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MONTE CARLO ALGORITHMS FOR
LATTICE GAUGE THEORY

MICHAEL CREUTZ
Brookhaven National Laboratory, Upton, NY, U.S.A.

Abstract In these lectures I review various techniques which
have been used in numerical simulations of lattice gauge theories.
After formulating the problem, I discuss the Metropolis et al.
algorithm and some interesting variations. I then summarize
the numerous proposed schemes for including fermionic fields in
the simulations. Here I also treat Langevin, microcanonical,
and hybrid approaches to simulating field theories via differential
evolution in a fictitious time coordinate. I conclude with some
speculations on new approaches to fermionic simulations.

I. INTRODUCTION

Lattice gauge theory has become the primary theoretical tool for
obtaining non-perturbative information about the gauge theory of
quarks and gluons.! John Kogut’s lectures at this meeting treat
the basic motivations for this approach. To obtain quantitative
numerical information on the solution of this theory, Monte Carlo
simulation is now the dominant technique. My lectures review the
various algorithms used in these simulations.

While Monte Carlo methods are quite old, their use by particle
theorists to study quantum field theories is rather recent. The
techniques are borrowed directly from the solid state physicists. This
is possible because Feynman path integral formulation of quantum
field theory exhibits a mathematical equivalence to classical statistical
mechanics. Indeed, the path integral is formally a partition function.

The generic partition function we wish to simulate takes the form

7= [ (@) (@) (@) 5O, (1)
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Here the gauge fields are denoted U and the quark fields by ¥ and
*. Usually the action is quadratic in the quark fields, and we write

S(U,,9") =S (U)+¢"M(U) ¥ (1.2)

where M {U) contains both kinetic and mass terms for the fermionic
fields and S¢ represents the pure gauge part of the action and depends
on the gauge fields U only. The quark fields are anticommuting
objects, a fact that considerably complicates computer simulations.
I will return to this point later, and for now consider only the pure
gauge theory, for which eqn. 1.1 reduces to

Z= f (dU) e~%6. (1.3)

I will frame my discussion in terms of standard lattice gauge theory.
Thus the variables U;; are elements of the gauge group associated
with the bonds of a hypercubic lattice. The integral over (dU)
represents integration over all of these variables using the invariant
group measure.? Although there are numerous interesting variations,
I will restrict myself in these lectures to the standard Wilson action

Se = Z% Re TrU, (1.4)
r

where the gauge group is SU(N) and the sum runs over all
elementary squares or plaquettes p on the lattice. The quantity U, is
an ordered product of the group elements U;; around the square in
question.

The Feynman path integral reduces quantum field theory to
quadrature.® Indeed, the goal of the Monte Carlo approach is
to numerically study integrals of the type appearing in eqn. (1.3).
These integrals are, however, of rather large dimensionality. A 10%
site lattice with the 8 parameter gauge group SU (3) makes eqn. (1.3)
a 32000 dimensional integral. The appearance of large numbers im-
mediately suggests statistical techniques. Indeed, consider a familiar
statistical system, say a glass of beer. The corresponding partition
function would be an integral over the positions of all the contained
molecules. However, to know the basic properties of beer, one need
not consider all these possible configurations. All you need is a few
dozen glasses of beer to know its important characteristics.
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This, then, is the basic idea of the Monte Carlo approach. One
replaces integrals over all possible fields by sums over a few typical
configurations. These states are sampled with weighting proportional
to the “Boltzmann weight” e 5¢. Green’s functions then follow from
expectation values in an ensemble of such configurations. As the size
of the ensemble goes to infinity, this average becomes exact. On a
finite ensemble, fluctuations of an observable give a measure of the
statistical error.

A Monte Carlo program for a lattice gauge theory creates a Markov
chain of configurations. An initial state of the lattice variables is
stored in the computer memory. Pseudo-random changes are then
made in such a manner that the ultimate probability of encountering
any configuration C with corresponding action S¢ (C) is proportional
to e~5¢, Each step in the algorithm is defined in terms of the
probability P (C’,C) for taking configuration C into configuration
C'. As this is a probability, it has the properties

P(c',C) =0, (1.5a)
> pP(c,c)=1 (1.5b)
CI‘

In this and the following equations the sum is over all possible
configurations; this is a shorthand notation for the integral over all
U in eqn. (1.3).

The probability function P (C’,C) determining an algorithm is by no
means unique; indeed, there are many different algorithms in common
use for bringing lattices into equilibrium. One obvious necessary
condition is that an equilibrium ensemble be left in equilibrium.
Thus, considering P as a matrix, the Boltzmann weights should form
an eigenvector with unit eigenvalue

e=53(€) = 3" P (c, ") e56(). (1.6)
C'

Remarkably, if the algorithm also has eventual access to all
configurations, this condition is sufficient to take any ensemble closer
to equilibrium.

To make this more precise, I introduce the concept of a distance
between ensembles. Consider two ensembles, E and E', each
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containing a large number of configurations. Denote the probability
density for configuration C in E or E' to be p(C) or p'(C)
respectively. Then I define the distance between E and E' to be

lE-E'=>|p(C) -9 (C)] (1.7)
c

This non-negative quantity vanishes if and only if the ensembles have
equal probability distributions.

Now suppose that E' resulted from the application of an algorithm
satisfying eqn. (1.6) to £

Fc)=>_P(c,c)p(c. (1.8)
Cf

We are interested in the relative distances of £ and E' from the
equilibrium ensemble E.,, defined to have a probability distribution

Peg (C) o e756(0), (1.9)

Combining eqns. (1.5-1.9) gives the desired result that the algorithm
reduces the distance from equilibrium

|E' — Bl

- SIS P(0.0) () -5a (©)
<D P(C,C)[(p(C) - peqg (C)) ]

cer
= ||E — Eql|. (1.10)

Note that if P(C,C") is ergodic, that is if there is non-vanishing
probability to reach any configuration, then this inequality is strict
whenever E is not in equilibrium. This also implies uniqueness for
the stationary distribution.

