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I explore a recursive enumeration of world-line diagrams as a numerical approach to simulating
many-fermion lattice systems. Signs from fermion exchange are treated exactly. In addition, all values
of the coupling constants are treated simulianeously. The method is computationally fast, although
large-memory requirements restrict it to small spatial systems.

L. INTRODUCTION

Numerical simulations of quantum systems are a major
industry in several subfields of physics. Lattice guage
studies are giving first-principle results on hadronic pro-
cesses, while calculations of many-electron systems are
testing models of superconductivity. Despite many
successes, the inclusion of fermionic degrees of freedom
severely strains available computational resources.
Furthermore, with a background baryon density in parti-
cle physics or away from half-filled bands in many-
electron models, the problem becomes much more severe.
Here the Monte Carlo approaches are hampered by the
so-called “sign problem,” wherein the measures encoun-
tered in the path integrals are not positive. Removing
the signs from the measure yields expectation values with
large fluctuations, requiring inordinately large statistics
to extract meaningful results.

The fermion issue is often discussed in terms of the
determinant of the matrix coupling the anticommuting
fields to the bosonic fields of the problem. Expanding
such a determinant in minors gives terms representing
sets of fermionic loops. Each loop can be thought of as
the world line for the fermion in question. In this paper,
I work directly in this world line representation. I consid-
er an enumeration of these loops in a recursive manner,
finally expressing physical quantities in terms of this
enumeration.

The concept of summing over world lines to study
quantum mechanics goes back to Feynman.! Explicit
evaluation of these path integrals by Monte Carlo
methods has been advocated in Ref. 2. For many-
fermion problems, Hirsch et al.® have presented a con-
venient world line formalism which I follow quite closely
below.

I consider a recursive procedure essentially identical to
one used for the Ising model in Ref. 4 to exactly solve
small lattices and in Ref. 5 to find low-temperature series.
Indeed, the extension of this method to fermions is sug-
gested by the treatment of domain walls in the two-
dimensional Ising model as fermion world lines.®

A complementary approach to the study of many-
fermion systems is the direct diagonalization of the quan-
tum Hamiltonian. While the relevant Hilbert space is ex-
ponentially large in the system volume, with nearest-
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neighbor couplings the Hamiltonian yields itself well to
sparse matrix techniques. Here I also work with the full
Hilbert space of states, and memory requirements of the
enumeration process will be even larger than required for
direct diagonalization. On the other hand, the approach
presented here is computationally fast and simultaneous--
ly gives information on the model at all couplings. Al-
though the size of the Hilbert space restricts me to rather
small spatial systems, the limits on the temporal size are
rather mild. Furthermore, the algorithm is not con-
strained by dimensionality beyond the fact that a given
number of sites in a higher dimension inherently has a
smaller linear extent.

I test the method on a simple Hubbard model’ in two
dimensions. This system has the essential problems asso-
ciated with fermionic degrees of freedom, including a
nonpositive fermion determinant when the system is
away from half-filling. Furthermore, Ref. 3 has already
set up a convenient world line formalism for this Hamil-
tonian. In this problem all the physics can be reduced to
counting issues. It remains unclear how to generalize this
when continuous fields are coupled to the fermions. In
particular, I do not know how to generalize the method
to lattice gauge theories. Possibly, this will require treat-
ing the bosonic fields via a similar counting technique.

II. WORLD LINE DIAGRAMS
The Hamiltonian that I study is

==K 3 (aif,,aj,,,-i-a;faa,-,g)-f—Uzn“n“.
{Lj},o i

2.1)

Here a (a') denote the annihilation (creation) operators
for electrons on a set of sites labeled by i and j. The in-
dex o denotes the electron spin, which can be up or down
(1 or |). The geometry of the system is determined by
the set of nearest-neighbor pairs, denoted {i,j}. The
number operator a{aa,-,,, is denoted n; .

The fermion operators satisfy standard anticommuta-
tion relations

t = ¥ t
[ai,a’aj,o’ ]+ —‘ai,aaj,a' +aj,o"ai,0'
=6i,j80,o" H

(2.2)
[@;6:,5]+=0.
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The variable K controls how easily the fermions move
around and is called the “hopping” parameter, and this
term represents the “kinetic” energy. The coupling con-
stant U measures the strength of the interaction for two
electrons on the same site. This term is quartic in the
creation and annihilation operators and represents the
“potential” energy.

I consider applying exp(—pBH) to some initial state
|). When B is large, this projects out the ground state,
while, for smaller 8. I speak of the “evolution” of the ini-
tial state. As iH is usually taken as the generator of
translations in time, this evolution is formally in imagi-
nary time.

