically possible, there is no guar-
antee that any given quark mass ratio will be universal between schemes. Finally, the lattice
approach itself is usually implemented with physical particle masses as input. As such it is not a

mass independent regulator, making a perturbative matching to lattice results rather subtle.



80 Confinement, chiral symmetry, and the lattice

A third complaint against the above argument is that one should simply do the matching at
some high energy, say 100 GeV, where “instanton” effects are exponentially suppressed and ir-
relevant. This point of view has several problems. First, current lattice simulations are not done
at miniscule scales and non-perturbative effects are present and substantial. Furthermore, the
exponential suppression of topological effects is in the inverse coupling, which runs logarithmi-
cally with the scale. As such, the non-perturbative suppression is a power law in the scale and
straightforward to estimate.

Since the eta-prime mass is expected to be of order A4.q, we know from the previous renor-
malization group discussion how it depends on the bare coupling in the continuum limit

My éefl/@ﬁwﬁ)ggﬁl/ﬁg. (10.5)

While this formula indeed shows an exponential suppression in 1/g2, this is cancelled by the
inverse cutoff factor in just such a way that the mass of this physical particle remains finite. The
ambiguity in the quark mass splitting is controlled by the mass splitting m,y — mr, as well as
being proportional to mqy — m,,. Considering mg = 5 MeV at a scale of u = 2 GeV, a rough
estimate of the order of the w quark mass shift is

My — Mgy

A )~ (M
qc

> (mg — my) = O(1 MeV), (10.6)

a number comparable to typical phenomenological estimates. This result depends on the scale y,
but that dependence is only logarithmic and given by Eq. (10.4). Additional flavors will reduce
the size of this effect; with the strange quark present, it should be proportional to mgms.

A particularly important observation is that the exponent controlling the coupling constant
suppression in Eq. 10.5 is substantially smaller than the classical instanton action

I 872 e 82
26095 (11— 2ns/3)g3 9%
This difference arises because one needs to consider topological excitations above the quantum,

not the classical, vacuum. Zero modes of the Dirac operator are still responsible for the bulk of
the eta prime mass, but naive semi-classical arguments strongly underestimate their effect.

(10.7)

10.4 General masses in two-flavor QCD

Given the confusion over the meaning of quark masses, it is interesting to explore how two-flavor
QCD behaves as these quantities are varied, including the possibility of explicit CP violation
through the Theta parameter. The full theory has a rather rich phase diagram, including first and
second order phase transitions, some occuring when none of the quark masses vanish.

We consider the quark fields ¢ as carrying implicit isospin, color, and flavor indices. Assume
as usual that the theory in the massless limit maintains the SU(2) flavored chiral symmetry under

P — 1Ty,
P — PesTadal/2, (10.8)
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Here 7, represents the Pauli matrices generating isospin rotations. The angles ¢,, are arbitrary
rotation parameters.

We wish to construct the most general two-flavor mass term to add to the massless La-
grangean. Such should be a dimension 3 quadratic form in the fermion fields and should trans-
form as a singlet under Lorentz transformations. For simplicity, only consider quantities that are
charge neutral as well. This leaves four candidate fields, giving the general form for considera-
tion

M1y + mahTsh + imahys + imahysTai). (10.9)

The first two terms are naturally interpreted as the average quark mass and the quark mass differ-
ence, respectively. The remaining two are less conventional. The m3 term is connected with the
CP violating parameter of the theory. The final m4 term has been used in conjunction with the
Wilson discretization of lattice fermions, where it is referred to as a “twisted mass™ [103, 104].
Its utility in this context is the ability to reduce lattice discretization errors. We will return to this
term later when we discuss the effect of lattice artifacts on chiral symmetry.

These four terms are not independent. Indeed, consider the above flavored chiral rotation in
the 73 direction, 1) — €7375/24). Under this the composite fields transform as

) — cos(0)ihyp + sin(0)ithys T3¢

731) — cos(0) T3t + sin(0)ihys1p
ihT3Y51 — cos(6)iT3y51 — sin(0)Py (10.10)

iWy5¢ — cos(0)iys1p — sin(0) i),

This rotation mixes m4 with my4 and mo with mgs. Using this freedom, we can select any one of
the m; to vanish and a second to be positive.

The most common choice is to set m4 = 0 and use m; as controlling the average quark mass.
Then ms gives the quark mass difference, while CP violation appears in mg. This, however, is
only a convention. The alternative “twisted mass” scheme [103, 104], makes the choice m; = 0.
This uses m4 > 0 for the average quark mass and mg3 becomes the up-down mass difference. In
this case mo becomes the CP violating term. It is amusing to note that an up down quark mass
difference in such a formulation involves the naively CP odd i1)751. The strong CP problem has
been rotated into the smallness of the 731 term, which with the usual conventions is the mass
difference. But because of the flavored chiral symmetry, both sets of conventions are physically
equivalent.

For the following, take the arbitrary choice m4 = 0, although one should remember that this
is only a convention and we could have chosen any of the four parameters in Eq. (10.9) to vanish.
With this choice, two-flavor QCD, after scale setting, depends on three mass parameters

M1y + mahTah + imahysih. (10.11)

It is the possible presence of mg that represents the strong CP problem. As all the parame-
ters are independent and transform differently under the symmetries of the problem, there is no
connection between the strong CP problem and m1 or ms.

As discussed extensively above, the chiral anomaly is responsible for the iso-singlet rotation

v — ei’YsGﬁ/Qw
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Y — e/ (10.12)

not being a valid symmetry, despite the fact that v5 naively anti-commutes with the massless
Dirac operator. Subection 9.1 showed this anomaly is nicely summarized via Fujikawa’s [84]
approach where the fermion measure in the path integral picks up a non-trivial factor. In any
given gauge configuration only the zero eigenmodes of D contribute, and by the index theorem
they are connected to the winding number of the gauge configuration. The conclusion is that the
above rotation changes the fermion measure by an amount depending non-trivially on the gauge
field configuration.

Note that this anomalous rotation allows one to remove any topological term from the gauge
part of the action. Naively this would have been yet another parameter for the theory, but by
including all three mass terms for the fermions, this can be absorbed. For the following we
consider that any topological term has thus been rotated away. After this one is left with the three
mass parameters above, all of which are independent and relevant to physics.

These parameters are a complete set for two-flavor QCD; however, this choice differs some-
what from what is often discussed. Formally we can define the more conventional variables
as

My = My + Mo + 1mg
mg = mi — Mo + Mg
m2 —m3 —m3 + 2imimg

e'® = (10.13)
Vmi 4+ md 4+ mi + 2mIm3 + 2mim3 — 2m3im3.

Particularly for ©, this is a rather complicated change of variables. For non-degenerate quarks in
the context of the phase diagram discussed below, the variables {m1, mq, m3} are more natural.

10.5 The strong CP problem and the up quark mass

Strong interactions preserve CP to high accuracy [105]. Thus only two of the three possible
mass parameters seem to be needed. With the above conventions, it is natural to ask why is ms
so small? It is the concept of unification that brings this question to the fore. We know that
the weak interactions violate CP. Thus, if the electroweak and the strong interactions separate at
some high scale, shouldn’t some remnant of this breaking survive? How is CP recovered for the
strong force?

One possible solution is that there is no unification and one should just consider the weak
interactions as a small perturbation. Another approach involves adding a new dynamical “ax-
ion” field that couples to the quarks through a coupling to i1)y5t. Shifts in this field make ms
essentially dynamical, and potentially the theory could relax to m3 = 0.

There is a third proposed solution, being criticized here, that the up quark mass might vanish.
This would naively allow a flavored chiral rotation to remove any phases from the quark mass
matrix. Why is a vanishing up quark mass not a sensible approach? From the above, one can
define the up quark mass as a complex number

My = M1 + Mo + ims. (10.14)

But the quantities m1, meo, and ms are independent parameters with different symmetry prop-
erties. With our conventions, mj represents an iso-singlet mass contribution, ms is isovector in
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Fig. 10.6. The mo and mgs terms warp the Mexican hat potential into two separate minima. The direction
of the warping is determined by the relative size of these parameters. Figure taken from Ref. [99].

nature, and mg is CP violating. And, as discussed earlier, the combination m; +mso = 0 is scale
and scheme dependent. The strong CP problem only requires small m3. So while it may be true
formally that

mi1+mo+img=0 = m3zg=0, (10.15)

this would depend on scale and might well be regarded as “not even wrong.”

10.6 The two-flavor phase diagram

As a function of the three mass parameters, QCD has a rather intricate phase diagram that we
now discuss. Using simple chiral Lagrangean arguments, this can be qualitatively mapped out.
To begin we consider the composite fields similar to those used in the earlier discussion of pions
as Goldstone bosons

o~ P 1~ iysY
R iysT o ~ BT (10.16)

In terms of these, a natural model for a starting effective potential is

V = Mo? + 72 —v?)? — myo — maags — man
+ a(n® + ag) — B(no + do - 7). (10.17)

Here « and (3 are “low energy constants” that bring in a chirally symmetric coupling of (o, )
with (1, do). As discussed in Ref. [30], the sign of the [ term is suggested so that m,, < mq,.
This potential augments the famous “Mexican hat” or “wine bottle” potential discussed ear-
lier, in which the Goldstone pions are associated with the flat directions running around at con-
stant 02 4+ 72 = v2. The my and m3 terms do not directly affect the o and  fields, but induce an
expectation value for ag3 and 7, respectively. This in turn results in the « and 3 terms inducing
a warping of the Mexican hat into two separate minima, as sketched in Fig. 10.6. The direction
of this warping is determined by the relative size of my and mgs; mo (mg) warps downward in
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m 1<O m 1>O

Fig. 10.7. In the m1, m2 plane, mfro can pass through zero, giving rise to pion condensation at an Ising-like
transition. Figure taken from [30].

7o (o) direction. If we now turn on my, this will select one of the two minimum as favored. This
gives rise to a generic first order transition at m; = 0.

There is additional structure in the m;, ms plane when mg vanishes. In this situation the
quadratic warping is downward in the o direction. For large |m4| only o will have an expectation,
with sign determined by the sign of m;. The pion will be massive, but with mq reducing the
neutral pion mass below that of the charged pions. If now m; is decreased in magnitude at fixed
ma, eventually the neutral pion becomes massless and condenses. How this occurs is sketched
in Fig. 10.7. An order parameter for the transition is the expectation value of the g field, with
the transition being Ising-like.

