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A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic 
theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by 
a factor of about three in computer time. For ferrnionic fields the situation is more difficult and less clear. 
Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which 
do not require such an approximation tend to require computer time which grows as the square of the volume 
of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical 
updatings promise to reduce this growth to V 4/3. 

1. I N T R O D U C T I O N  

I review here the main Monte Carlo techniques in 

use for lattice gauge simulations. To this conference of 

experts in the field, most Of what I say is well known. 

Nevertheless, it may be useful to reconsider our meth- 

ods in the hope of finding efficient variations which 

can free computer time, thus enabling even larger 

scale computations than presently possible. A more 

extensive review of current lattice gauge algorithms is 

contained in Ref. 1. 

I will discuss algorithms both for purely bosonic 

and fermionic theories. In the former case, present 

methods are generally quite satisfactory. Nevertheless, 

I will present arguments that overrelaxation can save 

on the order of a factor of three in such simulations. 

For simulations which include the effects of quark 

loops, the situation is considerably more cloudy. Here 

the existing algorithms are extremely time consuming, 

perhaps requiring of order 10 4 times as much computer 

time as similar purely bosonic calculations. This places 

severe strains on the ability to make necessary checks. 

While much of this factor must inevitably come from 

improved machines, hopefully better algorithms can 

bring us there sooner. 

The methods which have been proposed for ferm- 

ionic simulations fall into two classes. First are 

approximate approaches which involve an extrapo- 

lation in a step size parameter. Here I include the 

original pseudofermionic 2 technique as well as the 

microcanonical 3, Langevin 4, and hybrid s approaches, 

which involve discretization of a differential evolution. 

Second are those algorithms which don't require this 

additional extrapolation. These I refer to as "ex- 

act" methods, the prototype fSr which is contained in 

Ref. 6. Unfortunately, the latter algorithms tend to 

require substantially more computer time, which typi- 

cally grows with the volume squared of the system. 

I will argue that approaches in the first class, 

those involving a step size extrapolation, are all quite 

closely related. Indeed, they reduce the problem to 

an effective bosonic theory and differ primarily in the 

Monte Carlo algorithm applied to that system. 

For the exact fermionic algorithms, the coefficient of 

the volume squared computer time dependence is not 

universal, and I will suggest that this coefficient can be 

reduced by a suitably biased selection of trial changes 

in a global set of variables. Finally, I will argue 

that recently proposed combinations of Langevin or 

microcanonical updatings with a final accept/reject 

step use computer time growing substantially slower 

with the system volume. 
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2. B O S O N I C  FIELDS 

I begin my discussion of bosonic fields with familiar 

trivialities. The goal of a Monte Carlo simulation is 

to obtain, in a stochastic manner, field configurations 

with a probability distribution given by the Boltzmann 

weight 

P~q(C) o( e -sG(c). (1) 

This is obtained via a Markov chain of configurations, 

each of which represents a pseudorandom change on 

the previous one. 

Two obviously necessary conditions on the evo- 

lution turn out in addition to be sufficient for an 

approach to equilibrium. The first of these is ergodie- 

ity; that is, it should be possible for the evolution to 

reach any state. Indeed, if a state cannot be reached 

and its initial probability is zero, it will always be 

so. The second condition is that equilibrium be sta- 

ble; that is, the algorithm should leave an equilibrium 

ensemble in equilibrium. The sufficiency of these two 

conditions is rather easily demonstrated. 1 

To insure the stability of equilibrium, many algo- 

rithms are formulated to satisfy a principle of detailed 

balance. In particular, when applied to an equilibrium 

ensemble, the rate of taking any configuration C to 

any other configuration C should be equal to the rate 

for the reverse process of taking configuration C to C. 

The former rate is just the probability Peq(C) for be- 

at C times the probability P (C ~ C) that the 
/ 

lug 
/ 

algorithm takes C into 6'. Explicitly, detailed balance 

reads 

That this condition is sufficient for stability follows 

from summing over C. It is, however, not a necessary 

condition because one could have stability with a net 

circulation occuring amongst the configurations. For 

a trivial example, a standard microcanonical evolution 

follows closed orbits in phase space. 

