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I discuss a simple numerical algorithm for direct evaluation of multiple Grassmann integrals. Th
approach is exact, suffers no fermion sign problems, and allows arbitrarily complicated interaction
Memory requirements grow exponentially with the interaction range and the transverse size of t
system. Low dimensional systems with 1000 Grassmann variables can be evaluated on a wo
station. The technique is illustrated with a spinless fermion hopping along a one dimensional cha
[S0031-9007(98)07450-X]
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In path integral formulations of quantum field theory
fermions are treated via integrals over anticommutin
Grassmann variables [1]. This gives an elegant framewo
for the formal establishment of Feynman perturbation th
ory. For nonperturbative approaches, such as Monte Ca
studies with a discrete lattice regulator, these variables
more problematic. Essentially all such approaches fo
mally integrate the fermionic fields in terms of determ
nants depending only on the bosonic degrees of freedo
Further manipulations give rise to the algorithms whic
dominate current lattice gauge simulations.

Frequently, however, this approach has serious sho
comings. In particular, when a background fermion de
sity is desired, as for baryon rich regions of heavy io
scattering, these determinants are not positive, mak
Monte Carlo evaluations tedious on any but the smalle
systems [2]. This problem also appears in studies of ma
electron systems, particularly when doped away from h
filling.

In this note I explore an alternative possibility of di
rectly evaluating the fermionic integrals, doing the nece
sary combinatorics on a computer. This is inevitably
rather tedious task, with the expected effort growing exp
nentially with volume. Nevertheless, in the presence of t
sign problem, all other known algorithms are also expone
tial. My main result is that this growth can be controlled t
a transverse section of the system. I illustrate the techniq
0031-9007y98y81(17)y3555(4)$15.00
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with low dimensional systems involving 1000 Grassman
variables.

I begin with a set ofn anticommuting Grassmann
variableshcij, satisfyingfci , cjg1 ­ cicj 1 cjci ­ 0.
Integration is uniquely determined up to an overall norma
ization by requiring linearity and “translation” invarianceR

dc fsc 1 c 0d ­
R

dc fscd. For a single variable, I
normalize things so thatZ

dc c ­ 1,
Z

dc 1 ­ 0 . (1)

In summary, to obtain a nonvanishing contribution, ever
integration variable must appear exactly once in the expa
sion of the integrand.

Consider an arbitrary actionSscd, a function of these
anticommuting variables, inserted into a path integral.
particular, I want to evaluate

Z ­
Z

dcn · · · dc1 eSscd. (2)

Formally this requires expanding the exponent and kee
ing those terms containing exactly one factor of eachc.

I first convert the required expansion into operato
manipulations in a Fock space, and introduce a fermion
creation-annihilation pair for each fermionic field, i.e.
ci $ hay

i , aij. These satisfy the usual relations

fai , a
y
j g1 ­ dij . (3)
© 1998 The American Physical Society 3555
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The space is built up by applying creation operators
the vacuum, which satisfiesaij0l ­ 0. It is convenient to
introduce the completely occupied “full” state

jFl ; ay
n · · · a

y
2 a

y
1 j0l . (4)

With these definitions, I rewrite my basic path integral a
the matrix element

Z ­ k0jeSsadjFl . (5)

ExpandingeS, a nonvanishing contribution requires on
factor ofai for each fermion. This is the same rule as fo
Grassmann integration.