To proceed, I break time up into N time slices and
write

o ~PH=(p~PH)"T 2.3)
where the temporal step size is e=1/Ny. At this point
there are several ways to proceed; I follow Ref. 3 quite
closely and break H up in a checkerboard fashion.
Indeed, this section is essentially a review of that formal-
ism. Temporarily restricting myself to one spatial dimen-
sions, I write

H=T,+T,+V, (2.4)
where T, includes hoppings between odd sites on the left
and even sites on the right, T', involves the opposite pari-
ty bonds, and ¥ represents the interaction term, propor-
tional to U. I now assume ¢ is small and make the ap-
proximation®

o~ PH= =BV /2~ FT1,—eBV /2, ~Fh 0 . (2.5)

For two spatial dimensions, I break the kinetic term of H
into four pieces, representing the combinations of even or
odd with x or y bonds.

With this breakup either T or T, is a direct product
of pieces coupling independent pairs of sites and involv-
ing no coupling between up and down spins. This makes
diagonalization qﬁuil:e simple and gives the explicit matrix

— €T, . .
elements of e . These elements have a simple di-
agrammatic interpretation used in the Monte Carlo simu-
lations of Ref. 3 and form the basis of the counting algo-
rithm presented below.

Consider the effect of, say, e on a single coupled
pair of sites. If there are no electrons present, we just get
a factor of unity. When a single electron is present, there
are two nonvanishing matrix elements, representing the
cases of whether the electron moves to the other site or
not. The diagonal matrix element involving no motion is
cosh(eBK ), while if the electron hops I obtain a factor of
sinh(eBK). Finally, if there are two electrons of the same
spin present on both sites, the matrix is again diagonal
and gives a factor of unity. For convenience I consider
writing unity in the form cosh’(eBK)—sinh*(eBK). In
this way I can think of this term representing two pro-
cesses, the first having the two electrons go forward in
time without moving and the second representing an ex-
change, with the ccorresponding fermionic minus sign.

It is convenient to remove a factor of cosh?(eBK) for

each time step and each fermion present. Then any given

BT,
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diagram simply gives a factor of tanh(eBK) for every
electron hopping. The remaining rule is that the poten-
tial term gives a factor of e —€BU/2 every time an up and a
down spin occupy the same lattice site.

When there are many fermions present, I need a con-
vention to determine overall signs. This involves order-
ing the sites in some manner and then ordering up and
down spins on the individual sites. Whenever a hop
occurs, the sign is minus if an odd number of fermions
are passed. Note that in two or more spatial dimensions
this is a nonlocal evaluation. My convention is to place
the sites in a sequence and put an up spins “on the left”
of down ones on the same site. I always use periodic
boundary conditions.

Now consider the matrix element

(¢'|le PHly) , 2.6)

where the initial and final states are eigenvectors of the
occupation numbers #, ,; that is, I know where the initial
and final electrons are. The result is a sum over all world
line diagrams connecting the initial and final states. The
world lines pass through the allowed squares of the
checkerboard lattice, giving a factor of

t=tanh(eBK) Q.7
every time an electron hops and a factor of
v=e —eBU/2 2.8)

whenever a site is doubly occupied by electrons of oppo-
site spin. No site is permitted to have two or more world
lines representing the same spin pass through it at the
same time. Finally, count the number of fermion ex-
changes to determine the overall sign of the graph. Sum-
ming over all graphs gives the desired amplitude. This
summarizes the world line diagrams as sampled by a
Monte Carlo method in Ref. 3.

III. RECURSIVE COUNTING
The above formalism gives the diagrammatic sum

(Wle~Bly) = 3 " D™ s, (3.1)
d

where ¢ and v are defined above for notational simplicity
an overall constant factor of cosh?(eBK) per fermion per
time slice has been dropped. The sum is over all dia-
grams d, and N,(d) and N, (d) denote the number of hop-
pings and number of doubly occupied sites in the respec-
tive diagram. The number of fermion crossings deter-
mines s; € {+1}, the overall sign of the diagram. I now
rearrange this to a sum over the number of hoppings and
coupling terms: :

NtUNu )

(Ple PH|Y) < 3 N(N,N,, ¢ ) (3.2)

Nt’ND

Here N(N,,N,,¢',¥) is an integer which counts the num-
ber of diagrams having N, hoppings and N, interaction
terms. The world lines start at the occupied sites of the
state ¢ and end at those of ¥'. In this counting the sign
of the diagram is included; that is, N represents the num-

ber of positive diagrams minus the number of negative
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ones. Here I explicitly write the dependence on the ini-
tial and final states, as this will be used for the recursion
discussed below.