In their classic 1953 paper, Metropolis, Rosenbluth, 

Rosenbluth, Teller and Teller 7 showed that detailed 

balance could be easily implemented via a conditional 

acceptance for trial changes. In particular, consider 

choosing some configuration C' as a possible update 

to C. This state can be taken with an arbitrary trial 

probability PT,C (C)-  Here I place subscript C on 

PT as a reminder that the trial change can depend on 

the previous state. The Metropolis et al. scheme now 

accepts 6' with the conditional probability 

V, cc = ra in  [ 1 ,  PT'c(C) e 8(0)] 

To check that this gives detailed balance, evaluate 

the left hand side of eqn. 2 

Detailed balance is manifested in the explicit symmetry 

of this expression under exchange of C and C. 

The general Metropolis et al. approach actually 

includes many variations depending on the choice of 
~ % 

( e )  will now discuss four such alternatives  PT,c 
First is the conventional approach as used in most 

pure gauge simulations. Consider updating some link 

variable U, an element of the gauge group. For the 

trial new element (7, multiply U by a random element 

H 

0 -  US. (5) 

The element H is chosen with a probability distribu- 

tion P (H) with equal probability for H or its inverse 

P ( H )  - P (H-I) . (6) 

In practice, the matrix H is usually randomly selected 

from a table, and eqn. 6 is insured by having the table 

contain the inverse of each of its elements. Eqn. 6 

implies for the trial probability 

-- (7) 

Thus the factors of PT drop out of eqn. 3, giving 

simply 

min[1,e =)], (=) 
where S and S denote S ( U ) a n d  S (b ' ) ,  respectively. 

This approach contains an essential dependence on 

two parameters. The first is the average distance H lies 

from the identity. If this is too large, then the action 

change will usually he large and the trial change rarely 
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accepted. On tile other hand, if H always lies quite 

close to the identity, the exploration of configuration 

space will be quite slow. An optimum appears to be 

to adjust this distance for an acceptance rate of 30- 

50%. The second parameter of the standard approach 

is the number of trial changes attempted on a given 

link before proceeding to the next. In most statistical 

problems this is taken to be unity; however, in gauge 

theories considerable arithmetic is needed to calculate 

the environment of a link, and it usually saves overall 

computer time to test several trial elements. 

A second variation of the Metropolis et al. algo- 

rithm is the "heat bath" approach. Here one takes the 

trial element with a probability given by the Boltz- 

mann factor with the neighboring elements held fixed 

PT,U ((?) ~x e S(O). (9) 

In this ease the ratio of trial probabilities 

t,r,c(v ) ~-s 
- ( l O )  

P,,,v ( fz ) e-  ~ 

exactly cancels the ratio of Boltzmann factors in eqn. 3 

to give 

P ~ - 1 ,  (11) 

and the trial change is always accepted. This algo- 

rithm works quite well in those cases where the group 

manifold is sufficiently simple that the appropriate dis- 

tribution of eqn. 9 can be easily generated. For the 

case of SU (2) see Ref. 8. 

For a third implementation of the Metropolis et al. 

algorithm, I now discuss what is sometimes referred 

to as "smart Monte Carlo." In the standard approach 

mentioned above, the trial changes are made in an un- 

biased way. In the heat bath method one increases the 

acceptance by making trial changes with a carefully 

defined distribution. One might try something inter- 

mediate by combining a random change with a biasing 

driving force. For example, consider updating some 

real degree of freedom A. For a trial change take 

A + vQ p+ e f ( A ) .  (12) 

Here p is an unbiased noise which, for the purposes of 

discussion, I take to be Gaussian 

P (p) (x e P2/2. (13) 

The driving force F (A) is for the moment arbitrary, 

and e is inserted as a parameter which I will consider 

to be small. Solving eqn. 12 for p gives the trial 

probability distribution 

PT, A (A)  (x e -p'/2, 
(14) 