In this simple model the ratio of the neutral to charged pion masses can be estimated from a
quadratic expansion about the minimum of the potential. For m3 = 0 and m, above the transition
line, this gives

2 2
Mry _y - O3 L o), (10.18)
ma 2a°my

The second order transition is located where this vanishes, and thus occurs for m; proportional
to m3. Note that this equation verifies the important result that a constant quark mass ratio does
not correspond to a constant meson mass ratio and vice versa. This is the ambiguity discussed at
the beginning of this section.

This structure can also be observed in the expectation values for the pion and sigma fields
as functions of the average quark mass while holding the quark mass difference fixed. This is
sketched in Fig. 10.8. The jump in o as we go from large positive to large negative masses is split
into two transitions with the pion field acquiring an expectation value in the intermediate region.

This second order transition occurs when both m,, and mg are non-vanishing but of opposite
sign, i.e. |my| < |mg|. This is required to avoid the Vafa-Witten theorem [95], which says that
no parity breaking phase transition can occur if the fermion determinant is positive definite. At
the transition the correlation length diverges. This shows that it is possible to have significant
long distance physics without the presence of small Dirac eigenvalues. In contrast, we see that
there is no transition at the point where only one of the quark masses vanishes. In this situation
there is no long distance physics despite the possible existence of small Dirac eigenvalues.

Putting this all together, we obtain the phase diagram sketched in Fig. 10.9. There are two
intersecting first order transition surfaces, one at (m; = 0, m3 # 0) and the second at (m; <
ma, m3 = 0). These each occur where © = w. However, note that with non-degenerate quarks
there is also a © = 7 region at my = m; + € for small but non-vanishing ¢ where there is no
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Fig. 10.8. With a constant up-down quark mass difference, the jump in the chiral condensate splits into
two second order transitions. The order parameter distinguishing the intermediate phase is the expectation
value of the neutral pion field. Figure taken from Ref. [106].

ms3

Fig. 10.9. The full phase diagram for two-flavor QCD as a function of the three mass parameters. It
consists of two intersecting first order surfaces with a second order edge along curves satisfying m3 = 0,

|m1| < |mz2|. There is no structure along the m,, = 0 line except when both quark masses vanish. Figure
from Ref. [99]

transition. The absence of a physical singularity at m,, = 0 when mg # 0 lies at the heart of the
problem in defining a vanishing up quark mass.

In the next section we will see that the structure in the mi, my plane is closely related to an
interesting lattice artifact in the degenerate quark limit. Aoki [107] discussed a possible phase
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with spontaneous parity violation with the Wilson fermion formulation. Indeed, lattice artifacts
can modify the effective potential in a similar way to the my term and allow the CP violating
phase at finite cutoff to include part of the m, axis as well.
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11 Lattice fermions

We now have a fairly coherent picture of how the spectrum of pseudoscalar mesons is connected
with chiral symmetry in the continuum theory. The anomaly plays a crucial role in introducing
the Theta parameter into the theory and contributing to the " mass. Throughout we have assumed
that we have in hand a regulator to define the various composite fields, but we have not been
specific in how that regulator is formulated. Early sections indicated the lattice should provide a
natural route to a non-perturbative formulation, but we have postponed the details until some of
the desired continuum features were elucidated.

The lattice can be regarded as a fully non-perturbative definition of a quantum field theory.
As such, the entire structure explored in previous sections should follow as we approach the
continuum limit. But there are a variety of interesting and subtle issues concerning how this
comes about. When the lattice is in place, all infinities in the theory are automatically removed.
However we have argued that the anomaly is closely tied to the divergences in the theory. As such
the physics associated with the anomaly must appear somewhere in any valid lattice formulation.
If we try to formulate a lattice version of QCD with all classical symmetries in place, there is no
way for this to happen. In particular, this imposes subtleties for how the action for the quarks is
formulated. Here we go into this problem in some detail and explore some of the methods for
dealing with it.

11.1 Hopping and doublers

The essence of lattice doubling already appears in the quantum mechanics of the simplest fermion
Hamiltonian in one space dimension

H:iKZa;—Haj—a}ajﬂ. (11.1)
J

Here j is an integer labeling the sites of an infinite chain and the a; are fermion annihilation
operators satisfying standard anti-commutation relations

{aj, aLLr = ajaL + aLaj =0j k- (11.2)

The fermions hop from site to neighboring site with amplitude K; thus, we refer to K as the
“hopping parameter” and by convention take it to be positive. The bare vacuum |0) satisfies
a;|0) = 0. This vacuum is not the physical one, which requires constructing a filled Dirac sea.
Energy eigenstates in the single fermion sector

)= x;allo) (11.3)
j

can be easily found in momentum space

X (q) = €"Yxo (11.4)
where we can restrict —m < ¢ < 7. The resulting energy is

E(q) = 2K sin(q). (11.5)
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The physical vacuum fills all the negative energy states, i.e. those with —m < ¢ < 0.

On this vacuum, consider constructing a fermionic wave packet by exciting a few modes of
small momentum ¢. This packet will have a group velocity dE/dq ~ 2K that is positive. Thus
it moves to the right and represents a right-moving fermion. On the other hand, a wave packet of
low energy can also be produced by exciting momenta in the vicinity of ¢ ~ 7. This packet will

have group velocity %’ ~ —2K and therefore be left moving. The essence of the Nielsen

Ninomiya theorem [108] is that we must have both types of excitation. We will go into this in
more detail later, but for this one dimensional case the periodicity in g requires the dispersion
relation to have an equal number of zeros with positive and negative slopes. If we now consider
a two component spinor to describe the fermion, we will have independent states corresponding
to each component. This is the so called “doubling” issue.

As a preliminary to later discussion, here we concentrate on a Hamiltonian version of the
Wilson approach to remove the doublers. Continuing to work in one dimension, consider a two
component spinor

a
¢:<b>. (11.6)

where a and b are distinct fermion annihilation operators on the lattice sites. The so called
“naive” lattice Hamiltonian begins with the simple hopping case of above and adds in the lower
components and a mass term that mixes the upper and lower components

H= iKZa}Haj — a;aﬂ_l — b;r'-&-lbj + b;bj_;_l + MZG;I)J + b}aj. (117)
J J

Introducing two by two Dirac matrices

0 1 0 —i 1 0
702012(1 0)» ’71202=<i 8>7 752032(01) (11.8)

and defining v = 9T+, we write the Hamiltonian compactly as

H = ZK(%‘H%%‘ —Y;mie1) + MZ@jwj. (11.9)
j j

This looks very much like the continuum Dirac Hamiltonian with the derivative term represented
on the lattice by a nearest neighbor difference. Chiral symmetry is manifest in the possibility of
independent rotations of the a and b type particles when the mass term is absent. The latter mixes
these components and opens a gap in the spectrum.

As before, the single particle states are found by Fourier transformation and satisfy

E? = 4K? sin?(q) + M*. (11.10)

At each momentum there is one positive and one negative energy state. Again, we are to fill the
negative energy sea to form the physical vacuum. The doubling issue is that there are low energy
excitations that satisfy the Dirac equation appearing both at ¢ ~ 0 and ¢ ~ 7. The physical
momenta k of the latter excitations appear in expanding about pi, i.e k = ¢ — m. These states
have a smooth spatial dependence in a redefined field x; = (—1)71/)j. The doublers at g ~ 7 are
still with us.
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11.2 Wilson fermions

One way to remove the degeneracy of the doublers is to make the mixing of the upper and lower
components momentum dependent. A simple way of doing this was proposed by Wilson [10].
To our Hamiltonian model, we add one more term

H= z'KZaL_laj - a}ajﬂ - b;r-Hbj + b;bj+1

J
+ MZa;bj + b}aj - rKZa}bj_H + b;-aj+1 + b;+1aj + a;Hbj
j J

J
= K@ — ) — i + )W) + Y My (11.11)
J J

Now the spectrum satisfies
E? = 4K?sin?(q) + (M — 2rK cos(q))*. (11.12)

The doublers at ¢ ~ 7 are increased in energy relative to the states at ¢ ~ 0. The physical particle
mass is now m = M — 2r K while that of the doubler is at M + 2rK.

When r becomes large, the dip in the spectrum of near ¢ = 7 actually becomes a maximum.
This is irrelevant for our discussion, although we note that the case » = 1 is somewhat special.
For this value, the matrices (y; &= 1)/2, which determine how the fermions hop along the lattice,
are projection operators. In a sense, the doubler is removed because only one component can
hop. This choice » = 1 has been the most popular in practice.

The hopping parameter has a critical value at

K. = % (11.13)
2r
At this point the gap in the spectrum closes and one species of fermion becomes massless. The
Wilson term, proportional to r, still mixes the a and b type particles; so, there is no exact chi-
ral symmetry. Nevertheless, in the continuum limit this represents a candidate for a chirally
symmetric theory. Before the limit, chiral symmetry does not provide a good order parameter.

Now we generalize this approach to the Euclidean path integral formulation in four space-

time dimensions. In the continuum, one usually writes for the free fermion action density

D = (D + m)ip (11.14)
or in momentum space
G(ip +m)ip. (11.15)

By convention we use Hermitean gamma matrices. Note that D is the sum of Hermitean and
anti-Hermitean parts. In the continuum the former is just a constant, the mass. A Hermitean
operator appears in the combination 5 D, but we don’t need that just now.

A matrix can be diagonalized when it commutes with its adjoint; then it is called “normal.”
For the naive continuum operator this is the case, and we see that all eigenvalues of D lie along
a line parallel to the imaginary axis intersecting the real axis at m. This simple structure will be
lost on the lattice.
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As discussed earlier, a simple transcription of derivatives onto the lattice replaces factors of
p with trigonometric functions. Thus the naive lattice action becomes

¢<2Zvusin(pua)+m>w (11.16)
n

where we have explicitly included the lattice spacing a. For small momentum this reduces to
the continuum result E(mﬂpu + m)1. Now let one component of p get large and be near 7/a.
Then we again have small eigenvalues and a nearby pole in the propagator. As any of the four
components of momentum can be near 0 or 7 there are a total of 16 places in momentum space
that give rise to a Dirac like behavior. The naive fermion action gives rise to 16 doublers.

As in the earlier example, the Wilson solution adds a momentum dependent mass. Wishing
to maintain only nearest neighbor terms, it also involves trigonometric functions. To maintain
hyper-cubic symmetry, we put in the Wilson term symmetrically for all space-time directions.
For simplicity we set the Wilson parameter r from before to unity. Explicitly for free fields we
consider the momentum space form

YDw =1 ((11 Z(ivu sin(pua) + 1 — cos(ppa)) + m> 1. (11.17)

m

Now for a momentum component near 7w the eigenvalues are of order 1/a in size. Note that
the lattice artifacts in the propagator start at order p>a, rather than O(a?) as for naive fermions.
The eigenvalue structure of Dyy is rather interesting. The eigenvalues for the free Wilson theory
occur at

? 1
A=t-— in? -» 1- . 11.18
. zﬂ:sm (pua) + . zﬂ: cos(ppa) +m ( )

The eigenvalues of this free operator lie on a set of “nested circles,” as sketched in Fig. 11.1. Note
that m <> —m is not a symmetry. Naively it would be in the continuum, but as we discussed
earlier, it cannot be so in the quantum theory when one has an odd number of flavors.