To insure that an algorithm has the equilibrium distribution as an

eigenvector, most schemes used in practice are based on a sequence
of steps, each satisfying a condition of detailed balance

P(C',C) e %6 = p (¢,C") e56(C), (1.11)
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Summing over C' and using eqn. (1.5b) immediately gives eqn. (1.6}.
In words, when the algorithm is applied to an equilibrium ensemble,
eqn. (1.11) implies that the rate of taking configurations C to C’ will
equal the rate of taking C' to C. Thus there will be a steady state
and equilibrium is maintained. Detailed balance is not, however,
a necessary condition. Indeed, equilibrium could still be a steady
state with an algorithm generating a net circulation amongst the
configurations.

Note that in general the product of two different steps each satisfying
detailed balance does not. Usual Monte Carlo treatments update
the lattice variables in a prescribed sequence. Thus a full sweep of
a lattice will not in general satisfy detailed balance. Nevertheless,
this is irrelevant to establishing equilibrium, which only requires the
eigenvector condition of eqn. (1.6).

In the following section I present some results of simple simulations
using various algorithms. To simplify programming, these all used
skew periodic boundary conditions on a 7 X 7 X 7 x 6 lattice. The
links in any given direction were updated in a checkerboard style,
with all those eminating in a positive direction from odd sites being
updated before those from even sites. Where error bars are shown,
they were obtained by repeating the respective experiments several
times.

Skew periodic or helical boundary conditions are convenient for
rapidly finding neighbors. Consider working on a Nz X Ny x N; X N;
lattice. A site at integer coodinates (z,y,z,t) can be uniquely
associated with the integer

J=z+y(Ne—1)+z(N; — 1) (Ny — 1)+t (N — 1) (Ny — 1) (Nz(— 1))

, 1.12

The neighbors in any particular direction are found by merely shifting
7 by an appropriate amount. Note, however, that then a shift of z
by N is equivalent to shifting vy by one, and so forth. The lattice
is truely periodic only in the time direction. Note that to divide
sites into two classes according to their parity, as on a checkerboard,
requires N, Ny, and N, to be odd and N; even.

Most present supercomputers are vector machines, which means that
they are particularly efficient in doing a repeated computation on long
strings of numbers (vectors) occupying consecutive memory locations
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in the machine. This feature is easily utilized in lattice gauge theory
where the various steps involved in a Monte Carlo updating can be
performed on sequences of independent gauge variables. This also
makes it convenient to have subroutines do often needed tasks such
as multiplying strings of matrices together. Structuring a program
in this way, with long inner loops, also helps performance on serial
machines because of reduced overhead.

For the following, it is useful to have a simple measure of the
correlation between two lattices A and B with corresponding links
(g1) 4 and (g1) g. For this purpose I define

C(4,8) = —= T ReTr ((67), (@)p). (113
i

where the sum is over all links ! and n; is the total number of links.
This quantity is unity when 4 and B are the same, and vanishes for
uncorrelated lattices. I will be considering lattice B obtained from A
through a few applications of various Monte Carlo algorithms. The
speed with which this correlation drops to zero is then one indicator
of the efficiency of an algorithm.

II. METROPOLIS, HEAT BATH, AND OVERRELAX-
ATION ALGORITHMS

Early in the history of Monte Carlo simulation, Metropolis, et al.*
presented a particularly simple way to enforce detailed balance by
an acceptance criterion on trial changes. Consider updating a single
gauge variable U. The Metropolis et al. procedure begins by
considering a trial new value U’ to replace U. This is selected with
an arbitrary probability distribution Pryy (U'). Here the subscript U
on P is a reminder that the trial change can in general depend on the
old element. Finaily, the change to U’ is accepted with a conditional
probability

Pr e (U) o EXP (~8g (U"))
"Pry(U') " exp(=Sa(U)) 1

To implement this, a random number uniformly distributed between
0 and 1 is generated. If this number is less than P4, then the change
is made. If this conditional probability is not met, then the change
is rejected and the old value of U is kept.

P4 = min l 1 (2.1)
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This construction automatically satisfies the detailed balance condi-
tion. When U’ # U, the overall probability P (U',U) for taking U to

U' is Pry (U') times P4. Multiplying by e 56(U) gives
P(U',U) e 5eWU) =

min [PT,U (") e 5, Py (U) 3*SG(U')]- (2.2)

Detailed balance is manifested in the symmetry of this expression
under exchange of primed and nonprimed variables.

As usually implemented, U’ is found by multiplying U by a group
element A which is chosen with a probability distribution peaked
around the identity and with equal probability for A and A~!. For
example, this can be done by choosing & from a table which contains
the inverse of each of its elements. This particular method of
choosing the trial change has the symmetry property

Pry (U") = Pry (U). (2.3)

This is convenient because the ratio of Pr factors in eqn. (2.1) is
then unity and can be ignored.

This approach contains an essential dependence on two parameters.
The first represents the average distance the element 4 lies from the
identity. If this distance is too large, the trial energies will likely be
large and the changes will rarely be accepted. On the other hand, if
h always lies too close to unity, the changes will usually be accepted,
but their small size will make the exploration of phase space rather
slow. Lore is for a compromise with an acceptance rate of order 50%.

The second parameter of this standard approach is the number of
trial changes attempted on any link before proceeding to the next. In
most statistical mechanics problems this is taken to be one; however,
for gauge theories the interaction is rather complicated, requiring
considerable arithmetic to calculate the environment of the link being
updated. In terms of real computer time, it is often of value to
test several trial elements, during which time the multiplication of
neighboring links need not be repeated. Although the number of
such “hits” is a useful parameter in this standard application of the
Metropolis et al. algorithm, I will shortly discuss a variation of the
algorithm where but a single hit is best.
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Fig. 2.1: The correlation between two lattices as a function of the
number of simulation iterations separating them. The gauge
group is SU (3) at § = 2.3. The solid points, the crosses,
and the open circles represent the standard Metropolis et al.
algorithm with 10, 64, and 128 hits per link, respectively.
The open triangles represent the overrelaxation algorithm
discussed in the text.