P: I (.,i - A - (A)) 

This can be inserted into the Metropolis et al. accep- 

tance criterion, eqn. 3, to give 

P.cc : mln [1, Txp~=-~ - p2/2)  (15) 

Here # is the negative of the noise which would be 

required to move back from .4 to A 

(16) 
~ ~ ( ~ / + ~  (A) )  

Expanding in e, I find 

+ #2/2  - s - p2/2  : 

(IT) 
This implies that the choice 

1 0$ 
F ( A )  - - 2  OA (lS) 

would give 

: 1  + o " "t:'/'] . (19) 

Thus for small changes one can improve the acceptance 

over unbiased changes. 

If the changes are small enough, then might consider 

introducing a small error by ignoring the acceptance 

criterion altogether and simultaneously updating all 

fields with eqn. 12 using the driving force in eqn. 18. 

At this point it is instructive to change notation mad 

write 
~1 - A dA 

d~- (20) 
1 

~ p =  7/. 
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Then the updat ing procedure reads 

dA 10S  

which is the standard Langevin equation. I will return 

later to this analysis of biased trial changes. 

Finally I turn to a fourth method for picking trial 

changes for the Metropolis et al. procedure. This is 

based on the overrelaxation idea as discussed for Monte 

Carlo simulation in Ref. 9. The original implementa-  

tion was only for rather special forms of the action, but 

this l imitation has been recently overcome, m Consider 

updat ing a group element U. Let U0 denote another 

element of the group which approximately minimizes 

the action S(U)  when all neighbors are held fixed. 

Suppose further that  U0 is obtained with no explicit 

dependence on the element U being updated.  Then a 

useful trim change for U is 

(J = ~oU-~Uo.  (22) 

In some sense this element lies on the "opposite side" 

of [To from U. Note that this construction satifies 

the symmetry relation of eqn. 7; consequently, the 

acceptance of ~" follows the s tandard procedure of 

comparing a random number  with the exponential  of 

the change in the action. Note also that this is a single 

"hit" algori thm because multiple tries at updat ing a 

given variable will only repetitively try old elements. 

I will give three motivations for this choice of trial 

update. First,  it produces a rather large change in 

U while, assuming the action is reasonably symmetric 

around U0, resulting in only a rather small change in 

the action. Thus one simultaneously obtains a high ac- 

ceptance rate and a rapid flow through configuration 

space. Second, the value of U0 depends on neighbors 

which in previous sweeps have adjusted their values 

to aceomodate U. If U is allowed to float, then these 

neighbors will tend to drift away and the op t imum 

value for an updated element should lie beyond U0. 

Third,  recent analyses by Adler 11 and Neuberger 12 in 

dicate that  overrelaxation can help reduce the increase 

of correlation times as a critical point is approached. 
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Fig. 1. The correlation between two SU (2) 

lattices as a function of the number  of simulation 

iterations separating them. The model is SU (2) 

lattice gauge theory at /3 2.3. The solid points 

are for the heat-bath procedure while the open 

triangles are for the overrelaxation algorithm. 

To illustrate the effectiveness of this approach I 

show in figure I some results with the gauge group 

SU(2). Here I have taken an equilibrated 73 × 6 

lattice at /3 - 2.3 and updated it further with both the 

heatbath and the overrelaxation algorithms. I plot the 

correlation between the links on the original lattice and 

those on the updated one as a function of the number  

of i terations or full sweeps of the lattice separating 

the two lattices. For the gauge group S U ( N )  the 

correlation between two lattices A and B is defined as 

1 Z R e T r ( ( U  t ')A (Ut)B) (23) C ( A , B )  = nlN 
l 

Here the sum is over all links I and nl is the total 

number  of links. This quant i ty  is unity when A and B 

are the same, and vanishes for uncorrelated lattices. 

The figure shows that  while the heat-bath algori thm 

gives a reasonably rapid monotonic decrease of the 

correlation, the overrelaxation approach decorrelates 

still faster and in a highly damped oscillatory fashion. 
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In the case of SU(2) the matr ix  interacting with 

a link is always proportional  to a group element. 

