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Evaluating Grassmann Integrals
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| discuss a simple numerical algorithm for direct evaluation of multiple Grassmann integrals. The
approach is exact, suffers no fermion sign problems, and allows arbitrarily complicated interactions.
Memory requirements grow exponentially with the interaction range and the transverse size of the
system. Low dimensional systems with 1000 Grassmann variables can be evaluated on a work-
station. The technique is illustrated with a spinless fermion hopping along a one dimensional chain.
[S0031-9007(98)07450-X]
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In path integral formulations of quantum field theory, with low dimensional systems involving 1000 Grassmann
fermions are treated via integrals over anticommutingvariables.
Grassmann variables [1]. This gives an elegant framework | begin with a set ofn anticommuting Grassmann
for the formal establishment of Feynman perturbation thevariables{y;}, satisfying[¢;, ;1+ = ¢; + ¥ = 0.
ory. For nonperturbative approaches, such as Monte Carlmtegration is uniquely determined up to an overall normal-
studies with a discrete lattice regulator, these variables aigation by requiring linearity and “translation” invariance
more problematic. Essentially all such approaches for-/ dys f(y + ') = [dy f(). For a single variable, |
mally integrate the fermionic fields in terms of determi- normalize things so that
nants depending only on the bosonic degrees of freedom.
Further manipulations give rise to the algorithms which f dyy =1, / dy1=0.

()
dominate current lattice gauge simulations. , o o
Frequently, however, this approach has serious shor!—” summary, to obtain a nonvanishing contrlb_utlon, every
comings. In particular, when a background fermion denlntegration variable must appear exactly once in the expan-
sity is desired, as for baryon rich regions of heavy ionSion of the integrand. _ _
scattering, these determinants are not positive, making Consider an arbitrary actiofi(y), a function of these

Monte Carlo evaluations tedious on any but the smallesgnticommuting variables, inserted into a path integral. In

systems [2]. This problem also appears in studies of mangarticular, I want to evaluate

ﬁllleizﬁ;r.on systems, particularly when doped away from half 7 — f Ay - di 5P, @

In this note | explore an alternative possibility of di- Formally this requires expanding the exponent and keep-

rectly evaluating the fermionic integrals, doing the necesTng those terms containing exactly one factor of egch

sary combinatorics on a computer. This is inevitably a | first convert the required expansion into operator

ra‘h?f ted|<_)us task, with the expected_ effort growing expo'manipulations in a Fock space, and introduce a fermionic
nentially with volume. Nevertheless, in the presence of th

) ) Creation-annihilation pair for each fermionic field, i.e.,
sign problem, all other known algorithms are also exponen-

t . .
tial. My main result is that this growth can be controlled to Yi <> {ai,ai}. These sa;usfy the usual relations
atransverse section of the system. lillustrate the technique lai,aj]+ = &ij. 3)
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The space is built up by applying creation operators testore the numberg, labeled by the respective statigs.
the vacuum, which satisfieg|0) = 0. Itis convenientto At the outset this table is very short, containing only one

introduce the completely occupied “full” state entry for the full state. The algorithm proceeds with a loop
t + ot over the Grassmann variables. For a givenfirst apply
|F) = a, - aa;l0). (4) (1 + §;) to the stored state. Then empty that location with

With these definitions, | rewrite my basic path integral asthe projectorl = n;. After all sites are mte_gratgd over,
the matrix element pnly the_ empty state survives, with the desired integral as
its coefficient.
7 = <0|eS(a>|F>_ (5) The advantage of the scheme becomes apparent with
a local interaction. All sites that have previously been
Expandinge®, a nonvanishing contribution requires one visited are empty, and thus involve no information. Any
factor ofa; for each fermion. This is the same rule as forunvisited locations outside the range of the interaction
Grassmann integration. are still filled, and thus also involve no storage. All
| now manipulate this expression towards a sequentialelevant Fock states are nontrivial only for unvisited sites
evaluation. Select a single variable and defineS;(a)  within the interaction range of previously visited sites.
as all terms from the action involving a factor of. |  Sweeping through the system in a direction referred to as
define the complemert; to be all other terms, so that “longitudinal,” we only need keep track of a “transverse”
§ = S; + §;. For simplicity, I assume that my action is slice of the model. This is illustrated in Fig. 1. Thus,
bosonic so thas; andS; commute. Thus | have although the total number of basis states in the Fock space
3 s is two to the number of Grassmann variables, the storage
Z = Ole™e™|F). (6) requirements only grow as two to the transverse volume of