Note that to obtain real eigenvalues in Eq. (11.18), each component of the momentum must
be an integer multiple of . There are actually several critical values that can give rise to massless
fermions. For m = 0, —2, —4, —6, —8 we have 1,4, 6,4, 1 massless species. When interactions
are present these values of the mass will also be renormalized.® Whether a continuum limit at
these alternative points is useful has not been investigated.

Rescaling to lattice units and restoring the hopping parameter, the Wilson fermion action
with the site indices explicit becomes

Dwij=0i;+ K> (1=%)8ijte, + (1+7u)0i e, (11.19)
o

By taking the coefficient r of the Wilson term as unity we have projection operators in the
hoppings. The physical fermion mass is read off from the small momentum behavior as m =
5-(1/K — 8). This vanishes atat K = K, = 1/8.

®) Actually the 6 flavor case at m=-4 does have a discrete symmetry that will protect against additive mass renormal-
ization.
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Fig. 11.1. The eigenvalue spectrum of the free Wilson fermion operator is a set of nested circles. On
turning on the gauge fields, some eigenvalues drift into the open regions. Some complex pairs can collide
and become real. These are connected to gauge field topology. Figure taken from Ref. [109].

Here we consider that the gauge fields are formulated as usual with group valued matrices on
the lattice links. These are to be inserted into the above hopping terms. One could use the simple
Wilson gauge action as a sum over plaquettes

S, = gZRe Tr U, (11.20)
p

although this specific form is not essential the qualitative nature of the phase diagram. When
the gauge fields are turned on, the dynamics will move the fermion eigenvalues around, partially
filling the holes in eigenvalue pattern of Fig. 11.1. Some eigenvalues can become real and are
related to gauge field topology [96].

For the free theory the Hermitean and anti-Hermitean parts of the action commute. This
ceases to be true in the interacting case since both terms contain gauge matrices that themselves
do not commute. Thus the left eigenvalues are generally different from right ones. Nevertheless,
it is still true that the eigenvalues either appear in complex conjugate pairs or they are real. This
follows from ~5 Hermiticity, DT = ~5 Ds. Since 5 has unit determinant, |D — \| = 0 implies
|IDf — X\ =|D — X\ |* =0.

A technical difficulty with this approach is that gauge interactions will renormalize the pa-
rameters. To obtain massless pions one must finely tune K to K., an a priori unknown function
of the gauge coupling. Despite the awkwardness of such tuning, this is how numerical simula-
tions with Wilson quarks generally proceed. The hopping parameter is adjusted to get the pion
mass right, and one assumes that the remaining predictions of current algebra reappear in the
continuum limit.

Note that the basic lattice theory has two parameters, § and K. These are related to bare
coupling, 8 ~ 6/g3, and quark mass, (1/K —1/K_.) ~ m,. We will now turn to a discussion of
this relation in more detail.
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11.3 Lattice versus continuum parameters

As emphasized earlier, QCD is a remarkably economical theory in terms of the number of ad-
justable parameters. First of these is the overall strong interaction scale, Agcq. This is scheme
dependent, but once a renormalization procedure has been selected, it is well defined. It is not
independent of the coupling constant, the connection being fixed by asymptotic freedom. In
addition, the theory depends on the renormalized quark masses m;, or more precisely the dimen-
sionless ratios m;/Agcq. As with the overall scale, the definition of m; is scheme dependent.
The two flavor theory with degenerate quarks and © = 0 has one such mass parameter. As we
wish to formulate the theory with a lattice cutoff in place, there is a scale for this cutoff. As with
everything else, it is convenient to measure this in units of the overall scale; so, a third parameter
for the cutoff theory is aA.q, Where one can regard a as the lattice spacing.

How the bare parameters behave as the continuum limit is taken was discussed rather ab-
stractly in Section 6. The goal here is to explore some of the the lattice artifacts that arise with
Wilson fermions [10]. On the lattice it is generally easier to work directly with lattice parameters.
One of these is the plaquette coupling 3, which, with the usual conventions, is related to the bare
coupling 3 = 6/g3. For the quarks, the natural lattice quantity is the “hopping parameter” K.
And finally, the connection with physical scales appears via the lattice spacing a.

The set of physical parameters and the set of lattice parameters are, of course, equivalent, and
there is a well understood non-linear mapping between them

{achd,m} — {B,K}. (11.21)
chd

Of course, to extract physical predictions we are interested in the continuum limit aAgcq — 0.
For this, asymptotic freedom tells us we must take 3 — oo at a rate tied to A4cq. Simultaneously
we must take the hopping parameter to a critical value. With normal conventions, this takes K —
K. — 1/8 at a rate tied to desired quark mass m. Figure 11.2 sketches how the continuum limit
is taken in the 3, K plane. Here we wish to further explore this phase diagram with particular
attention to hopping parameters larger than K. This discussion is adapted from Ref. [109] and
adds the possible twisted mass term to the exposition from Ref. [110].

11.4 Artifacts and the Aoki phase

We previously made extensive use of an effective field theory to describe the interactions of the
pseudo-scalar mesons. Here we will begin with the simplest form for the two flavor theory and
then add terms to mimic possible lattice artifacts. The language is framed as before in terms of
the isovector pion field ¥ ~ it)v571 and the scalar sigma o ~ 11). The starting point for this
discussion is the canonical “Mexican hat” potential

Vo = Ao? + 72 —v?)? (11.22)

schematically sketched earlier in Fig. 8.2. The potential has a symmetry under O(4) rotations
amongst the pion and sigma fields expressed as the four vector ¥ = (o, 7). This represents the
axial symmetry of the underlying quark theory.

As discussed before, the massless theory is expected to spontaneously break chiral symmetry
with the minimum for the potential occurring at a non-vanishing value for the fields. As usual,
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Fig. 11.2. The continuum limit of lattice gauge theory with Wilson fermions occurs at 5 — oo and
K — 1/8. Coming in from this point to finite beta is the curve K.((3), representing the lowest phase
transition in K for fixed beta. The nature of this phase transition is a delicate matter, discussed in the text.
Figure taken from Ref. [109].

we take the vacuum to lie in the sigma direction with (¢) > 0. The pions are then Goldstone
bosons, being massless because the potential provides no barrier to oscillations of the fields in
the pion directions. Also as discussed before, we include a quark mass by adding a constant
times the sigma field

Vi = —mo. (11.23)

This explicitly breaks the chiral symmetry by “tilting” the potential as sketched in Fig. 8.3. That
selects a unique vacuum which, for m > 0, gives a positive expectation for sigma. In the process
the pions gain a mass, with m2 ~ m.

Because of the symmetry of 1/, it does not matter physically in which direction we tilt the
vacuum. In particular, a mass term of form

mo — mcos(f)o + msin(6)ms (11.24)

should give equivalent physics for any 6. In the earlier continuum discussion we used this free-
dom to rotate the second term away. However, as we will see, lattice artifacts can break this
symmetry, introducing the possibility of physics at finite lattice spacing depending on this angle.
As mentioned before, the second term in this equation is what is usually called a “twisted mass.”

The Wilson term inherently breaks chiral symmetry. This will give rise to various modifica-
tions of the effective potential. The first correction is expected to be an additive contribution to
the quark mass, i.e. an additional tilt to the potential. This means that the critical kappa, defined
as the smallest kappa where a singularity is found in the 5, K plane, will move away from the
limiting value of 1/8. Thus we introduce the function K.(3) and imagine that the mass term is
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C,<0

Fig. 11.3. Lattice artifacts could quadratically warp the effective potential. If this warping is downward in
the sigma direction, the chiral transition becomes first order without the pions becoming massless. Figure
taken from Ref. [109].

modeled with the form
m — c1(1/K — 1/K.(B)). (11.25)

In general the lattice modification of the effective potential will have further corrections of
higher order in the effective fields. A natural way to include such is as an expansion in the chiral
fields. With this motivation we include a term in the potential of form cyo?. Including these
ideas in the effective model, we are led to

V(7,0) = Mo? + 7% —v?)? — 1 (1/K — 1/K.(0))o + ca0?. (11.26)

Such a term was considered in Refs. [110, 111]. The predicted phase structure depends qualita-
tively on the sign of co, but a priori we have no information on this.””) Indeed, as it is a lattice
artifact, it is expected that this sign might depend on the choice of gauge action. Note that we
could have added a term like 72, but this is essentially equivalent since 72 = (02 + 72) — o2,
and the first term here can be absorbed, up to an irrelevant constant, into the starting Mexican hat
potential.

First consider the case when ¢ is less than zero, thus lowering the potential energy when the
field points in the positive or negative sigma direction. This quadratic warping helps to stabilize
the sigma direction, as sketched in Fig. 11.3, and the pions cease to be true Goldstone bosons
when the quark mass vanishes. Instead, as the mass passes through zero, we have a first order
transition as the expectation of ¢ jumps from positive to negative. This jump occurs without any
physical particles becoming massless.

Things get a bit more complicated if co > 0, as sketched in Fig. 11.4. In that case the chiral
transition splits into two second order transitions separated by a phase with an expectation for the

ORef. [112] has argued that co should be positive. We will return to this argument a bit later in this section.
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C2> 0

Fig. 11.4. 1If the lattice artifacts warping the potential upward in the sigma direction, the chiral transition
splits into two second order transitions separated by a phase where the pion field has an expectation value.
Figure taken from Ref. [109].

pion field, i.e. (7) # 0. The behavior is directly analogous to that shown in Fig. 10.8, the main
difference being that now the two quarks are degenerate. Since the pion field has odd parity and
charge conjugation as well as carries isospin, all of these symmetries are spontaneously broken
in the intermediate phase. As isospin is a continuous group, this phase will exhibit Goldstone
bosons. The number of these is two, representing the two flavor generators orthogonal to the di-
rection of the expectation value. If higher order terms do not change the order of the transitions,
there will be a third massless particle exactly at the transition endpoints. In this way the theory
reveals three massless pions exactly at the transitions, as discussed by Aoki [107]. The inter-
mediate phase is usually referred to as the “Aoki phase.” Assuming this c; > 0 case, Fig. 11.5
shows the qualitative phase diagram expected.