Projecting onto this element to obtain U0 gives a 

trial change U with exactly the same action, and the 

change will always be accepted. Thus the algori thm 

is deternfinistic and iificrocanonical. For SU (3) this 

is no longer exactly the ease, but the acceptance is 

quite high and motion between different energy shells 

sh~w. Nevertheless, decorrelation remains quite rapid, 

being several times faster than optimized conventional 

algorithms. Recent studies of blocked correlation 

flmctions 13 show that the improvement  in correlation 

times applies as well to hmg range gauge invariant 

operators. 

3. F E R M I O N S  

I now turn to the discussion of fermionic algorithms. 

As essentially all approaches begin by integrating out 

the fcrirdonic fields to give a determinant ,  I will begin 

my discussion after that step and a t tempt  to find con- 

figurations of the gauge field alone with a probability 

distribution given by 

Peq (A) o¢ tAI (A) le  SG(A). (24) 

I will assume at the outset that [ M ( A )  I is a non- 

negative quantity, so that eqn. 24 makes sense as a 

probabili ty distribution. I also will assume that  M 

is a real matrix.  This is mainly for simplicity in the 

following discussion, although certain complications 

arise with complex M. 

There exists a rather straightforward scheme for 

updating A while satisfying detailed balance with the 

distrihution in eqn. 24. First,  just as in a Metropolis 

et al. procedure fi)r bosonic fields, select a trial change 

,-i with an arbitrary trial t,robability PT, A (fl) .  Then 

generate a random real vector X with a Gaussian 

distribution 

P (x) ~ ~ x=/~. (25) 

Finally, accept A with prol)ability 

P~,~,. m i n [  1 , PT..-4 (.4) e-So e (5,1 *MX)=/~" 

L 
(26) 

sG, st,- f, and M denote sG "ere 

(.,',), and respectively. Note the similarity 
\ / 

of this with eqn. 3 for the bosonic case; only the final 

factor is new. 

To justify this procedure, I verify detailed balance. 

As X is determined stochastically, this involves an 

integral over that field. To study the rate of flow of A 

into .~, consider 

P ( A ~ fi ) Peq ( A ) cx 
(27) 

/ dX e X~/zPT, A (fi)  PaceP, q(A).  

Now change variables of integration from X to ¢ MX, 

noting that the Jacobian for this t ransformation is 

contained in the factor of Peq (A). This gives 

(28) 
As with eqn. 4, detailed balance is manifested in 

the symmetry of this expression under interchange of 

primed and nonprimed indices. 

Let me now make three remarks on this proce- 

dure. First,  this is a disguised form of the algori thm 

presented by Weingarten and Petcher.  6 Indeed, the 

coupled distr ibution for the fields A and ¢ - MX is 

P ( A , O )  oce Sa-(M '*)2/2. (29) 

Second, I note that a slight variati ,m of the algo- 

r i thm makes the replacement 

3,I - iMx ~ M f l  iX (30) 

in the acceptance criterion. While the factors shift 

around a bit, it is still easy to verify detailed balance. 

This variation is the "look ahead" algori thm discussed 

by Grady. 14 

Finally, note that to construct ~I--IMX requires 

the inverse of our large fermionic matr ix  ~I  applied to 

a given vector. This requires the solution of a large 

system of linear equations via a conjugate gradient 

or other procedure. As a consequence the algori thm 

requires computer  time growing as the volume of the 

system squared. One factor of volume comes from 
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the sweep over the system variables, and another from 

the optimistic assumption that  the conjugate gradient 

algori thm will adequately converge in a fixed number  

of iterations, each of which requires a time growing 

linearly with the volume. 

This t ime growth as the volume squared is common 

to many exact algorithms, and is considerably better  

than the naive direct calculation of the determinant  

of M,  which would give a fourth power of the volume 

behavior. In this and the following discussion of 

volume dependences, I assume that all couplings are 

being held fixed and ignore any additional slowing 

from critical behavior. 