Figure 2.1 shows the fall off of the interlattice correlation from
eqn. (1.13) as a function of the number of Monte Carlo iterations
separating the lattices A and B. One interation represents a sweep
updating all the lattice variables. Here the gauge group is SU (3)
and B = 6.0. For these experiments the initial lattice had been
equilibrated with multiple sweeps with a 10 hit algorithm. Here
I show rums with 10, 64, and 128 “hits” or trial changes for each
element before moving to update the neighbors. In addition this
figure shows the performance of the overrelaxation algorithm which
I will discuss shortly. These runs used trial elements U' selected by
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multiplying U with a matrix h chosen with probability

P (h)  exp (k ReTrh). (2.4)

I chose k = 28 because, as I will exhibit momentarily, this
empirically optimizes the correlation decrease, at least for this value
of 8. Although the runs in this figure are consistent with approaching
exponentials, it might be dangerous to assume that this continues.
There could be hidden long time correlations which emerge upon
further running.
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Fig. 2.2a: The correlation between two lattices separated by 10
iterations as a function of the bias parameter k. The solid
and open circles are for one and ten hits per link, respectively.
b: The acceptance per hit as a function of the bias parameter.

Figure 2.2a shows the correlation between two lattices separated by
10 lattice sweeps as a function of the parameter k& appearing in
eqn. 2.4 to bias the size of the trial changes. This figure shows results
with both one and ten hits per link. Note that the optimum bias
parameter is approximately 28 independent of the number of hits.
Figure 2.2b shows the acceptance per hit as a function of the bias
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parameter. The optimum acceptance is approximately 30% for this
value of 8 and for this prescription for choosing the trial changes.

The “heat bath” algorithm® is a special case of the generalized
Metropolis et al. approach, wherein the trial element is taken
randomly from the entire group manifold but with a weighting
proportional to the Boltzmann factor. In this case the factors
appearing in the acceptance criterion of equation (2.1) cancel and
the trial element is always accepted. The result is equivalent to the
limit of taking a large number of repetitions, or “hits,” of any ergodic
algorithm to a single variable. This algorithm is in some sense
the most intuitive, being equivalent to placing the lattice variables
successively into contact with a thermal bath at the corresponding

temperature. It is readily implemented for simple group manifolds
such as SU (2).

1 will now discuss a third method® for choosing the trial element I/’.
Suppose I have some simple way to find a group element U which
approximately minimizes the action Sg (U) . Suppose further that Uy
is obtained with no direct use of the element U; that is, Up only
has a dependence on the remaining lattice variables. An interesting
trial element for a Metropolis et al. updating lies on the “opposite
side” of this element Uy from the old value U. In particular, consider
taking

U’ = Uo U’"l Uo. (25)
Note that this construction also satisfies the symmetry relation of
eqn. (2.3). Thus, just as in the usual application of the Metropolis
et al. algorithm, the acceptance or rejection of this element follows

solely from the comparison of a random number with the exponential
of the resulting action change.

The selection in eqn. (2.5) is motivated by overrelaxation ideas as
discussed in the context of Monte Carlo simulation by Adler and
Whitmer.” There are two intuitive arguments for this idea. The
simplest is that the trial element is placed rather far from the old
value without exacting a large energy penalty. Thus one might expect
a rather rapid flow through phase space. A second argument is based
on the overrelaxation idea used in minimization schemes such as used
in solving linear equations. The position of minimum action for a
given variable is indirectly influenced by the variable itself. When
the neighbors were updated, they assumed values which tended to
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accomodate the position of the current variable. If however, that
variable were allowed to float, they would in general move away and
one might expect that the best value for the variable being updated
might lie somewhat further away than the position of lowest energy
with the neighbors held fixed.

The only rigorous requirement on finding Up is that it be independent
of the old link U. There is clearly an advantage in keeping the
selection procedure simple. For SU(3) fields, I determine g;!
from a Gram-Schmidt orthogonalization process on the matrix
interacting with the element being updated. In figure 2.1 I
show the performance of this algorithm in comparison with the
previously discussed standard approach. For all runs in this figure
the correlation appears to be monotonically decreasing, with the
overrelaxation algorithm decreasing the fastest. Indeed, noting the
small change in going from 64 to 128 hits, the figure suggests that
the new algorithm outperforms a heat bath. This is true even with
the naive method for projecting onto the group. I find the acceptance
rate for the trial changes is 57%.

In some cases, most notably with the groups SU{2) and U (1),
the matrix interacting with a link is always proportional to a
group element. Projecting onto this particular element results in
U' of eqn. (2.5) having exactly the same energy as U. Then the
Metropolis et al. prescription will always accept the change, and
the algorithm is deterministic and microcanonical. This causes
two minor complications. First, the total energy of the system is
fixed and thus will not relax to any value other than where it is
initially set. Second, the algorithm is actually independent of the
temperature #~!. Indeed, as with other microcanonical algorithms,
the temperature should be measured during the simulation with
some sort of thermormeter, such as an average kinetic energy,® using
an auxiliary variable with simple dynamics,® or from a dynamical
equation involving both the temperature and measurable correlation
functions.1®

This issue can be avoided if desired by putting a small amount of
randomness into Uy. For example, Uy could be the product of a
deterministic estimate of the element minimizing the action with
a random element h chosen near the identity. If A has a small
probability of lying anywhere in the group, this would also eliminate
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possible worries about ergodicity. Nevertheless, I have done limited
studies which suggest that correlation times tend to increase with
additional noise in Uy.

Although not microcanonical for SU (3), the algorithm is approxi-
mately so when the system is fairly ordered. Indeed, when all group
elements are unity, eq. 2.5 does not suggest any change. Thus, while
the algorithm appears to move quite rapidly through phase space, it
does not rapidly cross energy shells. Indeed, the plaquette correlation
was studied in Ref. 6, and was found to decorrelate at comparable
rates with this algorithm and a ten hit standard algorithm.

Perhaps the greatest advantage of the overrelaxation approach is its
computational speed due to simplicity. For both SU (2) and SU (3)
Ref. 6 obtained a link decorrelation rate per iteration comparable
to a heat bath. Although the heat-bath algorithm is rather easily
implemented for SU {2), this is not the case for SU (3) and thus
most lattice gauge simulations have used a standard Metropolis et al.
procedure with of order 10 trial changes on any link before proceeding
to the next. Using eqn. (2.5) for the trial changes performs best with
but a single hit; indeed, further attempts to change a given variable
will just return to earlier trials. Furthermore, the construction of the
trial element takes only minimally more computation than a single
kit in a standard Metropolis et al. application. This advantage may
be even greater for spin systems where there is substantially less
overhead involved in calculating the interacting neighborhood of a
variable being updated.