Observe that sincd; contains no factors of;, the occu- the system. _ ,
pation number for that variabley = al]‘ah would van- Note that the algorithm makes no assumptions about the

ish if inserted between the two operators in Eq. (6). jprecise form of the interaction. The approach is exact,

thus can insert a projection operator n; between these With no sign problems. The complexity does grow se-
factors verely with interaction range, probably limiting practical

i applications to short range interactions in low dimensions.
Z ={0le5(1 — n;)eSi|F). (7)  Note that the effort only grows linearly with the longitudi-
_ _ nal dimension, allowing very long systems in one direction.
The next two steps are not essential to the algorithm, buthis discussion has been in the context of “real” Grass-
simplify the appearance of the final result. First | usemann variables. For “complex” variables simply treat
2 . . . . L
ai = 0 and the fact tha$; is linear ina;. Thus, the right-  andy* independently.
hand factor expands as only two terms In the transverse direction the boundary conditions are
_ Sicp o _ essentially arbitrary, but longitudinal boundaries should
Z = 0le™(1 = n) (1 + SHIF). (8) not be periodic. To make them so requires maintaining
Since 1 — n; projects out an empty state at location information on both the top and bottom layers of the grow-
i, | trivially have a;(1 — n;) = 0. This meanss;(1 — Ing integration region, squaring the difficulty. Note that
n)) =0 and | can replace; on the left with the full the technique is similar to the finite lattice method used

action

Z = 0le5(1 = n) (1 + S)IF). ©) 1011111 11 11

Finally, | repeat this procedure successively for all vari- 1111111111
ables, giving the main result (1;101010101 11 11
$101:1:1:15 10 11 1]

Z=<0‘l_[[(1—ni)(1+5f>] F> (10) XIXIXIX IXi1i1i1i1:1

2

where | hgve assumed that the action has any remaining 0 0 00 007 0 0 0 0
constant pieces removed. L=
This summarizes the basic algorithm. Begin by setting 10;0:0:0:0:0:0: 0 0 0
up an associative array for storing general states of the 0:0{0{0;0{0 0/ 0 0 0
Fock space. Standard hash table techniques allow rapid 00 0ioi0ioi 0l o o o

storage and retrieval. More explicitly, for a given state

FIG. 1. Integrating out sequentially, all finished sites are
ly) = ZXs|S> (11) empty and out of range sites are filled. When integrating the
S ’ site labeledy, only those sites labeled(™ are undetermined.
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for series expansions [3], and closely related to attempts toot positive definite. The transfer matrix with this action
directly enumerate fermionic world lines [4]. becomes positive definite only f¢k| < %

For a simple demonstration, consider a spinless fermion Now | make the model somewhat less trivial with
hopping along a line of sites. |introduce a complex Grassa four fermion interaction. | takes = S, + S, + S;
mann variable on each site of a two dimensional latticewith

and study
S, f @0 dy eSS 12) S =g Z Ui biabisr Vi (16)
with the temporal hopping term of form In a transfer matrix formalism this represents an interaction
. Hamiltonian of formH; = >, n;n;+;. Bosonization re-
S = Z i Wi — Pis-1) (13)  |ates this Hamiltonian to the anisotropic quantum Heisen-
bt berg model, but this equivalence is not being used here.
and the spatial hopping The above algorithm requires essentially the same com-
puter resources as the free case. In Fig. 3 | showwhe
Sy = kZl//}*,ﬂl’iH,r + i (14) dependence for the free energy with= 1 andg = *1.
it To reachN, = 13 for this figure, | reduced memory re-

| take N, sites in the time direction andv; spatial sites. quirements further by using temporal translation invariance