All information about this discretized system is con-
tained in the table of integers N(N,,N,,¢',¢). 1 now
consider constructing part of this table explicitly by re-
cursively building up the space-time lattice one square at
a time. To initialize the procedure, when the time height
of my lattice is zero, there can be no hoppings and thus
all counts vanish unless ' and v are the same, in which
case the count is 1.

After initialization the procedure is recursive. As-
sume that I have the counts for a partially constructed
lattice. Now add one new active square of the checker-
board lattice. By active I mean one of the squares on
which hopping is allowed. There are at most four forms
this added square can take, and thus one count for the
new lattice is a sum of up to four terms depending on the
electron occupations of the covered sites.

As the lattice is being built up, at intermediate stages
the temporal top of the system will be “ragged,” in the
sense that some sites will be one time step ahead of the
others. Nevertheless, the top layer always has the same
number of sites, and the space of states is unchanged. In
adding a new square to a checkerboard, the two old sites
should have the same time coordinate. This can be as-
sured by having an even number of sites in a one-
dimensional system and corresponding constraints on
higher dimensions. In the following examples, I always
take an even number of sites and for two dimensions I
work with them arranged in a helix with an odd shift to
the neighbors in the second direction.

The total number of possible counts grows as the
square of the volume of the Hilbert space restricted to
fixed numbers of spin-up and spin-down particles. This
results from the dependence on both the top and bottom
layers. In practice, this is uncomfortably large, and so I
restrict myself to a fixed bottom layer. This allows larger
systems to be studied, but precludes calculations where
many initial states are needed, as for traces. I still need
all elements of the Hilbert space on the top layer. This is
because any of these states may be needed as intermediate
states later in the recursion.

As many different counts are needed for each state, the
algorithm uses a lot of memory, indeed, even more than
required for exact diagonalization methods, which just
keep a few numbers per state. On the other hand, the re-
cursion is quite fast, as any new count depends on at most
four of the old ones.

One trick to save considerable memory is to only
enumerate for half the required time slices and then stack
an inverted copy of the lattice on itself. Summing over
the enclosed slice gives the counts from the initial state to
itself the full time later, up to an unimportant switch in
the even-odd checkerboard convention at the halfway
point. On a periodic lattice this can be generalized by
shifting the states before the folding process to give the
counts from the initial state to any shift of itself. This
doubling trick, however, is limited to obtaining the dia-
gram counts where the final state is related to the initial
one by some symmetry.
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IV. SOME “EXPERIMENTS”

In Fig. 1 I consider a single electron on a periodic one-
dimensional 26-site spatial lattice. I iterated the counting
procedure for 25 time steps to obtain a 26 X 50 checker-
board. As discussed at the end of the last section, this is
doubled on top of itself, resulting in a 26X 100 checker-
board lattice. In the figure I show the number of paths
from a fixed initial site to the same site on the final time
slice as a function of the number of hoppings along the
path. Since there are no paths that return to the same
site after an odd number of hoppings, I only plot paths
for an even number of hoppings and connect the points to
form the smooth curve. A similar table of numbers is
generated for each final state of the system.

The counts in Fig. 1 range from 1 for 0 or 100 hop-
pings to approximately 8.5X10?7 for 50 jumps. These
numbers were obtained exactly using high-precision in-
teger arithmetic. Tests with storing the counts with
floating-point numbers indicate that this exact treatment
is not essential for systems of the sizes considered here.
Nevertheless, the exact approach provides extra
confidence in allowing for arbitrary cancellations when
different sign contributions are added with several fer-
mions present.

Figure 2 uses these counts and similar ones obtained
with a shift in the final state to show the spreading of the
electron distribution. I display the wave function as a
function of position on the lattice. The curves are all
normalized to unit maximum. The final state is obtained
after applying ¢ “P¥ to the initial electron, located at site
0. From bottom up the curves represent 5 of 2, 8, 32, and
128, respectively. Here and for all following figures, the
hopping parameter X is set to unity. As in Fig. 1, the lat-
tice is a doubled one of 50 times slices; thus I have a
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FIG. 1. Raw counts for the number of paths from a given
spatial site to itself as a function of the number of hoppings on
the path. The lattice is a one-dimensional ring of 26 spatial
sites, and time has been divided into 50 slices, each of which is
two checkerboard squares deep. Only even numbers of hop-
pings appear.
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FIG. 2. Spreading of a one-electron wave function on a 26-
site, one-dimensional ring. All curves come from the same set
of counts and are normalized to unity at the peak. With unit
hopping parameter, the curves from bottom up represent the
final state after applying e BFH for =2, 8, 32, and 128. The ini-
tial electron position was at site 0.

