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Using effective Lagrangian arguments, I explore the qualitative behavior expected at finite temperature
for two-flavor lattice QCD formulated with Wilson fermions and a twisted mass term. A rather rich phase
structure is predicted, exhibiting Aoki’s parity violating phase along with a deconfinement region forming
a conical structure in the space of coupling, hopping parameter, and twisted mass variables.
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I. INTRODUCTION

Nonperturbative phenomena are crucial to understand-
ing strong interaction physics. Two particularly powerful
tools in this context are lattice gauge theory and effective
field theories. Combining these approaches can frequently
give new insights. For example, effective Lagrangians can
model the mechanisms for the lattice artifacts that mutilate
chiral symmetry, explaining [1,2] such phenomena as the
spontaneous breaking of parity and charge conjugation
discussed long ago by Aoki [3]. Attempting to reduce
artifacts stimulates the development of new lattice actions,
such as domain wall [4,5] or overlap [6,7] fermions. The
chiral symmetry inherent in effective Lagrangian ap-
proaches also has been crucial in exposing the issues
inherent in the rooting procedure often used to adjust the
number of quark species [8].

One of the major successes of lattice QCD is the quan-
titative estimate of the temperature for the transition from
ordinary hadronic matter to a plasma of quarks and gluons
[9]. Chiral symmetry has an interesting interplay with this
transition; indeed, it appears that this symmetry is restored
at the same temperature as deconfinement. Thus, finite
temperature QCD is a natural playground for gaining a
better understanding of chiral symmetry.

This paper brings together the three topics of lattice
artifacts, chiral symmetry, and the deconfinement transi-
tion. The presence of lattice artifacts brings in new types of
mass terms, one of which is often referred to as a ‘‘twisted’’
mass [10]. The main predictions are a rather intricate phase
structure which can be looked for in numerical simulations.
The phase structure with twisted mass at zero temperature
has been described in Refs. [11–13]. The main addition
here is the inclusion of the deconfinement transition in this
picture.

One might well ask why care about lattice artifacts? Of
course this is necessary to understand the limitations of
lattice simulations. At a more practical level, it is through
understanding these effects that one can explore the rea-
sons for the failure of the rooting procedure used with
staggered quarks. At the conceptual level, seeing the dis-

tortions of chiral symmetry can help one understand the
nature of this symmetry and how chiral anomalies work on
the lattice. These issues are closely related to how quark
masses are defined [14]. One might also hope that under-
standing these aspects can give insight into why gauge
theories coupled to chiral currents, such as in the standard
model, are so hard to put on the lattice. And finally, we will
see that the lattice artifacts give rise to a rather amusing and
somewhat complicated phase structure.

For simplicity, this discussion is restricted to QCD with
two degenerate quark flavors. With three or more flavors
the mass ‘‘twisting’’ is more complicated and not unique.
Furthermore, we only consider the theory without any CP
noninvariant term associated with the gauge field topology.

Section II starts off with an extremely brief review of the
Wilson fermion formulation [15]. The discussion then
turns in Sec. III to the parameters of QCD, emphasizing
the nonlinear mapping between the physical continuum
parameters and the bare parameters used on the lattice.
Then Sec. IV reviews the lattice artifacts introduced
through the chiral symmetry breaking properties of the
Wilson fermion action. Section V introduces the twisted
mass term, which only has meaning in the context of the
lattice artifacts. Section VI brings finite temperature into
the picture, showing how deconfinement at high tempera-
ture interplays with the previous lattice artifacts. Sec-
tion VII combines the previous ideas to predict qualita-
tively the rich phase structure that should appear in the
space of lattice parameters. In particular, the deconfined
phase should appear as an approximately conical structure
which should be looked for in simulations. Finally remarks
on some open questions appear in Sec. VIII.