Note the similarity of this discussion to that leading to the phase diagram in Fig. 10.9. Indeed,
lattice artifacts can lead to the spontaneously broken CP region found there for the (mq,ms)
plane to open up and remain present for degenerate quarks. The Aoki phase is closely related to
the possibility of CP violation at © = 7 for unequal mass quarks. Note also that this connection
with the earlier continuum discussion shows that with an odd number of flavors, the spontaneous
breaking of parity is the normal expectation whenever the hopping parameter exceeds its critical
value. Indeed, in this case the Aoki phase is less a lattice artifact than a direct consequence of
the CP violation expected in the continuum theory at 6 = .

11.5 Twisted mass

The c; term breaks the equivalence of different chiral directions. This means that physics will
indeed depend on the angle 6§ if one takes a mass term of the form in Eq. (11.24). Consider
complexifying the fermion mass in the usual way

mp — m PR +m P pyr = Re m i + ilm m ryz1). (11.27)
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Fig. 11.5. The qualitative structure of the 3, K plane including the possibility of an Aoki phase.

The rotation of Eq. (11.24) is equivalent to giving the up and down quark masses opposite phases
my — eT%m,
mg — e Pmy. (11.28)

Thus motivated, we can consider adding a new mass term to the lattice theory

p AT YsY) ~ ps. (11.29)
This extends our effective potential to

V(7,0) = Mo? + 7% —v?)? — 1 (1/K — 1/K.(0))o + cz0? — pms. (11.30)

The twisted mass represents the addition of a “magnetic field” conjugate to the order parameter
for the Aoki phase.

There are a variety of motivations for adding such a term to our lattice action [113, 114].
Primary among them is that O(a) lattice artifacts can be arranged to cancel. With two flavors
of conventional Wilson fermions, these effects change sign on going from positive to negative
mass, and if we put all the mass into the twisted term we are half way between. It should be
noted that this cancellation only occurs when all the mass comes from the twisted term; for other
combinations with a traditional mass term, some lattice artifacts of O(a) will survive. Also,
although it looks like we are putting phases into the quark masses, these cancel between the
two flavors. The resulting fermion determinant remains positive and we are working at © = 0.
Furthermore, the algorithm is considerably simpler and faster than either overlap [87, 115] or
domain wall [116, 117] fermions while avoiding the diseases of staggered quarks [118]. Another
nice feature of adding a twisted mass term is that it allows a better understanding of the Aoki
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Fig. 11.6. Continuing around the Aoki phase with twisted mass. This sketch considers the case c2 > 0
where the parity broken phase extends over a region along the kappa axis. Figure taken from Ref. [109].
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Fig. 11.7. Asin Fig. 11.6, but for the case c2 < 0 so the chiral transition on the kappa axis becomes first
order. Figure taken from Ref. [109].

phase and shows how to continue around it. Figures 11.6 and 11.7 show how this works for the
case c2 > 0 and ¢ < 0, respectively.

Of course some difficulties come along with these advantages. First, one needs to know K.
Indeed, with the Aoki phase present, the definition of this quantity is a bit fuzzy. And second,
the mass needs to be larger than the co artifacts. Indeed, as Figs. 11.6 and 11.7 suggest, if it is
not, then one is really studying the physics of the Aoki phase, not the correct continuum limit.
This also has implications for how close to the continuum one must be to study this structure;
in particular, one must have 3 large enough so the Aoki phase does not extend into the doubler
region.

The question of the sign of ¢y remains open. Simulations suggest that the usual Aoki phase
with co > 0 is the situation with the Wilson gauge action. Recently Ref. [112] has pointed out
that with the twisted mass term present, all eigenvalues of the product of gamma five with the
Dirac operator will have non-zero imaginary parts. Thus to have co < 0, the phase transition at
non-vanishing twisted mass must occur where the fermion determinant does not vanish on any
configuration. This contrasts with the c; > 0 case where small eigenvalues of D are expected in
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the vicinity of the critical hopping. This at first sight makes co < 0 seem somewhat unnatural;
however, this is not a proof since we saw in Subsection 10.6 that phase transitions without small
eigenvalues of the Dirac operator do occur in the continuum theory for two flavors with non-
degenerate quarks.

This picture of the artifacts associated with Wilson fermions raises some interesting ques-
tions. One concerns the three flavor theory. As discussed previously, in this case a parity broken
phase becomes physical with negative mass. Indeed, three degenerate quarks of negative mass
represent QCD with a strong CP angle § = , for which spontaneous breaking of CP is expected.
In some sense the Aoki phase becomes physical. Also, with three flavors the twisting process is
not unique, with possible twists in the A3 or Ag directions. For example, using only A3 would
suggest a possible twisted mass of form m,, ~ €2™/3 mg ~ e=2™/3 m, ~ 1. Whether there is
an optimum twisting procedure for three flavors is unclear.

Another special case is one flavor QCD [96]. In this situation the anomaly removes all chiral
symmetry, and the quark condensate loses meaning as an order parameter. The critical value of
kappa where the mass gap disappears is decoupled from the point of zero physical quark mass.
There is a parity broken phase, but it occurs only at sufficiently negative mass. And from the
point of view of twisting the mass, without chiral symmetry there is nothing to twist other than
turning on the physical parameter ©.
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12 Lattice actions preserving chiral symmetry

12.1 The Nielsen-Ninomiya theorem

As discussed some time ago [108], the doubling issue is closely tied to topology in momentum
space. To see how this works, let us first establish a gamma matrix convention

- - 0 ¢
7201®U=(5 0) (12.1)

0 —i
’70:0'2®I:<Z. O> (12.2)

1 0
7503@[(0 1 ) (12.3)
(12.4)

Now suppose we have an anti-Hermitean Dirac operator D that anti-commutes with 5

D = —D' = —45D~s. (12.5)

Considering this quantity in momentum space, its most general form is

D(p) = ( —z(*)(p) “p) > (12.6)

where z(p) is a quaternion

z(p) = 20(p) + i - Z(p). (12.7)

Thus we see that any chirally symmetric Dirac operator maps momentum space onto the space
of quaternions.

The Dirac equation is obtained by expanding the momentum space operator around a zero, i.e.
D(p) ~ ip = ivupu. Now consider a three dimensional sphere embedded in four-dimensional
momentum-space and surrounding the zero with a constant D? ~ p2?. The above quaternion
wraps non-trivially about the the origin as we cover this sphere. Here is where the topology
comes in [108, 119]. Momentum space is periodic over Brillouin zones. We must have z(p) =
z(p + 27n) where n is an arbitrary four vector with integer components. Because of this, we
can restrict the momentum components to lie in the range —7 < p, < m, and we cannot have
any non-trivial topology on the surface of this zone. Any mapping associated with a zero in z(p)
must unwrap somewhere else before we get to the surface. Assuming D(p) remains finite, any
zero must be accompanied by another wrapping in the opposite sense. Because of doubling, the
16 species with naive fermions split up into 8 zeros of each sense.

The above argument only tells us that a chiral lattice theory must have an even number of
species. The case of a minimal doubling with only two species is in fact possible, although
all methods presented so far [120] appear to involve a breaking of hyper-cubic symmetry. This
breaking is associated with the direction between the zeros; this makes one direction special,
although it might be possible to avoid it by having the zeros form a symmetric lattice using the
periodicity of momentum space. This has not yet been demonstrated.
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In earlier sections we discussed how an odd number of flavors raised some interesting issues;
in particular the sign of the mass becomes relevant. In spite of this, there seems to be no con-
tradiction with having, say, three light flavors in the continuum with a well defined chiral limit.
The above lattice argument, however, seems to indicate troubles with maintaining an exact chiral
symmetry with an odd number of flavors. Whether this apparent conflict is serious is unclear.
One could always start with a multiple fermion theory and then, with something like a Wilson
term, give a few species masses while leaving behind an odd number of massless fermions. This
will involve some parameter tuning, but presumably can give a reasonable chiral limit for odd
Ny > 2. This does not obviate the fact emphasized earlier that with only one flavor there must
not be any remaining chiral symmetry even in the continuum.

12.2 Minimal doubling

Several chiral lattice actions satisfying the minimal condition of Ny = 2 flavors are known.
Some time ago Karsten [121] presented a simple form by inserting a factor of iy, into a Wilson
like term for space-like hoppings. A slight variation appeared in a discussion by Wilczek [122]
a few years later. More recently, a new four-dimensional action was motivated by the analogy
with two dimensional graphene [119]. Since then numerous variations have been presented [120,
123-126].

The main potential advantage with these approaches lies in their ultra-locality. They all
involve only nearby neighbor hoppings for the fermions. Thus they should be extremely fast
in simulations while still protecting masses from additive renormalization and helping control
mixing of operators with different chirality. The approach also avoids the uncontrolled errors as-
sociated with the rooting approximation discussed later [74,118,127,128]. On the other hand, all
minimally-doubled actions presented so far have the above mentioned disadvantage of breaking
lattice hyper-cubic symmetry. With interactions, this will lead to the necessity of renormaliza-
tion counter-terms that also violate this symmetry [129]. The extent to which this will complicate
practical simulations remains to be investigated.

Minimally-doubled chiral fermions have the unusual property of a single local field creating
two distinct fermionic species. Here we discuss a point-splitting method for separating the effects
of the two flavors which can be created by a single fermion field. For this we will work with
one specific form for the fermion action, but the method should be easily extended to other
minimally-doubled formulations.

We concentrate on a minimally-doubled fermion action which is a slight generalization of
those presented by Karsten [121] and Wilczek [122]. The fermion term in the lattice action takes
the form 1) D). For free fermions we start in momentum space with

3 ) 4
. . Y4
D(p) =i ; ~vi sin(p;) + sin(a) <cos(a) +3 - ; cos(p“)> . (12.8)
This includes a Wilson like term for the space-like hoppings but containing an extra factor of
i74. As a function of the momentum p,,, the propagator D! (p) has two poles, located at ' = 0,
py = Za. Relative to the naive fermion action, the other doublers have been given a large
“imaginary chemical potential” by the Wilson like term. The parameter « allows adjusting the
relative positions of the poles. The original Karsten/Wilczek actions correspond to o = 7 /2.
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This action maintains one exact chiral symmetry, manifested in the anti-commutation relation
[D, 5]+ = 0. The two species, however, are not equivalent, but have opposite chirality. To see
this, expand the propagator around the two poles and observe that one species, that corresponding
to p4 = +a, uses the usual gamma matrices, but the second pole gives a proper Dirac behavior
using another set of matrices ’V;/L = F_lfyMI‘. The Karsten/Wilczek formulation uses I' = ivy47s,
although other minimally-doubled actions may involve a different transformation. After this
transformation 75 = —-5, showing that the two species rotate oppositely under the exact chiral
symmetry, and this symmetry should be regarded as “flavored.” One can think of the physical
chiral symmetry as that generated in the continuum theory by 737s.