I now manipulate this expression towards a sequent
evaluation. Select a single variableci and defineSisad
as all terms from the action involving a factor ofai. I
define the complement̃Si to be all other terms, so that
S ­ Si 1 S̃i. For simplicity, I assume that my action is
bosonic so thatSi andS̃i commute. Thus I have

Z ­ k0jeS̃i eSi jFl . (6)

Observe that sincẽSi contains no factors ofai, the occu-
pation number for that variable,ni ­ a

y
i ai, would van-

ish if inserted between the two operators in Eq. (6).
thus can insert a projection operator1 2 ni between these
factors

Z ­ k0jeS̃i s1 2 nideSi jFl . (7)

The next two steps are not essential to the algorithm, b
simplify the appearance of the final result. First I us
a2

i ­ 0 and the fact thatSi is linear inai. Thus, the right-
hand factor expands as only two terms

Z ­ k0jeS̃i s1 2 nid s1 1 SidjFl . (8)

Since 1 2 ni projects out an empty state at locatio
i, I trivially have ais1 2 nid ­ 0. This meansSis1 2

nid ­ 0 and I can replacẽSi on the left with the full
action

Z ­ k0jeSs1 2 nid s1 1 SidjFl . (9)

Finally, I repeat this procedure successively for all var
ables, giving the main result

Z ­

*
0

É Y
i

fs1 2 nid s1 1 Sidg

É
F

+
, (10)

where I have assumed that the action has any remain
constant pieces removed.

This summarizes the basic algorithm. Begin by settin
up an associative array for storing general states of
Fock space. Standard hash table techniques allow ra
storage and retrieval. More explicitly, for a given state

jcl ­
X

s
xsjsl , (11)
3556
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store the numbersxs labeled by the respective statesjsl.
At the outset this table is very short, containing only on
entry for the full state. The algorithm proceeds with a loo
over the Grassmann variables. For a givenci , first apply
s1 1 Sid to the stored state. Then empty that location wit
the projector1 2 ni. After all sites are integrated over,
only the empty state survives, with the desired integral
its coefficient.

The advantage of the scheme becomes apparent w
a local interaction. All sites that have previously bee
visited are empty, and thus involve no information. An
unvisited locations outside the range of the interactio
are still filled, and thus also involve no storage. Al
relevant Fock states are nontrivial only for unvisited site
within the interaction range of previously visited sites
Sweeping through the system in a direction referred to
“longitudinal,” we only need keep track of a “transverse
slice of the model. This is illustrated in Fig. 1. Thus
although the total number of basis states in the Fock spa
is two to the number of Grassmann variables, the stora
requirements only grow as two to the transverse volume
the system.

Note that the algorithm makes no assumptions about t
precise form of the interaction. The approach is exac
with no sign problems. The complexity does grow se
verely with interaction range, probably limiting practica
applications to short range interactions in low dimension
Note that the effort only grows linearly with the longitudi-
nal dimension, allowing very long systems in one direction
This discussion has been in the context of “real” Gras
mann variables. For “complex” variables simply treatc

andcp independently.
In the transverse direction the boundary conditions a

essentially arbitrary, but longitudinal boundaries shou
not be periodic. To make them so requires maintainin
information on both the top and bottom layers of the grow
ing integration region, squaring the difficulty. Note tha
the technique is similar to the finite lattice method use

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 00 0

0 0 0 0

11111X X X X X

X X X X XΨ

FIG. 1. Integrating out sequentially, all finished sites ar
empty and out of range sites are filled. When integrating th
site labeledc, only those sites labeled “X” are undetermined.
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for series expansions [3], and closely related to attempts
directly enumerate fermionic world lines [4].

For a simple demonstration, consider a spinless ferm
hopping along a line of sites. I introduce a complex Gras
mann variable on each site of a two dimensional latti
and study

Z ­
Z

sdc dcpdeSt1Sh (12)

with the temporal hopping term of form

St ­
X
i,t

cp
i,tsci,t 2 ci,t21d (13)

and the spatial hopping

Sh ­ k
X
i,t

cp
i,tci11,t 1 cp

i11,tci,t . (14)

I take Nt sites in the timet direction andNi spatial sites.
Here the one sided form of the temporal hopping insur
the model has a Hermitian transfer matrix in this directio
[5]. I treat the time direction as my transverse coordina
growing the lattice along the spatial chain. After each ro
with Nt ­ 10, the number of Fock states stored in the ha
table rises to 184 756. In Fig. 2 I plot the resulting “fre
energy”F ­ lnsZdyNiNt for k ­ 1 on a 50 site chain as
a function of the number of time slices. The 50 by 1
case has 1000 Grassmann variables. This model is ea
solved in the infinite length limit by Fourier transform. Fo
infinite Nt this gives

lnsZd
NiNt

!
Z py2

2py2
dq lnf1 1 2 cossqdg ­ 0.388748 . . . .