II. WILSON FERMIONS

For completeness this section gives a brief discussion of
the Wilson fermion approach. The motivation is to over-
come the doubling issue of naive fermions by adding a
momentum-dependent mass to the extra states. Doubling
arises because on the lattice physics becomes naturally
periodic in momenta, with momentum components being
replaced by trigonometric functions, i.e. p� !

1
a sin�p�a�.

The problem is that this quantity is small not just for small
momentum, but also for p� � �=a. Adding a further*creutz@bnl.gov
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trigonometric behavior in the form of a momentum-
dependent mass, the extraneous doublers can be made
heavy. For the free case, the simplest version of Wilson
fermions uses the Dirac operator in momentum space

 DW�p� �
1

a
�

2K
a

X
�

�i�� sin�p�a� � cos�p�a��: (1)

The physical fermion mass is read off from the small
momentum behavior as m � 1

2a �1=K � 8�. This vanishes
at K � Kc � 1=8. The eigenvalues of this free operator lie
on a set of ‘‘nested circles,’’ as sketched in Fig. 1.

This discussion assumes that the gauge fields are for-
mulated as usual with group valued matrices on the lattice
links. To be specific, one can consider using the simple
Wilson gauge action as a sum over plaquettes

 Sg �
�
3

X
p

Re TrUp; (2)

although this specific form is not essential the qualitative
nature of the phase diagram. When the gauge fields are
turned on, the dynamics will move the fermion eigenvalues
around, partially filling the holes in eigenvalue pattern of
Fig. 1. Some eigenvalues can become real and are related
to gauge field topology [16].

Note that the basic lattice theory has two parameters, �
and K. These are related to bare coupling, �� 6=g2

0, and
quark mass, �1=K � 1=Kc� �mq. This will be discussed
further in the next section.

III. LATTICE VERSUS CONTINUUM
PARAMETERS

The quark confining dynamics of the strong interactions,
QCD, is a remarkably economical theory in terms of the
number of adjustable parameters. First of these is the over-
all strong interaction scale, �qcd. This is scheme depen-

dent, but once a renormalization procedure has been
selected, it is well defined. It is not independent of the
coupling constant, the connection being fixed by asymp-
totic freedom. In addition, the theory can depend on the
quark mass, or more precisely the dimensionless ratio
m=�qcd. As with the overall scale, the definition of m is
scheme dependent. The two-flavor theory with degenerate
quarks has only one such mass parameter. On considering
the theory at a finite physical temperature, this adds an-
other parameter, which can also be considered in units of
the overall scale, i.e. consider the ratio T

�qcd
. Finally, to

relate things to the theory with a lattice cutoff, add a scale
for this cutoff. As with everything else, measure this in
units of the overall scale; so, the fourth parameter is a�qcd,
where one can regard a as the lattice spacing.

The goal here is to explore the lattice artifacts that arise
with Wilson fermions [15]. On the lattice it is generally
easier to work directly with lattice parameters. One of
these is the plaquette coupling �, which, with the usual
conventions, is related to the bare coupling � � 6=g2

0. For
the quarks, the natural lattice quantity is the ‘‘hopping
parameter’’ K. To include finite temperature effects, it is
customary to work with a finite temporal lattice of Nt sites.
And finally, the connection with physical scales appears
via the lattice spacing a.

The set of physical parameters and the set of lattice
parameters are, of course, equivalent, and there is a well-
understood nonlinear mapping between them

 

�
m

�qcd
;
T

�qcd
; a�qcd

�
$ f�;K;Ntg: (3)

Of course, to extract physical predictions we are interested
in the continuum limit a�qcd ! 0. For this, asymptotic
freedom tells us we must take �! 1 at a rate tied to

FIG. 1 (color online). The eigenvalue spectrum of the free
Wilson fermion operator is a set of nested circles. On turning
on the gauge fields, some eigenvalues drift into the open regions.
Some complex pairs can collide and become real. These are
connected to gauge field topology.