It is straightforward to transform the momentum space action in Eq. (12.8) to position space
and insert gauge fields U;; = U, jTi on the links connecting lattice sites. Explicitly indicating the
site indices, the Dirac operator becomes

>\ Bijre, —Oijes
Di; = Uy E S
p=1
. 4
Y4 Oijte, t0ij—ec,
= Uy 3 Sdten T 0ien ) 12.
sin(a) ((cos(a) +3)d;; — Uij 5 (12.9)

p=1

Again we see analogy with Wilson fermions [10] for the space directions but augmented with an
174 inserted in the Wilson term.

Perturbative calculations [129] have shown that interactions with the gauge fields can shift
the relative positions of the poles along the direction between them. In other words, the param-
eter o receives an additive renormalization. Furthermore, the form of the action treats the fourth
direction differently than the spatial coordinates, this is the breaking of hyper-cubic symmetry
mentioned above. There arise three possible new counter-terms for the renormalization of the
theory. First there is a possible renormalization of the on-site contribution to the action propor-
tional to itpy41). This provides a handle on the shift of the parameter a.. Secondly, the breaking
of the hyper-cubic symmetry indicates one may need to adjust the fermion “speed of light.” This
involves a combination of the above on-site term and the strength of temporal hopping propor-
tional to 6; jte, + 0; j—e,. Finally, the breaking of hyper-cubic symmetry can feed back into the
gluonic sector, suggesting a possible counter-term of form Fy,, F,, to maintain the gluon “speed
of light.” In lattice language, this corresponds to adjusting the strength of time-like plaquettes
relative to space-like ones.

Of these counter-terms, 19)741) is of dimension 3 and is probably the most essential. Quantum
corrections induce the dimension 4 terms, suggesting they may be small and could partially be
absorbed by accepting a lattice asymmetry. How difficult these counter-terms are to control
awaits simulations.

Note that all other dimension 3 counter-terms are forbidden by basic symmetries. For ex-
ample, chiral symmetry forbids 1)t and i1)y51) terms, and spatial cubic symmetry removes
i, Pyivst, and Yo 1 terms. Finally, commutation with 4 plus space inversion eliminates
YyavsP.

The fundamental field ¢ can create either of the two species. For a quantity that creates only
one of them, it is natural to combine fields on nearby sites in such a way as to cancel the other.
In other words, one can point split the fields to separate the poles which occur at distinct “bare
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momenta.” For the free theory, one construction that accomplishes this is to consider

u(q) = % (1 W) (g + aey)
d(q) = % r (1 — W) P(q — aea) (12.10)

where I' = iv475 for the Karsten/Wilczek formulation. Here we have inserted factors containing
zeros cancelling the undesired pole. This construction is not unique, and specific details will
depend on the particular minimally-doubled action in use. The factor of I" inserted in the d quark
field accounts for the fact that the two species use different gamma matrices. This is required
since the chiral symmetry is flavored, corresponding to an effective minus sign in ~ys for one of
the species.

It is now straightforward to proceed to position space and insert gauge field factors to keep
gauge transformation properties simple

Um,xfezlwzfe‘; - Uz,m+e4wz+e4
2sin(a)
i Ux,x—e4wac—e4 — Ux,ﬂc+€4¢:c+e4
2sin(a) '

1 .
u, = peion (% i

dy %Fe*m“ (% — (12.11)
The various additional phase factors serve to remove the oscillations associated with the bare
fields having their poles at non-zero momentum.

Given the basic fields for the individual quarks, one can go on to construct mesonic fields,
which then also involve point splitting. To keep the equations simpler, we now consider the case
« = m/2. For example, the neutral pion field becomes

1

7T0($)
) — — _
= T6 (411):6757/}1 + ¢m76475w$—64 + ¢m+e4v5wm+e4 (1212)
- $x+e4UUFY5wJ;—E4 - @x—eél UU’Y5¢$+€4> .

Note that this involves combinations of fields at sites separated by either O or 2 lattice spacings.
In contrast, the 7 takes the form

7' ()

1 _
i(ﬂx’)%ux + dx75dx)

1/— — — —
g <Z/J:E—e4 U’y5¢l’ - Z/JxU’Y5¢a;—e4 - ,(/J:I;+e4 U'YST/)w + wa’Y5T/)x+e4> (1213)

where all terms connect even with odd parity sites. In a recent paper, Tiburzi [130] has discussed
how the anomaly, which gives the " a mass of order A,.q, can be understood in terms of the
necessary point splitting.
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12.3 Domain wall and overlap fermions

The overlap fermion was originally developed [131] as a limit of a fermion formulation using
four dimensional surface modes on a five dimensional lattice. This effectively amounts to using
Shockley surface states as the basis for a theory maintaining chiral symmetry [116]. For a review
see Ref. [132]. The idea is to set up a theory in one extra dimension so that surface modes exist,
and our observed world is an interface with our quarks and leptons being these surface modes.
Particle hole symmetry naturally gives the basic fermions zero mass. In the continuum limit the
extra dimension becomes unobservable due to states in the interior requiring a large energy to
create. In this picture, opposing surfaces carry states of opposite helicity, and the anomalies are
due to a tunnelling through the extra dimension.

Ref. [133] discussed the general conditions for surface modes to exist. Normalized solutions
are bound to any interface separating a region with supercritical from sub-critical hopping. Ka-
plan’s original paper [116] considered not a surface, but an interface with M = M., + me(z),
where M., is the critical value for the mass parameter where the five dimensional fermions would
be massless. Shamir [134] presented a somewhat simpler picture where the hopping vanishes on
one side, which then drops out of the problem and we have a surface.

To couple gluon fields to this theory without adding unneeded degrees of freedom, the gauge
fields are taken to lie in the four physical space-time directions and be independent of the fifth
coordinate. In this approach, the extra dimension is perhaps best thought of as a flavor space
[135]. With a finite lattice this procedure gives equal couplings of the gauge field to the fermion
modes on opposing walls in the extra dimension. Since the left and right handed modes are
separated by the extra dimension, they only couple through the gauge field. The result is an
effective light Dirac fermion. In the case of the strong interactions, this provides an elegant
scheme for a natural chiral symmetry without the tuning inherent in the Wilson approach. The
breaking of chiral symmetry arises only through finiteness of the extra dimension.!?)

The name “overlap operator” comes from the overlap of eigenstates of the different five
dimensional transfer matrices on each side of the interface. Although originally derived from the
infinite limit of the five dimensional formalism, one can formulate the overlap operator directly
in four dimensions. We begin with the fermionic part of some generic action as a quadratic form
Sy = 1 D). The usual “continuum” Dirac operator D = > YuD,, naively anti-commutes with
7s, i.. [y5, D]+ = 0. Then the change of variables 1) — €59 and ¥ — e’ would
be a symmetry of the action. This, however, is inconsistent with the chiral anomalies. The
conventional continuum discussion presented earlier maps this phenomenon into the fermionic
measure [84].

On the lattice we work with a finite number of degrees of freedom; thus, the above variable
change is automatically a symmetry of the measure. To parallel the continuum discussion, it is
necessary to modify the symmetry transformation on the action so that the measure is no longer
invariant. Remarkably, it is possible to construct a modified symmetry under which correspond-
ing actions are exactly invariant.

To be specific, one particular variation [87, 136—139] modifies the change of variables to

w _ eiG’ys,(/J

(10 The anomaly, however, shows that some communication between the surfaces survives even as the extra dimension
becomes infinite. This is possible since the same gauge fields are on each surface.
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Fig. 12.1. The overlap operator is constructed by projecting the eigenvalues of the Wilson operator onto a
circle. Figure taken from Ref. [142].

P — petft=ab)rs (12.14)

where a represents the lattice spacing. Note the asymmetric way in which the independent
Grassmann variables v and 1 are treated. Requiring the action to be unchanged gives the re-
lation [86, 140, 141].

Drys = —sD + aDsD = —45D (12.15)

with 45 = (1 — aD)~s. To proceed, we also assume the Hermeticity condition v5 D5 = DT,
We see that the naive anticommutation relation receives a correction of order the lattice spacing.
The above “Ginsparg-Wilson relation” along with the Hermeticity condition is equivalent to the
unitarity of the combination V =1 — aD.

Neuberger [136, 137] and Chiu and Zenkin [138] presented an explicit operator with the
above properties. They first construct V' via a unitarization of an undoubled chiral violating
Dirac operator, such as the Wilson operator D,,. This operator should also satisfy the above
Hermeticity condition v D,,y5 = D;fu. Specifically, they consider

V = —D,(D},D,)""/2. (12.16)

The combination (D} D,,)~1/? is formally defined by finding a unitary operator to diagonalize
the Hermitean combination D] D,,, taking the square root of the eigenvalues, and then undoing
the unitary transformation.

Directly from V' we construct the overlap operator as

D=(1-V)/a. (12.17)

The Ginsparg-Wilson relation of Eq. (12.15) is most succinctly written as the unitarity of V'
coupled with its 5 Hermeticity

YsVsV =1 (12.18)

The basic projection process is illustrated in Fig. 12.1.
The overlap operator has several nice properties. Being constructed from a unitary operator,
the normality of D is guaranteed. But, most important, it exhibits a lattice version of an exact
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chiral symmetry. [143] The fermionic action 1 D1 is invariant under the transformation

w N 61’9“/51/)

) — e’ (12.19)
where

5 = Vs. (12.20)

As with 75, this quantity which appeared in Eq. (12.15) is Hermitean and its square is unity. Thus
its eigenvalues are all plus or minus unity. The trace defines an index

1
v=5Tris (12.21)

which plays exactly the role of the index in the continuum. If the gauge fields are smooth, this
counts the topology of the gauge configuration. The factor of 1/2 in Eq. (12.21) appears because
the exact zero modes of the overlap operator have partners on the opposite side of the unitarity
circle that also contribute to the trace.

At this point the hopping parameter in D,, is a parameter. To have the desired single light
fermion per flavor of the theory, the hopping parameter should be appropriately adjusted to lie
above the critical value where D,, describes a massless flavor, but not so large that additional
doublers come into play [144]. There are actually two parameters to play with, the hopping
parameter of D,,, and the lattice spacing. When the latter is finite and gauge fields are present,
the location of the critical hopping parameter in D,, is expected to shift from that of the free
fermion theory. As we saw when discussing the Aoki phase, there is potentially a rather complex
phase structure in the plane of these two parameters, with various numbers of doublers becoming
massless as the hopping is varied. The Ginsparg-Wilson relation in and of itself does not in
general determine the number of physical massless fermions.