III. INTRODUCING FERMIONS

Fermionic fields provide several challenging obstacles to the field of
lattice gauge theory. One appears already at the level of formulating
an appropriate action. Here we have the notorious doubling of species
appearing in the simplest schemes incorporating chiral symmetry. In
these lectures on Monte Carlo methods I will ignore this issue and
assume that one has an acceptable lattice transcription of the Dirac
equation as manifested in the matrix M appearing in eqn. (1.2).

The problem I will address in some detail is the difficulties in
simulating the partition function of the coupled fermion-gauge
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system
7= [(@4) (@) (@) e (-5 () -¥'M@A)Y). B

As I will be concentrating on fermionic details, I will ignore the
technicality that the gauge fields are group elements and simply write
them as A.

The essence of the problem lies in the fact that the fermionic fields
are not numbers, and that therefore the exponentiated action cannot
be regarded as a probability. Instead, the fields ¥ and #%* are
anticommuting Grassmann variables, integration over which I now
briefly review.

I begin by considering a set {¢;} of anticommuting Grassmann
variables

[1,%5] . = at; + ¥y9: = 0. (3.2)

Generalizing complex conjugation to include these variables, I adopt
the convention that corresponding to each ;, I have another
independent Grassmann variable ;. Furthermore, I postulate

(i) =
(Y1.-.9n)" =¥5... 9. (3.3)

If I consider just a single variable ¢, a general function f (3) can be
expanded with just two terms

f(¥)=fotvh (3.4)

To define integration over an anticommuting variable, I demand the
properties of linearity and invariance under a translation of variables.
These are summarized in the axioms

[t arawn = ([awrw)ar([ww)s @

[awsw)=[awswew). (3.50)
This is sufficient to imply that for the function in egn. (3.4)

[ af () = Kfy (3.6)
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where the normalization K is undetermined. I adopt the convention

K =1t so that
/d¢¢=z‘

/d¢ 1=0

f dp*dip o = 1. (3.7)

Note that under multiplicative rescaling a2 Grassmann integral

e [ s e = ( [ vt (w)) a. (3.8)

This can be written in the heuristic form d (¥a) = (d¢) /a.

For integration over several anticommuting variables, we have
/ diby ... Aty ... = i (1) (P12 (3.9)

The analog of eqn. (3.8) in this case is

[ @) s a9 =i [ awr ) (.10
where M is an arbitrary invertable matrix, |M]| is its determinant,

and (di) denotes dif; ... dY,. Note that eq. {3.1) immediately implies
the Matthews-Salam!! formula for a fermionic gaussian integral

[ @) ¥ = u (3.11)
where (dy*dy) = dyidyy ... dyY,dYn,.

Eqn. (3.11) provides an easy way out of the difficulty that our
partition function is not an ordinary integral. Indeed, we explicitly
integrate out the fermions to convert egn. (3.1) to

Z= / (dA) 1M 5. (3.12)

This is now an integral over numbers and therefore in principle
amenable to Monte Carlo attack. For the remainder of these lectures
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I will assume that the fermions have been formulated such that M
is a positive matrix and thus the integrand in eqn. (3.12) can be
regarded as proportional to a probability measure. If this is not so,
one can always double the number of fermionic species, using M for
the extra ones, thus replacing M by MM?,

Direct Monte Carlo attack of the partition function in eqn. (3.12)
is still not practical because of the large size of the matrix M. In
our compact notation, this is a square matrix of dimension equal to
the number of lattice sites times the number of Dirac components
times the number of internal symmetry degrees of freedom. Thus,
it is typically a tens of thousands by tens of thousands matrix,
precluding any direct attempt to calculate its determinant. It is,
however, generally an extremely sparse matrix because most actions
in practice do not directly couple distant sites. All the Monte Carlo
algorithms used in practice for simulation of this problem make
essential use of this fact.

IV. PSEUDOFERMIONS

Fucito, Marinari, Parisi, and Rebbi!? proposed a simple approximate
method for calculating changes in the determinant of the matrix M.
They begin by rewriting eqn. (3.12) in the form

Z= f (dA) e5°F, (4.1)

where
Spr = Sg (A) — Tr log M (A) (4.2)

For a Metropolis et al. updating scheme one needs to know
the change in the action upon a trial change of A. As a first
approximation, consider taking only small changes in the gauge field
so that the change in the action can be determined from its first
derivative with respect to A

dSpr _ dSg 1 8M

The quantity % is easily calculated for a local M. The inverse of
the matrix M is estimated using

(M_l){j = (5; fz) (4'4)
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where the expectation value is over fields £, called pseudofermions,
and distributed with weighting

P (&) xexp (—§"ME). (4.5)

A standard Monte Carlo simulation is used to give a set of N,
configurations of the £ fields to estimate this expectation value. This
simulation is normally done only once per full sweep of the lattice
variables. This is not a major new assumption because a small step
size approximation is already being made in using only the first
derivative of the action to calculate the changes in the action.

This algorithm, and indeed most of the fermionic algorithms used in
practice, is not exact because of the approximation of small changes
in A. The step size is a parameter in the standard applications of
the Metropolis et al. algorithm. For example, it is determined by the
parameter k appearing in eqn. (2.4). That the step size is sufficiently
small can in principle be determined by comparing results for several
values and doing an extrapolation to zero. Unfortunately, the
amount of computer time necessary for a pseudofermionic simulation
is sufficiently large that this check is rarely made.

Another possible source of error with this approach appears if
the pseudofermionic fields are not calculated with the appropriate
distribution. This would happen with insufficient equilibration time
during the Monte Carlo simulation from which they are obtained.
This error can in principle be eliminated by a trick if M is the
square of a simple operator, say M = DD!. In this case consider
first generating a random vector X with a gaussian distribution

P(X) « XX (4.6)

As all components of X are uncorrelated, it can be rather quickly
generated. Then a simple change of variables gives a properly
distributed pseudofermionic field

X = D¢ (4.7)

This equation can in principle be solved by some interative algorithm
such as the conjugate gradient method. This trick replaces the
convergence of a Monte Carlo updating of the pseudofermionic fields
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with a potentially tedious inversion. I mention it here because, as I
will discuss later, this use of gaussion random numbers is potentially
quite useful with other fermionic algorithms as well.