beta

Kappa

0 infinity

1/8

K c

continuum limit

T=0

FIG. 2 (color online). The continuum limit of lattice gauge
theory with Wilson fermions occurs at �! 1 and K ! 1=8.
Coming in from this point to finite beta is the curve Kc���,
representing the lowest phase transition in K for fixed beta. The
nature of this phase transition is a delicate matter, discussed in
the text.
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�qcd. Simultaneously we must take the hopping parameter
to a critical value. With normal conventions, this takes
K ! Kc ! 1=8 at a rate tied to desired quark mass m.
Finally, the number of temporal sites must also go to
infinity as Nt �

1
aT . Figure 2 sketches how the continuum

limit is taken in the �;K plane for zero temperature.
Figure 3 sketches how the basic phase diagram is modified
for a finite number of time slices. Some early results on this
structure from numerical simulation appear in Ref. [17].
The subject of this paper is to further explore this phase
diagram with particular attention to hopping parameters
larger than Kc. This discussion adds the possible twisted
mass term (defined later) to the exposition in [1]. Some
very preliminary studies of this system at finite tempera-
ture are presented in Ref. [18].

IV. EFFECTIVE CHIRAL LAGRANGIANS AND
LATTICE ARTIFACTS

The use of effective field theories to describe the inter-
actions of the pseudoscalar mesons is an old and venerable
topic. Here we will only discuss the simplest form for the
two-flavor theory, adding terms that mimic the expected
lattice artifacts. The language is framed in terms of the
isovector pion field ~�� i � �5 ~� and the scalar sigma ��
�  . The starting point for this discussion is the canonical

‘‘Mexican hat’’ potential

 V0 � ���2 � ~�2 � v2�2 (4)

schematically sketched in Fig. 4. The potential has a sym-
metry under O�4� rotations amongst the pion and sigma
fields expressed as the four-vector � � ��; ~��. This rep-
resents the axial symmetry of the underlying quark theory.

As usually considered, this theory is taken with the
minimum for the potential occurring at a nonvanishing

value for the fields. This is a classic example of sponta-
neous symmetry breaking, and the vacuum is convention-
ally selected to lie in the sigma direction with h�i> 0. The
pions are then Goldstone bosons of the theory, being
massless because the potential provides no barrier to os-
cillations of the fields in the pionic directions.

With this potential, it is natural to include a quark mass
by adding a constant times the sigma field

 V1 � �m�: (5)

This explicitly breaks the chiral symmetry by ‘‘tilting’’ the
potential as sketched in Fig. 5. This selects a unique
vacuum which, for m> 0, gives a positive expectation
for sigma. In the process the pions gain a mass, with
m2
� �m.

beta

Kappa

0 infinity

1/8

K

β
c

c

increasing N t
confined phase

deconfined phase

deconfinem
ent transition

chiral limit

Finite N t

terra incognita

FIG. 3 (color online). At finite Nt the deconfinement phase
transition appears at a finite value for � which depends on the
hopping parameter K. For the continuum limit Nt is taken to
infinity and this structure moves towards � � 1. The region
above Kc��� is the object of later discussion.

V

π

σ

FIG. 4 (color online). The symmetric ‘‘Mexican hat’’ potential
for the pion and sigma fields before mass terms and lattice
artifacts are turned on.

π

σ

V

FIG. 5 (color online). A mass terms acts by tilting the poten-
tial, thus selecting a unique vacuum.
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There is an obvious freedom in the selection of the mass
term. Because of the symmetry of V0, it does not physically
matter in which direction we tilt the vacuum. In particular,
a mass term of form

 m�! m cos�����m sin����3 (6)

should give equivalent physics for any �. However, as we
will see, lattice artifacts can break this symmetry, introduc-
ing the possibility of physics at finite lattice spacing which
depends on this angle. The second term in this equation is
what we will call the ‘‘twisted mass.’’