Although the Wilson operator entering this construction is local and quite sparse, the resulting
overlap action is not. Because of the inversion in Eq. (12.16), it involves direct couplings between
arbitrarily separated sites [145-147]. How rapidly these couplings fall with distance depends on
the gauge fields and is not fully understood. The five dimensional domain-wall theory is local
in the most naive sense; all terms in the action only couple nearest neighbor sites. However,
were one to integrate out the heavy modes, the resulting low energy effective theory would also
involve couplings with arbitrary range. Despite these non-localities, encouraging studies [137,
148—151] show that it may indeed be practical to implement the required inversion in large scale
numerical simulations. The overlap operator should have memory advantages over the domain
wall approach since a large number of fields corresponding to the extra dimension do not need to
be stored.

The overlap approach hides the infinite sea of heavy fermion states in the extra dimension
of the domain wall approach. This tends to obscure the possible presence of singularities in the
required inversion of the Wilson kernel. Detailed analysis [152, 153] shows that this operator is
particularly well behaved order by order in perturbation theory. This has led to hopes that this
may eventually lead to a rigorous formulation of chiral models, such as the standard model.

Despite being the most elegant known way to have an exact remnant of chiral symmetry
on the lattice, the overlap operator raises several issues. These complications probably become
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insignificant as the continuum limit is approached, but should be kept in mind given the high
computational cost of this approach. To begin with, the overlap is highly non-unique. It explicitly
depends on the kernel being projected onto the unitary circle. Even after choosing the Wilson
kernel, there is a dependence on the input mass parameter. One might want to define topology in
terms of the number of exact zero modes of the overlap operator. However the non-uniqueness
leaves open the question of whether the winding number of a gauge configuration might depend
on this choice. Later we will return to the question of possible ambiguities in defining topological
susceptibility in the continuum limit.

In this connection, it is possible to make a bad choice for the mass parameter. In particu-
lar, if it is chosen below the continuum kappa critical value of 1/8, no low modes will survive.
This is true despite the fact that the corresponding operator will still satisfy the Ginsparg-Wilson
condition. This explicitly shows that just satisfying the Ginsparg-Wilson condition is not a suffi-
cient condition for a chiral theory. Conversely, if one chooses the mass parameter too far in the
supercritical region, additional low modes will be produced from the doublers. As mentioned
earlier, the Ginsparg-Wilson condition does not immediately determine the number of flavors in
the theory.

Another issue concerns the one flavor case, discussed earlier. Because of the anomaly, this
theory is not supposed to show any chiral symmetry and has no Goldstone bosons. Nevertheless,
one can construct the overlap operator and it will satisfy the Ginsparg-Wilson condition. This
shows that the consequences of this condition are weaker than for the usual continuum chiral
symmetry. With a conventional chiral symmetry, the spectrum cannot show a gap. Either we
have the Goldstone bosons of spontaneous chiral breaking or we have massless fermions [154].

It should also be noted that the overlap behaves peculiarly for fermions in higher representa-
tions than the fundamental. As we discussed earlier, the number of zero modes associated with a
non-trivial topology in the continuum theory depends on the fermion representation being con-
sidered. It has been observed in numerical simulations that the appropriate multiplicity is not
always seen for the overlap operator constructed on rough gauge configurations [155].

As a final comment, note that these actions preserving a chiral symmetry all involve some
amount of non-locality. With minimal doubling this has a finite range, but is crucial for allow-
ing the anomaly to work out properly. An important consequence is that the operator product
expansion, a standard perturbative tool, must involve operators with a similar non-locality. The
ambiguities in defining non-degenerate quark masses lie in these details.

12.4 Staggered fermions

Another fermion formulation that has an exact chiral symmetry is the so called “staggered” ap-
proach. To derive this it is convenient to begin with the “naive” discretization of the Dirac
equation from before. This considers fermions hopping between nearest neighbor lattice sites
while picking up a factor of +iv, for a hop in direction £u. Going to momentum space, the
discretization replaces powers of momentum with trigonometric functions, for example

VP — VuSin(pu)- (12.22)

Here we work in lattice units and thus drop factors of a. As discussed before, this formulation
reveals the famous “doubling” issue, arising because the fermion propagator has poles not only
for small momentum, but also whenever any component of the momentum is at 7. The theory
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Fig. 12.2. When a fermion circumnavigates a loop in the naive formulation, it picks up a factor that always
involves an even power of any particular gamma matrix. Figure from Ref. [127].

represents not one fermion, but sixteen. And the various doublers have differing chiral properties.
This arises from the simple observation that

d . d .
o sin(p)|p=r = ~o sin(p)|p=o- (12.23)

The consequence is that the helicity projectors (1 £ v5)/2 for a travelling particle depend on
which doubler one is observing.

Now consider a fermion traversing a closed loop on the lattice. As illustrated in Fig. 12.2,
the corresponding gamma matrix factors will always involve an even number of any particular
Yu- Thus the resulting product is proportional to the identity. If a fermion starts off with a
particular spinor component, it will wind up in the same component after circumnavigating the
loop. This means that the fermion determinant exactly factorizes into four equivalent pieces.
The naive theory has an exact U(4) symmetry, as pointed out some time ago by Karsten and
Smit [156]. Indeed, for massless fermions this is actually a U (4) ® U (4) chiral symmetry. This
symmetry does not contradict any anomalies since it is not the full naive U(16) ® U(16) of 16
species. The chiral symmetry generated by -5 remains exact, but is allowed because it is actually
a flavored symmetry. As mentioned above, the helicity projectors for the various doubler species
use different signs for 7s.

The basic idea of staggered fermions is to divide out this U(4) symmetry [157-159] by
projecting out a single component of the fermion spinor on each site. Taking v» — P, one
projector that accomplishes this is

1
P=- (1 + iy (—1) " iy (— 1)t 4 75(—1)“”2”3”4) (12.24)

where the z; are the integer coordinates of the respective lattice sites. This immediately reduces
the doubling from a factor of sixteen to four. It is the various oscillating sign factors in this
formula that give staggered fermions their name.

At this stage the naive U(1) axial symmetry remains. Indeed, the projector used above com-
mutes with 5. This symmetry is allowed since four species, often called “tastes,” remain.



108 Confinement, chiral symmetry, and the lattice

Among them the symmetry is a taste non-singlet; under a chiral rotation, two rotate one way
and two the other.

The next step taken by most of the groups using staggered fermions is the rooting trick. In
the hope of reducing the multiplicity down from four, the determinant is replaced with its fourth
root, [D| — |D|*/*. With several physical flavors this trick is applied separately to each. In
simple perturbation theory this is correct since each fermion loop gets multiplied by one quarter,
cancelling the extra factor from the four “tastes.”

At this point one should be extremely uneasy: the exact chiral symmetry is waving a huge red
flag. Symmetries of the determinant survive rooting, and thus the exact U (1) axial symmetry for
the massless theory remains. For the unrooted theory this was a flavored chiral symmetry. But,
having reduced the theory to one flavor, how can there be a flavored symmetry without multiple
flavors? We will now show why this rooting trick fails non-perturbatively when applied to the
staggered quark operator.

12.5 The rooting issue

In previous sections we have seen that the chiral symmetry with /V; fermion flavors has a rather
complicated dependence on Ny. With only one flavor there is no chiral symmetry at all, while
in general if the fermions are massless, there are NJ% — 1 Goldstone bosons. We have also seen
a qualitative difference in the mass dependence between an even and an odd number of species.
Physics does not behave smoothly in the number of flavors and this raises issues for fermion
formulations that inherently have multiple flavors, such as staggered fermions.

Starting with four flavors, the basic question is whether one can adjust Ny down to one using
the formal expression

Bl

D+m 0 0 0
0 D+m 0 0
= ?
0 o Dam 0 |D + m|? (12.25)
0 0 0 D+m

This has been proposed and is widely used as a method for eliminating the extra species appearing
with staggered fermion simulations.

At this point it is important to emphasize that asking about the viability of Eq. (12.25) is a
vacuous question outside the context of a regulator. Field theory has divergences that need to be
controlled, and, as we have seen above, the appearance of anomalies requires care. In particular,
the regulated theory must explicitly break all anomalous symmetries in a way that survives in the
continuum limit.

So we must apply Eq. (12.25) before removing the regulator. This is generally expected to
be okay as long as the regulator breaks any anomalous symmetries appropriately on each of the
four factors. For example, we expect rooting to be valid for four copies of the overlap operator.
This satisfies a modified chiral symmetry Dvy; = —45D where the gauge winding v appears in
the gauge dependent matrix 4 through Tr4ys = 2v.

Section 10 showed that in the continuum with Ny degenerate flavors there is a Z, symmetry
in mass parameter space corresponding to taking m — e2™75/Ns . Suppose we try to force the
Z4 symmetry in the regulated theory before we root. This is easily accomplished by considering
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the determinant

D + me " 0 0 0
—imyg
0 D+ me™3 0 . 0 . (12.26)
0 0 D+ me 1 0 v
0 0 0 D+ me 12>

This maintains the above symmetry through a permutation of the four flavors. This modification
of the determinant still gives a valid formulation of the four flavor theory at vanishing © because
the imposed phases cancel. But expressed in this way, we start with four one-flavor theories
each with a different value of ©. Were we to root this form, we would be averaging over four
inequivalent theories. This is not expected to be correct, much as we would not expect rooting
two different masses to give a theory of the average mass; i.e.

(ID + my||D + ma|)? # |D + /mima) . (12.27)

So we have presented both a correct and an incorrect way to root a four flavor theory down
to one. What is the situation with staggered fermions, the primary place where rooting has been
applied? The problem is that the kinetic term of the staggered action maintains one exact chiral
symmetry even at finite lattice spacing. Without rooting this is flavor non-singlet amongst the
“tastes.” As discussed earlier, there are two tastes of each chirality. But, because of this exact
symmetry, which contains a Z, subgroup, rooting to reduce the theory to one flavor is similar
to the second case above and is not expected to be valid. In particular, rooting does not remove
the Z, discrete symmetry in the mass parameter, a symmetry which must not be present in the
one flavor theory. Thus, just as in the above example, the tastes are not equivalent and rooting
averages inequivalent theories.