26 X100 checkerboard. All curves in this figure are gen-
erated from the same table of counts; the only difference
is how the counts are weighted. This is one of the main
advantages of the method: All couplings are studied at
once.

The approach does not depend on how the spatial sites
are connected. Figure 3 again represents wave-function
spreading, but now on a two-dimensional lattice. Here I
have arranged the same 26 spins in a periodic helix, with
successive turns of the helix 5 sites apart. Thus site 0 is a
nearest neighbor to sites 1, 5, 21, and 25. Note the fast
leakage of the wave function to these points. Also note
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FIG. 3. Wave-function spreading on a 26-site periodic helix
with 5 sites per turn. Here e “#¥ is applied to the initial states

for f=1,2,4,and 8.
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" that the wave function smooths out much faster than in

Fig. 1 because the sites are more closely connected.
The helical lattices used here have previously been ad-

“vocated for various reasons. In Ref. 5 a system of 18 sites

with a helical period of 5 was used to give each neighbor
6 sites from his periodic neighbor, thus mimicking a 6 X6
lattice. A lattice of 10 sites with period 3 is the so called
“V10XV'10” lattice used, for instance, in Ref. 9. For
two spatial dimensions the temporal checkerboard should

“be generalized; I consider hoppings consecutively be-
-tweén even-x bonds, odd-x bonds, even-y bonds, and

odd-y bonds. This choice is arbitrary, but should be ir-
‘relevant for small time steps.
I now turn to the interacting system and start with the

state |$ho) of one spin-up and one spin-down electron on

adjacent sites of an eight-site helix with period 3. I work

““with unit hopping parameter and a coupling U=5. Fig-

ure 4 shows the relaxation of the system energy as a func-
tion of time. Here the three solid curves, from asymptot-
ically lowest to highest, represent a total number of time
slices of 8, 10, and 12, respectively. The dashed line
represents an extrapolation from the last two solid curves
to an infinite number of time slices, with the assumption
that corrections are proportional to the inverse of the
timelike lattice spacing. This extrapolation appears
stable and will be used henceforth. There are several
ways to extract the energy from the counts; I find it from
the change in the norm of e “8|y,) before and after the
last time step.

On each curve in this figure, the time to each point is
divided into the respective number of slices; thus the
effective timelike lattice spacing is not constant, but pro-
portional to the time at which the energy is being mea-
sured. In other words, each curve is in its entirety ob-
tained from the counts before and after the final slice,
with only the expansion parameters changing as one
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FIG. 4. Energy relaxation for a spin-up-spin-down pair on an
8-site, period-3 helix. The three curves represent 8, 10, and 12
time slices, and the dashed curve represents an extrapolation to
zero temporal lattice spacing. The coupling U is 5, and the hop-

ping parameter K is 1.0.
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moves along the curve. This idea of maintaining a con-
stant number of slices rather than a constant lattice spac-
ing is novel to this counting approach.

Figure 5 shows the energy relaxation for several values
of the interaction U. These curves all use the same extra-
polation to vanishing time step as gave the dashed line in
Fig. 4. From bottom to top, the solid curves represent U
of —5, 0, 5, and 10, respectively. At U=0 the curve re-
laxes to the exact value of — 8 for the energy.

The dashed curve in Fig. 5 represents a direct simula-
tion of the infinite-U limit. For this purpose only paths
where the electrons did not simultaneously pass through
the same site were considered. In addition, the spin-up
and down electrons were not allowed to cross each other
on the same bond at the same time step. These rules
dramatically reduce the scope of the world line counting
and allow the study of considerably larger systems.

Since full information on the wave function is avail-
able, one can study any physical parameter desired. In
Fig. 6 I show, as a function of U, the probability that the
spin-up and- down electron on this eight-site lattice lie on
the same site. The cross at U=0 represents the exact
value J; for the ground state of noninteracting particles.
For this figure I measure the pair density after applying
e "1 to the initial state. I again extrapolate from time
divided into 10 and 12 slices. The pair density is calculat-
ed at each site, giving rise to eight curves which are su-
perposed and mostly indistinguishable. Note that at neg-
ative U these curves are beginning to fan out, showing
that with an attractive interaction the system takes
longer to spread into its spatially uniform ground state.
While there are in principle eight curves plotted here, the
upper curve represents the equal densities on the sites
where the electrons started, and the lower curve is the su-
perposition of the results for the other six sites, all of
which are nearest neighbors to one of the initial sites.
The latter curves are not all exactly degenerate, but close
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FIG. 5. Relaxation to the ground state of two electrons of
opposite spin for various values of the interaction parameter U.
From bottom up the curves represent U=-—5, 0, 5, 10, and
infinity, respectively.
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FIG. 6. Pair density for two electrons of opposite spin as a
function of the interaction U on an 8-site period-3 helical lat-
tice. The fanning of the curves at negative U represents
insufficient time for relaxation. The cross at (0, ;) marks the
exact solution for the free theory.

enough to appear so on the graph.