Here the one sided form of the temporal hopping insure&fter each layer was integrated. _
the model has a Hermitian transfer matrix in this direction, ith Monte Carlo studies of many fermion systems, the

[5]. |treat the time direction as my transverse coordinate!ntroduction of a chemical potential term can be highly
roblematic due to cancellations. Here, however, it is

growing the lattice along the spatial chain. After each rowP x i g
with N, = 10, the number of Fock states stored in the hasHust another local interaction of negligible cost. As an
table rises to 184 756. In Fig. 2 | plot the resulting «ree lllUstration, to the above model I add another term and take
energy’F = In(Z)/N;N, for k = 1 on a 50 site chainas S = S T Sn + 51 + Su with

a function of the number of time slices. The 50 by 10

case has 1000 Grassmann variables. This model is easily Sy=M Z Wi i (17)
solved in the infinite length limit by Fourier transform. For I

infinite N, this gives . - .
! g | can use this term to regulate the “filling,” which can be

In(Z) /2 approximately monitored ad + M)d—F. Here | include
NN, fw/z dgIn[1 + 2cosq)] = 0.388748..... . the extra factor of + M to (_:ompens%e partially for finite
(15) N, artifacts. This quantity is shown as a functionisiV,
in Fig. 4, obtained on aiv; = 8 by N; = 20 lattice with
Note how the results in the figure oscillate about this line@ spatial hopping parameter 6f= 0.1. For this figure
indicating that the transfer matrix, while Hermitian, is

0.6 1 ‘
0.7 T T T T T | 0= 1.0 o ]
0.3887... -~ 0.58 20
0.6 1 0.56 f F=log(Z)IV 1
. 0.54 t ¢ 50 site chain, k=1 1
0.5 1
0.52 t |
2 o .
S 0.4 | - 1 05 ) 1
[@)] k4 °
48 t 1
T 03F ° ] 0.48 . .
L 0.46 | o ., . . 1
N @ 4 ° * o 3
02 ¢ 1 0.44 : 1
01l | 0.42 t + 1
04 1 1 1 1 1 1
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0 2 4 6 8 10 temporal sites

temporal sites . .
FIG. 3. The free energ¥y’ = In(Z)/N;N, with a four fermion

FIG. 2. The free energy = In(Z)/N;N; on anN; = 50 site  interaction as described in the text, plotted as a function of the
chain as a function of the number of time slidgés The infinite  number of time slice®,. The chain ha®V; = 50 sites. Points
volume solution is shown by the horizontal line. are shown fork = 1 andg = *1.
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volumes, but this may be compensated for by the lack
of sign problems.

Another potential application relates to the use of
Shockley surface states to formulate chiral gauge theories
in lattice gauge theory. These so-called “domain wall
fermions” have unresolved questions due to a natural
pairing of surfaces. One suggestion [7] proposes a four
fermion coupling on one surface to remove the spurious
modes. The effects of such a coupling might be studied
in a truncated model via the above techniques.

This manuscript has been authored under contract
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FIG. 4. The occupancy of a 20-site chain as a function of the [1] F.A. Berezin, The Method of Second Quantization
chemical potential scaled by the number of time slices. o '

is taken ak = 0.1.

| made a crude extrapolation in chain length by defining
). Note how the four fermion coupling

ling. The crossing of the curves at large
chemical potential is a consequence of strong coupling at

1 Z(N;)
F - ﬁrln(Z(lelf
enhances the fi

finite N;.

An obvious system for future study is the Hubbard

Note
how the filling occurs earlier or later depending on the sign of
the four fermion coupling. Here the spatial hopping parameter
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