Because of the severe computat ional  requirements 

with this algorithm, most current simulations make an 

additional approximation involving a small step size. 

The hope is to avoid calculating I Q - I M x  after each 

change by assuming that small changes will allow but 

a single conjugate gradient inversion per sweep of the 

entire lattice. In particular,  if M is near M,  then 

1~1  ~ [ 1  M - I  ( f f I _  M )  M - ,  

This implies 

e(M 'MX)% X'/2 ~¢MX (( ~) - + o  . ~ - M )  (32) 

where 

MI- 'X .  (33) 

Ignoring the higher order corrections, this means one 

can do an ordinary bosonic updat ing of the A fields 

while holding fixed ~ and X in the effective action 

ST SG ¢MX. (34) 

At the end of any calculation one should extrapolate 

observables to a vanishing value for the size of the trial 

changes. 

This framework forms the basis of several popular 

fermionic algorithms. R. Gavai and 115 proposed using 

the above effective action in a conventional Metropolis 

et al. scheme. Other approaches being pursued 

are Langevin updating,  4 microcanonical methods 3 and 

hybrids of these. S The point I wish to emphasize here 

is that these algorithms all treat the fermionic part 

of the problem in the same manner;  they differ only 

in the approach used to simulate the bosonic problem 

defined by the action in eqn. 34. 

The pseudofermionic method 2 differs slightly from 

the above. Here instead of a single pair (X,~) of 

auxiliary bosonic fields, an ensemble of such is taken. 

In particular,  consider fields X,, i 1 . . . N ,  each 

chosen with Gaussian distribution P(Xi)  cx e -X~/2, 

and fields ~i - M t - l x i  • The pseudofermionic scheme 

is equivalent to updat ing the A fields with a small step 

size using an average of eqn. 34 over this ensemble 

1 (35) S T -~ S G -- 
i 

To justify this, elementary manipulat ions show that 

as N ---~ oc 

iM +O - . (36) 

Thus the method directly calculates changes in an 

effective action including the fermionic determinant .  

Ref. 16 showed two distinct ways to remove the above 

higher order corrections to give exact, but volume 

squared, algorithms also based on an ensemble average 

over pseudofermionic fields. 

As the number  N of pseudofermionie fields de- 

creases from a large number  to unity, one interpolates 

between this algori thm and the previously mentioned 

approaches. Figure 2, taken from Ref. 15, shows the 

variation of the average plaquette with step size for 

various numbers of pseudofermionic fields. 

In the original presentation of the pseudofermionic 

algori thm a Monte Carlo technique was used to obtain 

the auxiliary fields, rather than the above method 

using conjugate gradient inversions on a random field. 

The field ¢ M t 1X has probabili ty distribution 

P (~) ~ e (Mt~) ~/2. (37) 

As this function involves only local interactions of 

the ( field, it is easily simulated by standard Monte 

Carlo simulation. Indeed, in all the algorithms dis- 

cussed above, one has two options. One could gener- 

ate X with Gaussian random numbers and then find 
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- Mr IX via a time consuming conjugate gradient 

inversion. Alternatively, one could to a time con- 

suming Monte Carlo to obtain ~ directly with the 

distribution in eqn. 37 and then calculate X = Mt~. 

Which of these options is preferable may be only a 

mat ter  of taste. 

7 t - 

0.4 
t 

0.35 I _URE GAUGE 
<P> 

0.3 
• N~p=l 

o N~#=2 
~. N~=3 
a NO=5 
x PSEUOOFERMIONS 

0.35 i I 07 0.8 0.9 1.0 
ACCEPTANCE 

Fig. 2. The average plaquette as a function 

of the acceptance probabili ty for a Metropolis 

et al. hit. The various values of N¢ represent 

the number  of pseudofermionic fields averaged 

in the effective action. The model is SU (3) with 

8 flavors on a 44 site lattice at fl - 4.5. All 

curves should extrapolate to the same value at 

unit acceptance. The lines are linear fits. 