For Fig. 7, I return to the infinite-U limit and plot the
total energy as a function of time for a variety of fillings.
This is on the same 8-site period-3 helix used above.
Note that the half-filled case, with 4 spin-up and 4 spin-
down particles, is stuck at zero energy. Indeed, in the
infinite-U limit this case is peculiar, with no net motion of
the particles allowed. With one electron less, that is, for
the (4,3) case, the graph shows a rather slow convergence
compared to the lower curves. For one electron the
curve relaxes to the exact value of —4 for the energy.
The interaction of the second electiron raises the (1,1)
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FIG. 7. Relaxation of the total energy of the infinite U model
as a function of time for various fillings of an 8-site period-3 hel-
ical lattice. The curves are labeled by pairs of numbers
representing the numbers of spin-up and -down electrons, re-
spectively.
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curve above the free value of —8. As further electrons
are added, the energy continues to rise, partly because of
the interaction and partly because of the fermionic nature
of the particles forcing them into higher levels. Indeed, a
similar experiment for the free case with U=0 shows
successive particles going into higher states.

V. MEMORY ISSUES

The primary disadvantage of this counting method is
the huge amounts of computer memory required.
Indeed, I work with the entire Hilbert space for the quan-
tum system, and for each state I keep a large number of
counts. Thus the memory requirements are larger than
required for exact diagonalization using sparse matrix
techniques. On the other hand, the method is comple-
mentary in the information it provides, enabling all
values of the couplings to be studied at once.

Some memory could be saved by using a translation-
invariant initial state. Then the counts to all translations
of a given final state would be equal and need not be
stored. Indeed, this trick was essential to obtaining in-
teresting expansions for Ref. 5. On the other hand, here
the gain is reduced by a factor of 2 by the checkerboard
lattice. This trick inherently involves a substantial speed
loss because now an entire layer must be added at once,
rather than a single lattice square. Then the loop over
states becomes double loop over the Hilbert space.
Furthermore, a translation-invariant state eliminates the
ability to watch some interesting phenomena such as the
wave function spreading seen in Figs. 2 and 3. Thus here
I have opted against using translation-invariant initial
states.

Another way to reduce memory needs is to give up the
exact integer arithmetic for floating-point accumulation
of the counts. Simple tests indicate little loss for the re-
sults presented here, but the gain is limited in light of the
exponential growth in memory needs inherent in the al-
gorithm. Also, cancellations may become dangerous for
larger systems as the sign problem becomes increasingly
severe. This issue needs more investigation.
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VI. CONCLUDING REMARKS

I have presented a method for simulating lattice fer-
mion systems. The approach is quite fast, but requires
large amounts of computer memory. The method has
several compelling advantages. Primarily, there is no
sign problem; all fermionic antisymmetrization is taken
care of exactly. Indeed, this is true for arbitrary lattice
geometry. Second, all values of the couplings are done
simultaneously. Third, not being a Monte Carlo simula-
tion, there are no statistical errors; in particular, once a
run is done, it is finished and no knowledge is gained
without going to a different size system. Finally, because
only a single pass is made through the system, the net
amount of computer time required is quite modest.

Here I have worked directly in the Hilbert space with a
fixed number of fermions. Thus issues such as an applied
magnetic field or chemical potential merely involve com-
paring results with different fillings. In particle physics
the filled Dirac sea should be explicitly included; that is,
for zero chemical potential one should work with the fer-
mion states half-filled.

For Monte Carlo approaches a half-filled lattice is
often the easiest case to treat because the determinant
can be made positive via a symmetry between spin-down
holes and spin-up electrons. For the method discussed
here, in contrast, it is low fillings which are preferred be-
cause the Hilbert space is smaller. Indeed, the half-filled -
case has the most states and thus is the most difficult.

An important unresolved question is how to adapt the
method to fermions coupled to continuous bosonic fields,
in particular to gauge fields. As the basis of the method
is a counting procedure, one perhaps should treat the
other fields similarly. This resembles a computer evalua-
tion of the strong-coupling expansion and may provide
interesting challenges for non-Abelian theories.
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