(15)

Note how the results in the figure oscillate about this lin
indicating that the transfer matrix, while Hermitian, i
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FIG. 2. The free energyF ­ lnsZdyNiNt on anNi ­ 50 site
chain as a function of the number of time slicesNt . The infinite
volume solution is shown by the horizontal line.
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not positive definite. The transfer matrix with this actio
becomes positive definite only forjkj ,

1
2 .

Now I make the model somewhat less trivial wit
a four fermion interaction. I takeS ­ St 1 Sh 1 SI

with

SI ­ g
X
i,t

cp
i,tci,tc

p
i11,tci11,t . (16)

In a transfer matrix formalism this represents an interact
Hamiltonian of formHI ­

P
i nini11. Bosonization re-

lates this Hamiltonian to the anisotropic quantum Heise
berg model, but this equivalence is not being used he
The above algorithm requires essentially the same co
puter resources as the free case. In Fig. 3 I show theNt

dependence for the free energy withk ­ 1 andg ­ 61.
To reachNt ­ 13 for this figure, I reduced memory re
quirements further by using temporal translation invarian
after each layer was integrated.

With Monte Carlo studies of many fermion systems, t
introduction of a chemical potential term can be high
problematic due to cancellations. Here, however, it
just another local interaction of negligible cost. As a
illustration, to the above model I add another term and ta
S ­ St 1 Sh 1 SI 1 SM with

SM ­ M
X
i,t

cp
i,tci,t . (17)

I can use this term to regulate the “filling,” which can b
approximately monitored ass1 1 Md dF

dM . Here I include
the extra factor of1 1 M to compensate partially for finite
Nt artifacts. This quantity is shown as a function ofMNt

in Fig. 4, obtained on anNt ­ 8 by Ni ­ 20 lattice with
a spatial hopping parameter ofk ­ 0.1. For this figure

0.4
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0.48
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0.58

0.6

0 2 4 6 8 10 12 14
temporal sites

50 site chain, k=1

F=log(Z)/V

g= 1.0
       -1.0

FIG. 3. The free energyF ­ lnsZdyNiNt with a four fermion
interaction as described in the text, plotted as a function of
number of time slicesNt . The chain hasNi ­ 50 sites. Points
are shown fork ­ 1 andg ­ 61.
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FIG. 4. The occupancy of a 20-site chain as a function of th
chemical potential scaled by the number of time slices. No
how the filling occurs earlier or later depending on the sign o
the four fermion coupling. Here the spatial hopping paramete
is taken asK ­ 0.1.

I made a crude extrapolation in chain length by definin
F ­

1
Nt

lns ZsNid
ZsNi21d d. Note how the four fermion coupling

enhances the filling. The crossing of the curves at larg
chemical potential is a consequence of strong coupling
finite Nt.

An obvious system for future study is the Hubbard
model [6]. This requires four Grassmann variables pe
site corresponding tocp and c for spins up and down.
Higher spatial dimensions strongly increase the size
the transverse volume and will limit practical system
3558
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volumes, but this may be compensated for by the la
of sign problems.

Another potential application relates to the use
Shockley surface states to formulate chiral gauge theor
in lattice gauge theory. These so-called “domain wa
fermions” have unresolved questions due to a natu
pairing of surfaces. One suggestion [7] proposes a fo
fermion coupling on one surface to remove the spurio
modes. The effects of such a coupling might be studi
in a truncated model via the above techniques.

This manuscript has been authored under contr
number DE-AC02-98CH10886 with the U.S. Departme
of Energy.
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