The Wilson term inherently breaks chiral symmetry.
This will give rise to various modifications of the effective
potential. The first correction is expected to be an additive
contribution to the quark mass, i.e. an additional tilt to the
potential. This means that the critical kappa, defined as the
smallest kappa where a singularity is found in the �, K
plane, will move away from the limiting value of 1=8. Thus
we introduce the function Kc��� and imagine that the mass
term is modeled with the form

 m! c1�1=K � 1=Kc����: (7)

In general the modification of the effective potential will
have higher order corrections. A natural way to include
such is as an expansion in the chiral fields. With this
motivation we include a term in the potential of form

 c2�
2: (8)

Such a term was considered in [1,2]. The predicted phase
structure depends qualitatively on the sign of c2, but a
priori we have no information on this. Indeed, as it is a
lattice artifact, it is expected that this sign might depend on
the choice of gauge action. Note that we could have added
a term like ~�2, but this is essentially equivalent since ~�2 �
��2 � ~�2� � �2, and the first term here can be absorbed,
up to an irrelevant constant, into the starting Mexican hat
potential.

First consider the case when c2 is less than zero, thus
lowering the potential energy when the field points in the
positive or negative sigma direction. This quadratic warp-
ing helps to stabilize the sigma direction, as sketched in
Fig. 6, and the pions cease to be true Goldstone bosons
when the quark mass vanishes. Instead, as the mass passes
through zero, we have a first-order transition as the expec-
tation of � jumps from positive to negative. This jump
occurs without any physical particles becoming massless.

Things get a bit more complicated if c2 > 0, as sketched
in Fig. 7. In that case the chiral transition splits into 2
second-order transitions separated by phase with an expec-
tation for the pion field, i.e. h ~�i � 0. Since the pion field
has odd parity and charge conjugation as well as carries
isospin, all of these symmetries are spontaneously broken
in the intermediate phase. As isospin is a continuous group,
this phase will exhibit Goldstone bosons. The number of
these is two, representing the two flavored generators

orthogonal to the direction of the expectation value. If
higher order terms do not change the order of the transi-
tions, there will be a third massless particle exactly at the
transition endpoints. In this way the theory does acquire
three massless pions exactly at the transitions, as discussed
by Aoki [3]. The intermediate phase is usually referred to
as the ‘‘Aoki phase.’’

To include these ideas in the effective model, add the c2

term to the potential

 

V� ~�; �; L� � ���2 � ~�2 � v2�2 � c1�1=K � 1=Kc�����

� c2�
2: (9)

V

π

σ

C  < 0
2

FIG. 6 (color online). Lattice artifacts could quadratically
warp the effective potential. If this warping is downward in
the sigma direction, the chiral transition becomes first order
without the pions becoming massless.

V

π

σ

C  > 0
2

FIG. 7 (color online). If the lattice artifacts warp the potential
upward in the sigma direction, the chiral transition splits into 2
second-order transitions separated by a phase where the pion
field has an expectation value.
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Assuming the c2 > 0 case, Fig. 8 shows the qualitative
phase diagram expected.

V. TWISTED MASS

The c2 term breaks the equivalence of different chiral
directions. This means that physics will indeed depend on
the angle � if one takes a mass term of the form in Eq. (6).
Consider complexifying the fermion mass in the usual way

 m �  !
1

2
�m � L R �m	 � R L�: (10)

The rotation of Eq. (6) is equivalent to giving the up and
down quark masses opposite phases

 mu ! e�i�mu (11)

 md ! e�i�md: (12)

Thus motivated, we can consider adding a new mass term
to the lattice theory

 �i � �3�5 ���3: (13)

This extends our effective potential to
 

V� ~�; �� � ���2 � ~�2 � v2�2 � c1�1=K � 1=Kc�����

� c2�
2 ���3: (14)

The twisted mass represents the addition of a ‘‘magnetic
field’’ conjugate to the order parameter for the Aoki phase.