The finite number N, of configurations of pseudofermionic fields used
to estimate the expectation value in eqn. 4.4 introduces a random
error into the estimate of the inverse of M. These errors, however,
average out in the final extrapolation of observables to zero step size.
This is a point I will return to later when I discuss an algorithm which
interpolates between pseudofermions and the Langevin approach.

V. SOME EXACT ALGORITHMS

The pseudofermionic approach involves an approximation of finite
step size. A similar approximation is inherent in the Langevin and
microcanonical approaches to be discussed later. A simple but time
consuming algorithm with the usual statistical but no systematic
errors was presented by Weingarten and Petcher.!® They observe
that by introducing another set of complex scalar fields ¢ one can
rewrite eqn. 3.12 in the form

7= [ (@a) @5 ) e (~Sc - M) (5

Thus a successful fermionic simulation would be possible if one could
obtain configurations of fields ¢ and A with probability distribution

P(A,¢) x exp(—Sg - ¢*M~1¢). (5.2)

Ref. 13 notes that while M ™! is the inverse of an enormous matrix,
one really only needs ¢*M~1¢, which is just one matrix element of
this inverse. Indeed, there exist reasonably efficient iterative schemes
for finding the inverse of a large matrix applied to a single vector.
Thus it was proposed to directly simulate the partition function in
eqn. (5.1) using a Gauss-Seidel algorithm to calculate M 1. It now
appears that the conjugate gradient algorithm may be somewhat
preferable for this inversion.

The conjugate gradient algorithm to solve the equation & = M~1¢
works by finding the minimum over ¢ of the function |[M¢ — ¢|2.
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The solution is iterative; starting with some &5, a sequence of
vectors &; is obtained by successively moving in directions d; which
maximize the decrease of this function subject to the orthogonality
condition d;MTM d; = 0 whenever 1 # j. This last condition helps to
eliminate useless oscillations in undesirable directions. The algorithm
is guaranteed to converge to the correct minimum in a number of
steps equal to the dimension of the matrix.

In practice, at least when the correlation length is not large, the
conjugate gradient inversion adequately converges in a number of
iterations which does not grow with the lattice size. As each step
involves a sum over the vector, which has length proportional to the
lattice volume, this means that the conjugate gradient step takes a
time which grows with the volume of the system. Thus the algorithm
of Ref. 13 is expected to require computer time which grows as
the square of the volume of the lattice. Such a severe growth has
precluded use of this algorithm on any but the smallest lattices.
Nevertheless, it does show the existance of an exact algorithm with
considerably less computational complexity than would be required
for a repeated direct evaluation of the determinant of the fermionic
matrix.

Two other exact, but also volume squared, algorithms were presented
in Ref. 14. To use a Metropolis scheme to find a configuration of A
fields with distribution

Peg (A) x |M (4) |54, (5.3)

requires knowledge of how the determinant |M| changes when A is
replaced by a trial value A’. Actually one needs only the ratio of
the old and the new determinants, and this can be calculated as a
pseudofermionic expectation value in two ways. First, if we construct
an ensemble of fields £ with distribution

P(£) x e M(A) (5.4)
then we have

M (4| _ 1
P (A)| ~ Texp(—€ (M (A) - M (D) D)

Alternatively, if we construct the fields £ using the trial A’

(5.5)

P(€) oc e~ M4)¢, (5.6)
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then we have
M (4) | _
|M (4) |
Both approaches involve a Monte Carlo to find the ensemble of £

fields inside the Monte Carlo determination of the A fields. Thus
they are also volume squared algorithms.

(exp (-¢* (M(A) - M (4)) €)).  (57)

Grady!® found a particularly intriguing variation on the second of
these two approaches. In particular, he showed that an ensemble
average was unnecessary in this “look ahead” scheme where the
probability for ¢ is determined from the trial field A’. Consider
a trial change A’ chosen with a probability distribution Pr 4(4").
Solely to simplify the following equations, assume that this trial
probability is symmetric under interchange of A and A’, in analogy
with eqn. (2.3). Then generate a single £ field with probability
distribution as given in eqn. (5.6). The prescription is to accept the
change with probability

P =min [1, exp (Sg — S+ & (M' -M)¢)].  (5.8)

Here I use the shorthand notation Sg, Sgy M, and M' for
Sq{4), Sg(4"), M (A), and M (A4'), respectively.

To justify this procedure, consider the overall probability for taking
A to A ' '

P(A— A =Pp4(4) Zi / (de*de) e MEp,,.. (5.9)
4
Here I have defined the normaliza.tioh factor for the ¢ integral
Ze = / (de*dg) e $ME o ML (5.10)

Multiplying eqn. {5.9) by the equilibrium distribution in eqn. (5.3)
and combining things gives

Py(A) P(A— A') < |M||M'|Pra(4)
min [¢~Se—€MC, e~SemEMe] (5.11)

Remembering the symmetry of Pr, we see that this expression is
symmetric under interchange of primed and non-primed variables.
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This is precisely the statement of detailed balance for the equilibrium
distribution from eqn. (5.3).

The fact that a large ensemble of £ fields is not required is a definite
advantage of this approach. Nevertheless, it still contains a Monte
Carlo inside a Monte Carlo to obtain the equilibrated £ field. Thus
as an exact algorithm this still requires computer time growing as
the system volume squared.

It appears that all known exact algorithms for simulating fermionic
fields require volume squared times. To avoid this, most fermionic
schemes used in practice involve some sort of approximation. As
noted above for the pseudofermionic method, this usually involves an
expansion in the size of the variable changes. To eliminate systematic
errors in principle requires an extrapolation to the limit of vanishing
step size.

The advantage of making small steps lies in the fact that a time
consuming step such as a conjugate gradient inversion or a Monte
Carlo generation of pseudofermionic fields need only be done once
per sweep of all the gauge variables. In essence, this is an attempt to
eliminate a Monte Carlo inside a Monte Carlo. Once one is making
small steps anyway, there is no particular loss in using algorithms
formulated in terms of a differential evolution. This is the basis
of both the Langevin %!7 and the microcanonical® methods for
including fermionic fields in lattice gauge simulations.