The conclusion is that rooted staggered fermions are not QCD. So, what is expected to go
wrong? The unbroken Z, symmetry will give rise to extra minima in the effective potential
as a function of o and ’. In particular, for one flavor QCD one will get an effective potential
with minima along the lines of Fig. 10.1 instead of the desired structure of Fig. 10.3. Forcing
the extra minima would most likely drive the " mass down from its physical value. This shift
should be rather large, of order Agcp. This is testable, but being dominated by disconnected
diagrams, may be rather difficult to verify in practice. In addition, if we vary the quark masses,
the extra minima will result in phase transitions occurring whenever any single quark mass passes
through zero. The previous discussion of the one flavor theory and the two flavor theory with
non-degenerate quarks both show that this is unphysical; no structure is expected when only a
single mass passes through zero.

This problem is admittedly subtle. Formula (12.25) seems intuitively obvious and does work
if the individual factors take care of the possible anomalies, as with four copies of the overlap
operator. !V It is also correct perturbatively, since the rooting factor reduces any fermion loop by
the correct amount. However, the basic structure built up in earlier sections makes it indisputable
that the dependence of QCD on the parameter Theta is real. With the staggered action, the

(1) A few still hide behind this wall so frail,
So blind to chiral twists that made it fail.
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distinct tastes are not equivalent due to their different behavior under chiral rotations. It is this
inequivalence that is at the heart of the failure of rooting for this particular action.

Despite these problems, several lattice collaborations continue to pursue staggered fermions
using the rooting trick [160—162]. The justification is partly because the simulations are slightly
faster than using Wilson fermions, and partly because the exact chiral symmetry simplifies op-
erator mixing. The success of a variety of calculations which are not strongly dependent on the
anomaly shows the approach, while technically incorrect, is often a good approximation. On the
other hand, if one’s goal is to test QCD as the theory of the strong interactions or to estimate
QCD corrections to standard model processes [163], then one must be extremely wary of any
discrepancies found using this method.
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13 Other issues

13.1 Quantum fluctuations and topology

We have seen how zero modes of the Dirac operator are closely tied to the anomaly. And we
have seen that for smooth classical fields, configurations that give zero modes for the classical
Dirac operator do indeed exist. However, when getting into more detail with defining a lattice
Dirac operator, we found subtle issues about which operator to use. And way back in Section 2
we saw that typical fields in path integrals are non-differentiable. This leads to the question of
uniqueness for the winding number of a given gauge configuration. Indeed, is something like the
topological susceptibility of the vacuum a true physical observable?

In [164] a definition of topological charge was constructed using the naive fermion operator
as a regulator for the trace of 75 as in the earlier derivation of the index theorem. This oper-
ator does not generally give an integer value for a typical gauge configuration in simulations.
However, it does reduce to such after a cooling procedure is used to remove short distance fluc-
tuations. The results of such are shown in Fig. 13.1. On the other hand, the gauge field space
in lattice gauge theory is simply connected. Empirically with enough cooling, any SU(2) gauge
configuration appears to eventually decay to a state of zero action, gauge equivalent to the vac-
uum.

Since configurations appear to cool ultimately to trivial winding, using a cooling algorithm
to define topology requires an arbitrary selection for cooling time. Modifying the Wilson action
can prevent the winding decay. For example, forbidding the lattice action on any given plaquette
from becoming larger than a small enough number can prevent instanton decay [165]. Such
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Fig. 13.1. The winding number as a function of cooling steps for a set of 5 lattices of size 16* at 5 = 2.3.
Note how it settles into approximately integer values with occasional jumps between different windings.

Figure from Ref. [164].
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Fig. 13.2. The topological charge evolution for three different cooling algorithms on a single § = 2.3
lattice configuration for SU(2) on a 16* lattice. Figure from Ref. [164]. With the higher winding numbers,
lattice artifacts shift the plateaus slightly away from integer values.

an “admissibility” condition, however, violates reflection positivity [98] and arbitrarily selects a
special instanton size where the action is minimum.

Cooling time is not the only issue here. While attaining an integer winding requires cooling,
note in Fig. 13.1 that the initial cooling stages seem quite chaotic. This raises the question
of whether the discrete stages reached after some cooling might depend rather sensitively on
the cooling algorithm. Figure 13.2 shows the evolution of a single lattice with three different
relaxation algorithms. One algorithm consists of sweeping over the lattice using checkerboard
ordering and replacing each link with the group element that minimizes the action associated
with the given link. This is done by projecting the sum of staples that interact with the link onto
the group. For the second approach, an under-relaxed algorithm adds the old link to the sum of
the neighborhood staples before projecting onto the new group element. Finally, an over-relaxed
approach subtracts the old element from the staple sum. The resulting windings not only depend
on cooling time, but also on the specific algorithm chosen.

In an extensive analysis, Ref. [166] has compared a variety of filtering methods to expose
topological structures in gauge configurations. All schemes have some ambiguities, but when
the topological structures are clear, the various approaches when carefully tuned give similar
results. Nevertheless the question remains of whether there is a rigorous and unambiguous def-
inition of topology that applies to all typical configurations arising in a simulation. Luscher has
discussed using a differential flow with the Wilson gauge action to accomplish the cooling [167].
This corresponds to the limit of maximal under-relaxation. This approach still allows the above
topology collapse unless prevented by something like the admissibility condition or the selection
of an arbitrary flow time. In addition, if one wishes to determine the topological charge of a



Other issues 113

configuration obtained in some large scale dynamical simulation, it is unclear why one should
take the particular choice of the Wilson gauge action for the cooling procedure.

The high sensitivity to the cooling algorithm on rough gauge configurations suggests that
there may be an inherent ambiguity in defining the topological charge of typical gauge configu-
rations and consequently a small ambiguity in the definition of topological susceptibility. It also
raises the question of how smooth is a given definition of topological charge as the gauge fields
vary; how much correlation is there between nearby gauge configurations? Although such issues
are quite old [168], they continue to be of considerable interest [169—171].

As topological charge is suppressed by light dynamical quarks, this is connected to the ques-
tion discussed earlier of whether the concept of a single massless quark is well defined [31].
Dynamical quarks are expected to suppress topological structures, and the chiral limit with mul-
tiple massless quarks should give zero topological susceptibility with a chiral fermion operator,
such as the overlap. However, with only a single light quark, the lack of chiral symmetry indi-
cates that there is no physical singularity in the continuum theory as this mass passes through
zero. Any scheme dependent ambiguity in defining the quark mass would then carry through to
the topological susceptibility.

One might argue that the overlap operator solves this problem by defining the winding num-
ber as the number of zero eigenvalues of this quantity. Indeed, it has been shown [171, 172] that
this definition gives a finite result in the continuum limit. As one is using the fermion opera-
tor only as a probe of the gluon fields, this definition can be reformulated directly in terms of
the underlying Wilson operator [173]. While the result may have a finite continuum limit, the
earlier discussion showed that the overlap operator is not unique. In particular it depends on
the initial Dirac operator being projected onto the overlap circle. For the conventional Wilson
kernel, there is a dependence on the parameter commonly referred to as the domain-wall height.
Whether there is an ambiguity in the index defined this way depends on the density of real eigen-
values of the kernel in the vicinity of the point from which the projection is taken. Numerical
evidence [148] suggests that this density decreases with lattice spacing, but it is unclear if this
decrease is rapid enough to give a unique susceptibility in the continuum limit. The admissi-
bility condition also successfully eliminates this ambiguity; however, as mentioned earlier, this
condition is inconsistent with reflection positivity.

Whether topological susceptibility is well defined or not seems to have no particular phe-
nomenological consequences. Indeed, this is not a quantity directly measured in any scatter-
ing experiment. It is only defined in the context of a technical definition in a particular non-
perturbative simulation. Different valid schemes for regulating the theory might well come up
with different values; it is only physical quantities such as hadronic masses that must match be-
tween approaches. The famous Witten-Veneziano relation [174, 175] does connect topological
susceptibility of the pure gauge theory with the eta prime mass in the large number of colors
limit. This mass, of course, remains well defined in the physical case of three colors, but the
finite N, corrections to topology can depend delicately on gauge field fluctuations, which are the
concern here.

13.2 The standard model

Throughout the above we have concentrated on the strong interactions. It is only for this sector of
the standard model that perturbation theory fails so spectacularly. But the weak and electromag-
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netic interactions are crucial parts of the full standard model (gravitation is ignored here since it
has even more serious unsolved problems). And for these interactions it is also true that the per-
turbative expansion does not converge. Because the underlying couplings are so small, this does
not appear to be of any practical importance; however, conceptually it is quite desirable to have
a lattice formulation for these interactions as well. From a purist point of view, the continuum
limit of a lattice theory defines a continuum field theory. Thus without a lattice description of the
other interactions it is unclear whether we can say they are well founded field theories.

In this context we note that the general picture of the standard model has changed dramat-
ically over the years. Originally it was the successes of quantum electrodynamics that made it
the model relativistic field theory. Before QCD, the strong interactions were a mystery. But now
we see that because of asymptotic freedom, QCD on its own is likely to be a well defined and
self contained theory. It is the electroweak theory, where both the electric charge and the Higgs
couplings are not asymptotically free, for which we lack a non-perturbative formulation. Indeed,
a speculative topic such as the possibility of emergent gravity may be intimately tied to these
issues with the weaker forces.

For the electromagnetic interactions, a lattice formulation at first seems straightforward, in-
volving the introduction of an additional U (1) gauge field for the photons. Unlike the strong
interaction case, however, for electrodynamics we do not have asymptotic freedom to tell us how
to take the continuum limit. And the physical coupling @ ~ 1/137 seems to be an unnaturally
small number. Perhaps electrodynamics on its own does not actually exist as a field theory, much
as believed for the scalar ¢* theory. But photons and electrons are essential components to the
world around us. One interesting possibility is that electromagnetism is actually only a part of a
higher level theory, perhaps in some unification with the strong interactions.

With the weak interactions we hit a more serious snag in that they are known to violate parity.
The W bosons appear to interact only with left handed fermions. As such we need to couple
the fermions in a chiral manner, and it is not known how to do this in any non-perturbative
scheme. The problem here is closely tied to the anomaly and the fact that not all currents can
be simultaneously conserved. Indeed, when applied to the weak interactions, the 't Hooft vertex
gives rise to effective interactions that do not conserve baryon number. Any complete non-
perturbative formulation must allow for such processes [176]. Some attempts to include such
in a domain wall formulation have been presented [133, 177], but these generally involve heavy
additional states such as “mirror” fermions [178]. While potentially viable, such approaches so
far lack the theoretical elegance of the original Wilson lattice gauge theory. Indeed, it is the
problem of chiral gauge theories that encourages studies of chiral symmetry from all possible
angles.