I now return to exact algorithms and discuss a class 

of such wherein a large number  of variables are updated 

simultaneously via a global accept/reject  step. The 

motivat ion for this is that the exact new action is hard 

to calculate, requiring time proportional  to the volume 

even when only a single variable is changqd, and thus it 

might bc desirable to calculate the action less often by 

updating many variables simultaneously. This forms 

the basis for algorithms discussed in Refs. 17-19. The 

idea, however, has a danger that  one will have large 

increases in the action if many variables are changed 

and thus final acceptances may be unfeasably small. 

To see the potential  problem, first consider making 

an unbiased trial change on some variable A and pick 

fl = A + 8A (38) 

where, because the change is unbiased, 

{6A)  -- 0.  ( 3 9 )  

A simple Metropolis et al. algori thm would accept this 

with probabili ty 

P a c c = m i n [ 1 , e - ( S - s ) ] .  (40) 

To analyze this further,  consider the expected value of 

the action change 

( S - - S )  = \ OA + 2 0 A 2 /  ~ ( 9 ( 6 A s ) "  (41) 

Here the expectat ion value is both  over the trial 

changes and over equil ibrium A fields with P (A) cx 

e - s .  The first term on the right hand side of eqn. 41 

vanishes by vir tue of eqn. 39. For the remaining term, 

use the identi ty 

Od 2 / = OA ' (42) 

which follows from a partial  integration in the defini- 

tion of expectation value at equilibrium. Ignoring the 

higher order terms gives 

<~ - s> JA > 0. (43) 

Thus I conclude that  on the average a random change 

increases the action by an amount  proport ional  to the 

square of the step size. 

Now consider updat ing a large number  V of in- 

dependent variables together. If they are all given 

simultaneous unbiased trial changes, then there will be 

a coherent addit ion of the above average trend. Thus 

the expectat ion for the overall acceptance is 

Pace ~ e CV(~A)~ (44) 

where C is a constant factor. To maintain  a reason- 

able acceptance one should take 8A ~ 1/v/~ 7. Now 

suppose we make N sweeps over our lattice. The total  
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distance AA that a given variable changes should be 

approximately given by the random walk formula 

AA ~ 6AV/N ~ v/-N-/I ", (45) 

and the number  of sweeps required to obtain a sub- 

stantially different configuration should grow as V. If 

V is proportional  to the system volume, then the over- 

all algori thm requires time growing as w~lume squared, 

one factor of volume from the number  of sweeps, and 

the other  from the fact that  each sweep is proportional 

to the volume. 

For a bosonic simulation this growth would be 

a disaster. The conventional algorithms only grow 

as the system volume, and thus any gain involving 

updating many variables simultaneously would require 

some major  additional cleverness. However, for exact 

fermionic algorithms we already are starting with a 

volume squared behavior,  and thus nothing appears to 

be lost by going to global updates. 

I now generalize the above discussion to biased 

global changes. To proceed, recall the t reatment  in 

eqns. 12-19. Thus consider the trial change ii  

A + ~fe p 4 eF (A) and acceptance P~c¢ rain [1, e ~'] 

where 

cx S( f l )  +p'2/2 S(A) p2/2 (46) 

with/? p+vQ(F(A)~  F( f t ) ) .  Using(p  ~) l a n d  

the vanishing expectation for odd powers of p gives 

e < ( 0  O ÷ 2 F ( A ) ) \ ( 0 S ( A )  + 2 F ( A ) ) > O A  (47) 

+ o < )  

A partial integration similar to that used for eqn. 42 

converts this to 

e / ( O S ( A )  ~2F(A))2> O(e 3) ,48) <~> = \ \  ~ X  + 

Thus again a negative quant i ty  appears in the expo- 

nent in the acceptance condition. I will return shortly 

to the ease where F is chosen as in eqn. 18 so that the 

O (e) term vanishes. 