VI. LANGEVIN, MICROCANONICAL, AND HYBRID
SCHEMES

Both the Langevin and microcanonical algorithms for lattice gauge
theory are formulated as differential equations for evolution in a
fictitious “time” r. While these approaches are applicable for
the pure gauge theory, their main interest appears with fermionic
simulations because a differential evolution permits time consuming
conjugate gradient inversions to be done only once per sweep of
the lattice variables. Although there is considerable overlap of the
material in this section with the lectures of Kogut and Parisi, I
include this discussion for completeness and because repetition from
another point of view is sometimes helpful.
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Rather than in terms of field theory, I frame this discussion in
the context of a single degree of freedom, the coordinate z of a
particle of mass m moving in one dimension. This is mainly for fun,
because the basic ideas of these algorithms are nothing more than
generalizations of Newton’s equation. I will also treat the Langevin
and microcanonical approaches together as limits of a more general
hybrid formalism. There exists an extensive literature on stochastic
differential equations; for a recent review emphasizing nonequilibrium
effects see Ref. 19.

I begin by considering a particle moving in a potential V (z).
Newton’s equation for the particle motion is

dz:z_ ov
A7 R Y

I now doctor this motion by adding two terms. First I add a drag
slowing the particle down with a force proportional to its velocity.
This will tend to damp out any motion until the particle lies at a
minimum of the potential. To keep things moving, I then add a
random noise to the system. Thus consider the equation

dlz 9V _ dz (2_“)1/2 n(r). (6.2)

(6.1)

Mar T "9z Cdr \ B
where a and § are parameters. Here the noise n (r) formally satisfies

(n(r)n () =8(r—7). (6.3)

How the 7 (r) is actually defined will become clearer momentarily
when I make the evolution in 7 disecrete. I have written the coefficient
of the noise as (2a/ ﬂ)” ? with a certain amount of hindsight. It is
convenient to introduce the momentum p of the particle and rewrite
this second order equation as two first order equations

1/2

dr dz m B
dz _p
T (6.4)

For simulation purposes the fictitious time is discreetly made discrete.
Thus consider taking steps of size ¢ in 7. In one such step, p and =
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at time 7 will become p’ and z' at time 7 + ¢. Eqn. 6.4 would thus
transcribe to read

fpre (O e (22}
pP=ptre€ 9z m 3 nl,

¥=z+ % (6.5)

Note that I have written the updating of £ such as to use the new
value p' of the momentum. This amounts to alternately updating
the coordinates and the momenta of the system. Such a “leap
frog” procedure effectively treats these variables at interleaved times.
In the deterministic limit this advantageous technique serves to
eliminate O (62) errors in the evolution.

The quantity n is to be obtained from a random number generator
with probability distribution p (n). The properties required of p (1)
are simply specified in terms of its moments

fdnp(n)n"=1, j=0
=0, 1=1
=1/e, =2
<0 (e‘m) ,i>2 (6.6)

In this equation the first part indicates that the probability
distribution is normalized, the second balances positive and negative
noise, the third normalizes the delta function in eqn. (6.3), and
the fourth eliminates any nasty tails from the distribution. In
many discussions the noise is considered as gaussian, but this is not
generally necessary.

To proceed, I frame the discussion in terms of ensembles of particle
coordinates and momenta. As discussed in section I, a necessary
condition for any simulation algorithm is that it leave the equilibrium
ensemble unchanged. Thus I am interested in finding invariant
ensembles under the evolution of eqn. (6.5).

Consider an ensemble with a probability density P (z,p) of finding a
state with given coordinate z and momentum p. Updating the states



Monte Carlo Algorithms ...

gives a new ensemble with probability distribution
P/(#,7) = [ dz dp P(5,p) P (5,0~ 2,7

=fd:c dp dn p(n) P(z,p)

A little algebra gives the result

P'(z,p) = P(z,p) + € X

0HOP JHAP ta lcai’_P+£a_1_9_+_1_P +0(&)
3z 8p  Op 9z BOPE map 'm ¢
(6.8)

Here I have defined the Hamiltonian corresponding to the original
Newton’s equation of eqn. 6.1

H= -2-1-3-:;; + V (z) (6.9)

In deriving eqn. (6.8) it is necessary to keep terms of order n? because
of the 1/¢ in the third part of eqn. (6.6).

Eqn. (6.8) is equivalent to a Fokker-Planck equation for the evolution
of the probability density P (z,p). It is now easily verified that
to order ¢ a stationary distribution for this evolution is the simple
Boltzmann weight

P'(z,p) = P (z,p) = exp{—f (;—; +V (:c))} (6.10)

When « is non zero so that the algorithm is ergodic, the arguments
of section I imply the uniqueness of this solution. Note that this
distribution factors into a function of p alone times a function of =z.
Thus the equilibrium distributions of p and z are independent.

We see that repeated updating of an ensemble with the stochastic
differential equation of eqn. (6.2) will eventually give thermal
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equilibrium at inverse temperature 8. To apply the technique to
our gauge theory problem and obtain a distribution of fields as in
eqn. 5.2, we merely generalize, replacing the variable z with the
fields A and ¢ and replacing the potential SV (z) with the a.ctlon
Se + ¢*M~1¢. Note that calculating the term mvolvmg az will
require, among other things, the evaluation of

L OM
9A

Thus we will need to know M™1¢, which requires a conjugate
gradient or equivalent inversion every time step.

—aqu*M“lcb =-¢"M™'—M"¢. (6.11)

It is interesting to consider various limits of this stochastic evolution.
First, suppose that in eqn. {6.2) I had not included the drag
term. This situation follows from taking « to zero with 8 varying
proportionally to keep the stochastic term. Thus with noise but
no drag we go to infinite temperature; that is, the random force
will, on the average, increase the system energy without bound.
Alternatively, if I include the drag but not the noise, the system will
drop into a minimum energy state at effectively zero temperature. A
finite temperature simulation requires the presence of both the drag
and noise terms.