Perhaps a lattice formulation more intimately tied to unification ideas could help here. The
group SO(10) looks quite interesting in this context [94]. Here a single generation of fermions
fits nicely into a single 16 dimensional representation of this group. And in this picture anoma-
lies are automatically cancelled. This would seem to indicate that there should be no obvious
requirement for doublers as an obstacle to a lattice construction. However, the usual Wilson ap-
proach seems to require a term that is not a singlet under this group. This could be overcome
with some added Higgs-like scalar fields, but then we get closer to the above mentioned models
with the doublers playing the role of mirror fermions.
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13.3 Where is the parity violation?

The standard model of elementary particle interactions is based on the product of three gauge
groups, SU(3) ® SU(2) @ U(1)em.- Here the SU(3) represents the strong interactions of quarks
and gluons, the U (1),,, corresponds to electromagnetism, and the SU (2) gives rise to the weak
interactions. We ignore here the technical details of electroweak mixing. The full model is, of
course, parity violating, as necessary to describe observed helicities in beta decay. This violation
is normally considered to lie in the SU(2) of the weak interactions, with both the SU(3) and
U(1)erm, being parity conserving. We will show here that this is actually a convention, adopted
primarily because the weak interactions are small compared to the others. We show below that
reassigning degrees of freedom allows a reinterpretation where the SU(2) gauge interaction is
vector-like. Since the full model is parity violating, this process shifts the parity violation into
the strong, electromagnetic, and Higgs interactions. The resulting theory pairs the left handed
electron with a right handed anti-quark to form a Dirac fermion. With a vector-like weak interac-
tion, the chiral issues which complicate lattice formulations now move to the other gauge groups.
Requiring gauge invariance for the re-expressed electromagnetism then clarifies the mechanism
behind one proposal for a lattice regularization of the standard model [179, 180].

For simplicity we consider here only the first generation, which involves four left handed
doublets. These correspond to the neutrino/electron lepton pair plus three colors for the up/down
quarks

v u” ud ub
<e_)L’ <dT>L7 <dg>L’ (db>L' (3D

Here the superscripts from the set {r, g, b} represent the internal SU(3) index of the strong
interactions, and the subscript L indicates left-handed helicities.

If we ignore the strong and electromagnetic interactions, leaving only the weak SU(2), each
of these four doublets is equivalent and independent. We now arbitrarily pick two of them and
do a charge conjugation operation, thus switching to their antiparticles

()
— (=
YR
ub db
< o) — ) - (13.2)
L )R
In four dimensions anti-fermions have the opposite helicity; so, we label these new doublets with

R representing right handedness.
With two left and two right handed doublets, we can combine them into two Dirac doublets

()] ()
@, (&),
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Formally in terms of the underlying fields, the construction takes

1 1

P = 5(1 —V5)(v,e-) F 5(1 + ¥5)¥ (g7 s (13.4)
1 1

X = 5(1 = 75)Y(ur,dry + 5(1 +95) U5 - (13.5)

From the conventional point of view, these fields have rather peculiar quantum numbers. For
example, the left and right parts have different electric charges. Electromagnetism now violates
parity. The left and right parts also have different strong quantum numbers; the strong interac-
tions violate parity as well. Finally, the components have different masses; parity is violated in
the Higgs mechanism.

The different helicities of these fields also have variant baryon number. This is directly related
to the known baryon violating processes through weak “instantons” and axial anomalies [21].
When a topologically non-trivial weak field is present, the axial anomaly arises from a level flow
out of the Dirac sea [70]. This generates a spin flip in the fields, i.e. e, — (u9)g. Because of the
peculiar particle identification, this process does not conserve charge, with AQ = —% +1= %
This would be a disaster for electromagnetism were it not for the fact that simultaneously the
other Dirac doublet also flips d";, — (u®)g with a compensating AQ = f%. This is anomaly
cancellation, with the total AQ = % — = 0. Only when both doublets are considered together is
the U (1) symmetry restored. In this anomalous process baryon number is violated, with L+@Q —
@ + Q. This is the famous * ‘t Hooft vertex” [21] discussed earlier in the context of the strong

interactions.

13.4 A lattice model

The above discussion on twisting the gauge groups has been in the continuum. Now we turn to
the lattice and show how this picture leads to a possible lattice model for the strong interactions,
albeit with an unusual added coupling that renders the treatment quite difficult to make rigorous
[179,180]. Whether this model is viable remains undecided, but it does incorporate many of the
required features.

For this we use the domain wall approach for the fermions [116,134]. As discussed earlier, in
this picture, our four dimensional world is a “4-brane” embedded in 5-dimensions. The complete
lattice is a five dimensional box with open boundaries, and the parameters are chosen so the
physical quarks and leptons appear as surface zero modes. The elegance of this scheme lies in
the natural chirality of these modes as the size of the extra dimension grows. With a finite fifth
dimension one doubling remains, coming from interfaces appearing as surface/anti-surface pairs.
It is natural to couple a four dimensional gauge field equally to both surfaces, giving rise to a
vector-like theory.

We now insert the above pairing into this five dimensional scheme. In particular, consider
the left handed electron as a zero mode on one wall and the right handed anti-green-up-quark
as the partner zero mode on the other wall, as sketched in Fig. 13.3. This provides a lattice
regularization for the SU (2) of the weak interactions.

However, since these two particles have different electric charge, U (1) s must be broken in
the interior of the extra dimension. We now proceed in analogy to the “waveguide” picture [181]
and restrict this charge violation to AQ to one layer at some interior position 5 = 4. Using
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Fig. 13.3. Pairing the electron with the anti-green-up-quark. Figure taken from [180].
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Fig. 13.4. Transferring charge between the doublets. Figure taken from [180].

Wilson fermions, the hopping term from x5 = ¢ to i + 1

$PYiy  (P=(y5+71)/2) (13.6)

is a Q = 1/3 operator. At this layer, electric charge is not conserved. This is unacceptable and
needs to be fixed.

To restore the U(1) symmetry one must transfer the charge from ¢ to the compensating
doublet . For this we replace the sum of hoppings with a product on the offending layer

;P 1 +X: PXi1— 0 Pigr XX PXisa - (13.7)

This introduces an electrically neutral four-fermi operator. Note that it is baryon violating, in-
volving a “lepto-quark/diquark” exchange, as sketched in Fig. 13.4. One might think of the
operator as representing a “filter” at x5 = ¢ through which only charge compensating pairs of
fermions can pass.

In five dimensions there is no chiral symmetry. Even for the free theory, combinations like
1, Pt; 11 have non-vanishing vacuum expectation values. We use such as a “tadpole,” with y
generating an effective hopping for ¢ and vice versa.

Actually the above four fermion operator is not quite sufficient for all chiral anomalies, which
can also involve right handed singlet fermions. To correct this we need explicitly include the
right handed sector, adding similar four fermion couplings (also electrically neutral). The main
difference is that this sector does not couple to the weak bosons.

Having fixed the U(1) of electromagnetism, we restore the strong SU(3) with an anti-
symmetrization of the quark color indices in the new operator, Q"Q9Q%— e*%7Q*QPQ".
Note that similar left-right inter-sector couplings are needed to correctly obtain the effects of
topologically non-trivial strong gauge fields.
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An alternative view of this picture folds the lattice about the interior of the fifth dimension,
placing all light modes on one wall and having the multi-fermion operator on the other. This is the
model of Ref. [179], with the additional inter-sector couplings correcting a technical error [182].

Unfortunately the scheme is still not completely rigorous. In particular, the non-trivial four-
fermion coupling represents a new defect and we need to show that this does not give rise to
unwanted extra zero modes. Note, however, that the five dimensional mass is the same on both
sides of defect; thus there are no topological reasons for such.

A second worry is that the four fermion coupling might induce an unwanted spontaneous
symmetry breaking of one of the gauge symmetries. We need to remain in a strongly coupled
paramagnetic phase without spontaneous symmetry breaking. Ref. [179] showed that strongly
coupled zero modes do preserve the desired symmetries, but the analysis ignored contributions
from heavy modes in the fifth dimension.

Assuming all works as desired, the model raises several other interesting questions. As for-
mulated, we needed a right handed neutrino to provide all quarks with partners. Is there some
variation that avoids this particle, which decouples from all gauge fields in the continuum limit?
Another question concerns possible numerical simulations; is the effective action positive? Fi-
nally, we have used the details of the usual standard model, leaving open the question of whether
this model is somehow special. Can we always find an appropriate multi-fermion coupling to
eliminate undesired modes in other chiral theories where anomalies are properly canceled?
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14 Final remarks

We have seen how many features of QCD are influenced by non-perturbative physics. This is
particularly important to various aspects of chiral symmetry breaking. Taken as a whole, these
fit together into a rather elegant and coherent picture. In particular, chiral symmetry is broken in
three rather different ways. We have concentrated on the interplay of these mechanisms.

The primary and most important effect is the dynamical symmetry breaking that leads to
the pions being light pseudo-Goldstone bosons. Their dynamics represents the most important
physics for QCD at low energies. The popular and useful chiral expansion is a natural expansion
in the momenta and masses of these particles.

In addition to the basic dynamical breaking is the anomaly, which eliminates the flavor-singlet
axial U(1) symmetry of the classical theory. Thus the 7' meson is not a Goldstone boson and
acquires a mass of order A,.4. Understanding this breaking requires non-perturbative physics
associated with the zero modes of the Dirac operator.

Finally, we have the explicit symmetry breaking from the quark masses. This is respon-
sible for the pseudo-scalar mesons not being exactly massless. Using the freedom to redefine
fields using chiral rotations, the number of independent mass parameters is Ny + 1 where Ny
is the number fermion species under consideration. This includes the possibility of CP violation
coming from the interplay of the mass term with the anomaly.

Throughout we have used only a few widely accepted assumptions, such as the existence of
QCD as a field theory and standard ideas about chiral symmetry. Thus it is perhaps somewhat
surprising that several of the conclusions remain controversial. The first of these is that chiral
symmetry is lost in a theory with only one light quark. The resulting additive non-perturbative
renormalization of the mass precludes using a massless up quark to solve the strong CP prob-
lem. Tied to this is the issue of whether topological susceptibility is well defined when non-
differentiable fields dominate the path integral. Finally, probably the most bitter controversies
revolve about the symmetries inherent in the staggered formulation and how these invalidate the
use of rooting to remove unwanted degeneracies.

As simple as the overall picture is, it requires understanding effects that go well beyond
perturbation theory. We need aspects of the Dirac spectrum that rely on gauge fields of non-
trivial topology. Such appear already in the classical theory, although their true importance only
appears in the context of the anomaly. Including this physics properly in a lattice formulation is
a rich and sometimes controversial topic of active research.
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