There are a variety of motivations for adding such a term
to our lattice action [10,13]. Primary among them is that
O�a� lattice artifacts can be arranged to cancel. With two
flavors of conventional Wilson fermions, these effects
change sign on going from positive to negative mass, and
if we put all the mass into the twisted term we are halfway
between. It should be noted that this cancellation only
occurs when all the mass comes from the twisted term;
for other combinations with a traditional mass term, some

lattice artifacts ofO�a�will survive. Also, although it looks
like we are putting phases into the quark masses, these
cancel between the two flavors, and the resulting fermion
determinant remains positive. Furthermore, the algorithm
is considerably simpler and faster than either overlap [6,7]
or domain wall [4,5] fermions while avoiding the diseases
of staggered quarks [8]. Another nice feature of adding a
twisted mass term is that it allows a better understanding
of the Aoki phase and shows how to continue around it.
Figures 9 and 10 show how this works for the case c2 > 0
and c2 < 0, respectively.

Of course some difficulties come along with these ad-
vantages. First, one needs to know Kc. Indeed, with the
Aoki phase present, the definition of this quantity is not
unique. Second, it is not clear how to extend twisting to odd
numbers of flavors, where the m$ �m symmetry is bro-
ken by anomalies; the negative mass case then corresponds
to the strong CP angle � being �, where one expects a
spontaneousCP violation surviving in the continuum limit.
And finally, the mass needs to be larger than the c2 arti-
facts. Indeed, as Figs. 9 and 10 suggest, if it is not, then one
is really studying the physics of the Aoki phase, not the
correct continuum limit. This also has implications for how

beta

Kappa

0 infinity

1/8

continuum limit

Aoki phase

confining

confining, m<0

doubler physics

FIG. 8 (color online). The qualitative structure of the �, K
plane including the possibility of an Aoki phase.

K

2
Simulation point c   < 0

µ

Kc

doubler artifacts

FIG. 10 (color online). As in Fig. 9, but for the case c2 < 0 so
the chiral transition on the kappa axis becomes first order.

K

K c

Aoki phase

c   > 0
2

Simulation point

µ

doubler artifacts

FIG. 9 (color online). Continuing around the Aoki phase with
twisted mass. This sketch considers the case c2 > 2 where the
parity broken phase extends over a region along the kappa axis.
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close to the continuum one must be to study this structure;
in particular, one must have � large enough so the Aoki
phase does not extend into the doubler region.

VI. DECONFINEMENTAT FINITE TEMPERATURE

Now we bring finite temperature and the deconfinement
transition into the discussion. To treat temperature in the
path integral formalism, one keeps the temporal extent of
the system finite. The temporal boundary conditions should
be periodic for bosonic fields and antiperiodic for fermi-
onic ones. The usual order parameter for the transition is
the Wilson-Polyakov line. In continuum language this
involves an integral that loops around the temporal direc-
tion

 L� ~x� � Re TrT exp
�
i
Z 1=T

0
A0� ~x�dt

�
; (15)

where T denotes time ordering. Of course this quantity
needs renormalization for definition. On the lattice this
order parameter reduces to the trace of an ordered product
of link variables that wraps similarly around the system

 L� ~x� � Re Tr
Y
t

Ut�1;t� ~x� (16)

where the product is again time ordered. Physically, one
can regard the expectation of L as the exponentiated energy
of a stationary source with quark quantum numbers. When
hLi vanishes, such a source is confined.

The pure gauge theory, where quarks are left out, has a
symmetry under taking L! e2�i=3L. This can be seen
since taking all timelike links at a single fixed time slice
and multiplying them by a third root of unity (which is, of
course, an SU�3� element) leaves the action invariant. At
low temperatures, when confinement is manifest, the van-
ishing of hLi corresponds to the symmetry being unbroken.
On the other hand, when the temperature is high, it is
expected that the symmetry will be spontaneously broken,
corresponding to a deconfined phase. When quarks are
introduced with a finite mass, the symmetry ceases to be
exact. Physically, dynamical quarks can screen a fixed
source, allowing it to have finite energy even if confine-
ment persists. Because of this breaking, the deconfinement
transition need not be a true phase transition, and could be
only crossover, i.e. a rapid change of behavior over a small
but finite range of temperature.