With V variables being updated simulataneously, 

eqn. 44 is now replaced by 

Pace ~ e -cV' (49) 

To have reasonable acceptance requires e ~ 1IV. Since 

A now has a driven drift, eqn. 45 changes to 

AA ~ eN ~ N/V. (50) 

As before N must grow as the system volume and 

the total computer  time grows as the volume squared. 

However, now the coefficient of this volume squared 

behavior depends on the choice of the driving force 

F (A). In particular,  it may be possible to reduce this 

coefficient to a practical size. 

One way to do this would be to update  the entire 

lattice with a simply calculable effective action Self. 
For example, one might begin by merely shifting the 

gauge coupling in the pure gauge action, and later use 

an effective action motivated by the hopping parameter  

expansion. ~° This sweep should generate a trial new 

configuration with a probabili ty satisfying detailed 

balance with respect to the effective action 

PT,c (O) e ' . , ,  PT, : (51) 

Finally, to make the algori thm exact, accept C' with 

conditional probabili ty 

Pace rain 1, . e s (52) e-S~/! 

where S is the full action including fermionic effects. 

For example, using the formalism of Ref. 6, this would 

be 

S(A) SG 4 (-~f 1 ( A ) ¢ ) 2 / 2  (53) 

Given such an procedure, one would adjust both the 

step size and the parameters  in Self to optimise 

deeorrelation times. 

This essentially concludes what I actually presented 

in my talk at Seillac. Let me now go on and dis- 

cuss further what happens when the Langevin choice 

F (A) os is made for the driving force in the trial 20,4 
updating. In this case the order e term in eqn. 48 van- 

ishes; thus, it is desirable to consider higher orders. 

Remarkably, identities similar to eqn. 42 yield an ex- 

pected value for the order e 2 term which also vanishes. 
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Going still one order filrther, and using more partial 

integrations, I find 

1 (o2s(A)' 3\ 
96 • OA s ] ~ 32 \ OA 2 ] / (54) 

Assuming this expectation is positive, which I have not 

proven in general, the above argument when V vari- 

ables are updated simultaneously gives e ~ 1/V -U3 

and an overall time for decorrelation 

T ~ ~r4/3, (55)  

a growth only slightly worse than the linear growth of 

the pure bosonic theory. 

This algorithm was proposed in Ref. 17 and tested 

further with somewhat discouraging results in Ref. 18. 

Ref. 19, discussed by Kennedy at this conference, 

presents an interesting variation on the above. I will 

now discuss a slight variation on that variation. With 

biased changes, one constructs both the trial new A 

and the negative of the reverse noise needed to return 

A + ~ e p + e F ( A )  

If A is initially in equilibrium, then the coupled prob- 

ability for A and p is 

P ( A , p )  cx e -s-p2~2. (57) 

If we consider the conditional acceptance as being for 

both zi and .5 considered as a pair, then this coupled 

probability will be preserved. 

The set of eqns. (56) represents a discretization of a 

microcanonical evolution of A and p under a canonical 

Hamiltonian H -- S ( A ) + p2/2. The mierocanonical 

time step is v Q. Furthermore, this particular mapping 

exactly preserves areas in phase space 

dA dp all4 d~. (58) 

The scheme proposed in Ref. 19 is essentially to iterate 

eqn. 56 several times before making the accept/reject 

decision. This makes the hybrid algorithm of Ref. 5 

exact, just as the procedure with a single step makes 

the Langevin evolution exact. The hope is that 

the microcanonical evolution will sufficiently restrict 

changes in the action that the final acceptance will be 

remain high even for reasonable step sizes. 

This procedure contains several parameters which 

can be adjusted for optimization. First is the number 

of iterations of eqn. 56 before the global accept/reject 

step followed by a refreshing of the momenta p. This 

corresponds directly to the refreshing frequency in 

Ref. 5. Then there is the step size e, which presumably 

should be set to give an acceptance in the range 30- 

50%. Finally, one can also vary the frequency with 

which the auxiliary scalar fields ¢ are updated. The 

preliminary results in Ref. 19 are quite encouraging, 

and more studies are needed. 
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