Note that the distribution in eqn. 6.10 is independent of the
parameter «. Thus there really is a class of many possible
algorithms. One of these corresponds to taking parameter m to zero.
This can be effected by simultaneously adjusting a and rescaling
the units of time. In this case eqn. (6.2) becomes first order and
represents the usual Langevin equation as used in Refs. [16] and [17].

d av  [2\?
f =5+ (E) n(r). (6.12)

For later reference, I write this in the discrete form for evolving z to
z' in one time step of length €

1/2
P =z ex (%Y;+(%) q). (6.13)

Another interesting limit corresponds to taking « to zero while
holding B constant. This case removes both the drag and noise
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terms, and returns simply to Newton’s equation. This is the
microcanonical approach, first advocated for pure gauge theories by
Callaway and Rahman ® and proposed for fermionic simulations in
Ref. 18. In this case the algorithm has no explicit dependence on
B. Indeed, as mentioned in section II, microcanonical algorithms
require the temperature to be determined after the fact by some sort

2
of thermometer, such as the average kinetic energy %kT = (&), To
change the temperature, one should start with a different total initial
energy, which remains constant during the evolution.

Intermediate values of « represent hybrid algorithms which inter-
polate between the Langevin and microcanonical approaches. An
alternative hybrid approach was recently proposed by Duane and
Kogut,?® and is discussed in Kogut’s lectures at this meeting. They
advocate updating with a microcanonical scheme for some number
of iterations and then doing a step where all the momenta touch
a heat bath. Eqn. (6.10) shows that the momenta in equilibrium
are gaussianly distributed; thus, the latter step consists of replacing
them all with new gaussian random numbers.

When the microcanonical updating time is small, this approach is
easily related to the Langevin equation. To see this, consider first
replacing p with a gaussianly distributed random number and then
update the system microcanonically for a total time 6. This will take
the coordinate z into

—_ rMooov Y 3
¥=z+ + 0 (6°%). (6.14)

If the microcanonical updating time & is small enough that the
0 (63) effects are negligible, then this evolution is identical to that
1
62

in eqn. {6.13) where = plays the role of ¢ and (L) d p represents

2m me
the noise n.

With these hybrid approaches, one could adjust together both the
step size ¢ and either the parameter a or the refreshing frequency
in such a manner as to hold the finite step errors in observables at
an acceptable size. Then an optimum algorithm would minimize the
number of steps required to decorrelate lattices under a measure such
as defined in eqn. (1.13).
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VII. ANOTHER ALGORITHM

In this section I discuss another fermion algorithm recently presented
by Gavai and myself.2! The approach has similarities with the
Langevin evolution but is based on a small step-size limit of the
Metropolis et al. scheme. A simple meodification permits an
interpolation to the pseudofermionic algorithm.

The goal is to generate an ensemble of configurations of fields A and
¢ distributed as in eqn. (5.2). To explicitly insure the positivity of
the fermionic matrix M, assume that it is a square

M = DD! (7.1)

This effectively doubles the number of fermionic species, one
interacting with A via D (A4) and the other via D! (A4). I will later
mention a possible way to remove this doubling. With this form for
M, the desired probability distribution for A and ¢ is

P(A,) x exp (—SG -9’ (DT) - D_lc,b) . (7.2)

The algorithm consists of alternate sweeps through the ¢ and A
fields. The ¢ updating is particularly simple and makes use of the
gaussian random number trick mentioned at the end of section IV.
First generate a random vector X with gaussian weight

P(x) x e X'X (4.6)
I now change variables and construct
¢ = DX. (7.3)

This will be distributed with the desired probability
-1
P; x exp (-—qb* (DT) D_1q5) . (7.4)

The Jacobian factor associated with the change of variables in

eqn. (7.3) is irrelevant as the fields A are being held fixed during this
step.
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This construction is computationally fast because the individual
components of X are independent and because the matrix D is
assumed to be local. Thus we rapidly obtain a new ¢ fleld
independent of its old value. This trick for updating ¢ is also used in
the implementation of the Langevin algorithm in Ref. 16. Actually,
the remainder of the algorithm does not explicitly need ¢. Although
I could eliminate this field and consider only X, the discussion is
simpler in terms of the coupled probability in eqn. (7.2).

In addition to the field X, the updating of the gauge fields will require
another quantity

¢=(p) x=m. (7.5)

This, unfortunately, is not so trivial to obtain, requiring a conjugate
gradient inversion. Such a step is in common with the Langevin and
microcanonical approaches.

I now come to the updating of the gauge field. What would be
most desirable would be something like a Metropolis et al. procedure
where the acceptance of trial changes is governed by changes in the
action

S(A,¢)=Sc+¢" (DT) - D™ 1. (7.6)

However, this is impractical because every time A is changed, D
changes and its inverse on ¢ would have to be recalculated. To avoid
this slow procedure, consider making only small changes in A. The
changes in the action are then related to the first derivative with
respect to A

=50 2Re(¢ (D) p1ZZp1s)

dA A
= % s -g%x - x*ggé. (7.7)
Now consider the quantity
Sr(4,X, &) = Sg — &' Dx — x*Dl¢. (7.8)
Eqn. (7.7) implies
as aSr
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If we consider small changes in A, first order changes of the action
S at constant ¢ equal the changes in St calculated at constant X
and £. As only changes in the action enter into the Metropolis et
al. algorithm, updating the A fields using St is equivalent to lowest
order to using the exact action S. This is the proposal of Ref. 21,
and is easily implemented because St is local.

As with the pseudofermion, Langevin, and microcanonical methods,
this algorithm makes a small step size approximation. To have
confidence that the errors induced by a finite step are small, one
should study a desired measurable for a few values of this step
size and extrapolate to the infinitesimal limit. Ref. 16 argued that
for the Langevin algorithm, a finite step represents a simulation
with an effective action which differs from the initial one by terms
vanishing with the step size. If this new action has the same
continuum limit, then even these finite step simulations should give
the same numerical results for physical observables. Nevertheless, an
extrapolation to vanishing step is still necessary to compare results of
different algorithms with a given set of parameters at a finite lattice
spacing.