An alternative order parameter for the deconfinement
transition is the quark condensate h �  i � h�i. At vanish-
ing quark mass, this marker of chiral symmetry breaking is
expected to vanish at high temperature, indicative of the
evolution of the effective potential V� ~�; �� to a state with a
single minimum.

Numerous numerical simulations [9] have clearly dem-
onstrated that both hLi and h �  i do show a rapid change
over a single small region of temperature. For large quark
mass this transition becomes first order, much as seen in the

three-state Potts model, which has the same Z3 symmetry.
At m � 0 it is generally expected that the transition be-
comes second order and is in the same universality class as
the O�4� sigma model. However this is not proven and
there are some hints [19] that the transition may be first
order. Between m � 0 and m � 1 it appears that for a
large region the transition reduces to a crossover.

Various effective models have been invoked to mimic
this behavior [20–23]. These are based on treating the
Wilson line as an effective complex field L� ~x� in the three
spatial dimensions. A simple starting potential is

 V�L� � 	1jLj4 � 	2�Tc � T�jLj2 � 	3 Re�L3�

� 	4 ReL: (17)

Here the 	1 > 0 term serves to keep the system stable. The
	2 > 0 term is the basic driving term for the transition;
when the temperature is below Tc the potential has a
unique minimum corresponding to a small or vanishing
value for the expectation of the effective field. But when
the temperature exceeds Tc, this minimum inverts and we
can have a spontaneous symmetry breaking with hLi de-
veloping a large value. The 	3 term serves to reduce the
symmetry to the physical Z3 rather than the U�1� present
with the first two terms alone. This also drives the tran-
sition towards first order because of its cubic nature.
Finally, the 	4 term is present to represent the fact that
dynamical quarks break the symmetry since they can
screen other fundamental charges. This term can also
soften the transition to a crossover since it allows the order
parameter to have a small expectation in the low tempera-
ture region. To proceed, rewrite this potential as a function
of the lattice parameters, i.e.

 Tc � T ! �c�K;Nt� � �; (18)

where �c�K;Nt� is the value of � where deconfinement
sets in at a fixed Nt and hopping parameter. Thus we have
 

V�L� � 	1jLj
4 � 	2��c�K;Nt� � ��jLj

2 � 	3Re�L3�

� 	4ReL: (19)

With effective models for both the chiral fields and the
Wilson line, it is natural to unite them into a single effec-
tive model involving all fields [24,25]. Combining the
previous potentials, consider
 

V� ~�; �; L� � ���2 � ~�2 � v2�2 � c1�1=K � 1=Kc�����

� c2�
2 ���3 � 	1jLj

4

� 	2��c�K;Nt� � ��jLj
2 � 	3 Re�L3�

� 	4 ReL� 	5jLj
2��2 � ~�2�: (20)

Here the 	5 term serves to couple the chiral fields with the
loop field. Through this term, a jump in jLj can turn off the
chiral symmetry breaking. The potential involves two un-
known functions: Kc��� and �c�K;Nt�. For simplicity in
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the following discussion, ignore any possible Kc depen-
dence on Nt before deconfinement takes place.

VII. PREDICTIONS

This combined effective potential allows us to sketch
qualitatively much of the expected phase diagram for
twisted mass Wilson fermions at finite temperature. To
understand the structure it is useful to first extract some
qualitative features of the continuum physics using the
numerically supported fact that increasing the quark mass
increases the deconfinement temperature, as sketched
schematically in Fig. 11. Since continuum physics is inde-
pendent of twisting, if we introduce a twisted mass term we
obtain an ‘‘inverted umbrella’’ or ‘‘conical’’ structure inm,
�, T space. This structure is symmetric under rotations
about the T axis, as sketched in Fig. 12. Of course, as
mentioned earlier, the transition need not be a true singu-
larity, but could, for some mass range, just be a rapid
crossover.

Now consider an intermediate temperature where the
massless theory is deconfined but at some finite mass the
theory is still confined. In particular, consider a horizontal
slice intersecting the ‘‘cone’’ of Fig. 12. At this tempera-
ture the phase diagram in the m;� plane is simply a circle
as sketched in Fig. 13; again, this is an immediate conse-
quence of the continuum physics being independent of
twisting. Note that this figure makes it clear that for this
two-flavor theory physics at some mass m is equivalent to
physics at �m, and the two regions are connected by
rotations in the m, � plane.

On the lattice we should expect a similar structure, at
least near the continuum limit. However, twisting the mass
is no longer an exact symmetry; so, we can expect the

circles of equivalent physics to be distorted. Also, in the
deconfined region we expect the effective potential to have
a single minimum, so that the Aoki phase will wash out
after deconfinement. Actually, this disappearance of the
Aoki structure at high temperature should be independent
of lattice issues such as the sign of c2. Qualitatively this
means that at some fixed � and Nt one should see a
structure similar to that sketched in Fig. 14. As mentioned
earlier, � will need to be large enough that the Aoki phase
structure is well separated from the doubler region. As
one comes closer to the continuum limit, this structure
should become increasingly precisely an ellipse with con-

stant
�������������������������������������������������
�2 � c2

1�1=K � 1=Kc�2
q

with c1 from Eq. (7).

m

T
deconfined

chiral point

confined

FIG. 11 (color online). The deconfinement transition increases
monotonically with the quark mass.

T

m

confined

deconfined

chiral point

µ

FIG. 12 (color online). Rotating the transition line of Fig. 11
into twisted mass space gives an ‘‘inverted umbrella’’ or conical
structure.

confined

confined

T  (m=0) < T <c c fT  (N  =0)

µ

mdeconfined

FIG. 13 (color online). In the continuum the deconfinement
transition is a simple circle in m, � space.
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Presumably this can be verified in simulations for small �
near the lower deconfinement transition. Working near the
upper transition may be more difficult in practice due to
small eigenvalues of the Dirac operator for supercritical
kappa.

Extending this picture to the full �, K, � space at fixed
Nt, we expect the Aoki phase to dissolve into a conical

structure as sketched in Fig. 15. Just how the deconfining
cone joins on to the end of the Aoki phase presumably is
rather sensitive to dynamical details.

VIII. CONCLUSIONS AND OPEN QUESTIONS

We have seen that Wilson fermions at finite temperature
and with a twisted mass term can give rise to a fascinat-
ingly complex phase structure, much of it due to lattice
artifacts. This suggests that it could be interesting to study
the supercritical hopping region in more detail. In particu-
lar a second deconfinement line is expected, as least close
to the continuum limit. The twisted mass addition allows us
to smoothly connect two deconfined phases. This connec-
tion should expose an approximately elliptical structure in
the K, � plane at fixed �.

This picture raises some interesting questions. One con-
cerns the three-flavor theory. In this case the parity broken
phase becomes physical. Indeed, three degenerate quarks
of negative mass represent QCD with a strong CP angle
� � �, for which spontaneous breaking of CP is expected.
With three flavors the twisting process is not unique, with
possible twists in the �3 or �8 directions. For example,
using only �3 would suggest a twisted mass of form mu �

e2�i=3, md � e�2�i=3, ms � 1.
Another interesting case is one-flavor QCD [16]. In this

situation the anomaly removes all chiral symmetry, and the
quark condensate loses meaning as an order parameter. The
critical value of kappa where the mass gap disappears is
decoupled from the point of zero physical quark mass.
There is a parity broken phase, but it occurs only at
sufficiently negative mass. And from the point of view of
twisting the mass, without chiral symmetry there is nothing
to twist.
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