The solid points in figure 7.1 show the average plaquette P =
(3Re Tr Up) measured with this algorithm for the SU (3) theory at
B = 4.5. This is plotted versus the acceptance per hit, a simple
measure of the step size. This simulation was done using the action
from Ref. 18 with eight flavors and a fermion mass of 0.1 in lattice
units. The zero step limit, which follows from extrapolation to 100%
acceptance, represents the correct plaquette value with the inclusion
of the dynamical fermions. The crosses in this figure were obtained
in a standard pseudofermionic run.

The Metropolis et al. algorithm in the limit of small step size is quite
close to the Langevin approach. Both cases involve small random
changes in the field variables. A standard Metropolis et al. program
first tries unbiased changes about the old field, and then, to maintain
the desired peaking of the distribution towards lower action, rejects a
fraction of those changes which go toward larger action. In contrast,
the Langevin approach always accepts the changes, but makes them
in a direction biased towards lower action. This bias is determined
by the same first derivative of the action with respect to A used
above to construct Sr.
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Fig. 7.1: The average plaquette as a function of the acceptance
probability per Metropolis et el. hit. The parameter Ny
is discussed in the text. Note the interpolation between the
simple algorithm of this section as shown by the solid points
and the pseudofermionic simulation shown by the crosses.

The similarity of the approaches suggests that the finite step errors
should be comparable. To directly make such a comparison, one
should use a common definition of step size. One such measure
would be to use the number of iterations needed to decorrelate
lattices. I conjecture that the behavior of the solid points in figure
7.1 will mimic that of a Langevin simulation when plotted versus the
decorrelation time.

This algorithm also has close connections with the pseudofermion
method. To see this note that our field £ has a probability
distribution precisely the same as the pseudofermionic one in
“eqn. (4.5). Indeed, the present algorithm is equivalent to using
but a single pseudofermionic field for the expectation value used in
eqn. (4.4) to estimate M~'. As mentioned in the last paragraph
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of section IV, the systematic errors from using a finite number of
pseudofermionic configurations average out after the extrapolation to
zero step size.

Clearly the present algorithm represents an extreme case. One
could interpolate between this and the pseudofermionic algorithm by
averaging over some fixed number Ny of £ fields. This may also
be thought of as considering N, species of fermions, each with its
own ¢ field, but then letting each species contribute only 1/N, in
the updating of the A field. As N, increases, we approach the
pseudofermion algorithm. The remaining points in figure 7.1 exhibit
this interpolation.

The allowing of each species to contribute only fractionally to the
updating of the A field may provide a scheme to reduce the effective
number of fermion species overall. Naively, this can remove the extra
doubling introduced in eqn. (7.1) as well as any inherent doubling
in the basic formulation of the fermions. Such a possibility has
been mentioned in the context of both Langevin and pseudofermionic
algorithms. There may, however, be some danger in this procedure
because chiral symmetry breaking and anomalies suggest nonanalytic
behavior as the number of fermionic species varies.

VIII. NEW APPROACHES AND SPECULATIONS

All the commonly used fermionic algorithms, including pseudo-
fermions, Langevin, microcanonical, and that of the previous
section, involve an extrapolation in a step size parameter. This is
unfortunate in that lattice gauge calculations already involve tenuous
extrapolations to zero lattice spacing and infinite volume. On the
other hand, as discussed in section V, all known exact algorithms
require computer time growing as the system volume squared. In
this section I return to such algorithms with the hope of minimizing
the coefficient of this bad growth.

The difficulty with the approach of Ref. 13 is that a time consuming
inversion must be done to test every trial change in the gauge field.
The approximate schemes all work to reduce the frequency of such
inversions to once per sweep. One could imagine making a trial
changes of all lattice variables simultaneously, and then accepting
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or rejecting the entire new configuration using the exact action.
The problem with this approach is that a global random change
in the gauge fields will generally increase the action by an amount
proportional to the lattice volume, and thus the final acceptance rate
will fall exponentially with the volume. The acceptance rate could in
principle be increased by decreasing the step size of the trial changes,
but then the step size would have to decrease with the volume.
Exploration of a reasonable region of phase space would thus require
a number of steps growing as the lattice volume. The net result is
again an exact algorithm which requires computer time growing as
volume squared.

So far this discussion has assumed that the trial changes are made
in a random manner. If, however, one can properly direct these
variations, it might be possible to reduce the coefficient of the volume
squared behavior. An algorithm of this type was proposed in Ref. 22.
For example, one could do either a Langevin or Metropolis et al.
sweep using the action Sr of the last section. By keeping track of all
the probabilities for accepting changes along the way, one could in
principle calculate the inverse probability for taking the new lattice
back to the original in a similar sweep. Then one can construct the
analog of eqn. (2.1) for a generalized acceptance for the entire lattice
which will exactly restore detailed balance. If the changes in St are
a good approximation to the changes in the true action, the factors
in the acceptance criterion should tend to cancel, giving a reasonably
large final acceptance rate. Attempts to use this approach in Ref. 23
were moderately successful, although those authors felt that standard
hybrid Langevin techniques were superior.

There are some interesting variations on this approach. Because the
final acceptance makes the algorithm exact, there is no restriction on
the initial scheme used to find the trial changes. Recent results 17
suggest that a large part of the effect of fermionic loops is simply a
renormalization of the gauge coupling. For heavy quarks this may be
understood in terms of the hopping parameter expansion presented
in Ref. 24. This suggests obtaining a trial configuration by a Monte
Carlo sweep of either the entire lattice or some large fraction using
only the pure gauge action with a different effective value of the
coupling. A final acceptance criterion for this new set of fields can
then be used to restore detailed balance with the full action including
fermionic effects.



Michael Creutz

More precisely, suppose that a trial configuration C' is obtained in a
manner satisfying detailed balance with an effective action Sg

P(C',C) %) = p (C,c") e 5=(9), (8.1)

Detailed balance with respect to the full action § is restored if we
now accept this trial configuration with probability

exp (=55 (1)) _, exp (=5 (U)
e (=55 (U)  exp (=5 (1))

P4 = min { 1 . (8.2)

The essence of this approach is to use for Sg an easily calculated
quantity depending on a small number of coupling parameters. The
latter should to be adjusted in such a manner to maximize the final
acceptance. In this way it may be possible to update many links
simultaniously for a single calculation of the full action S (U), which
in general will involve a slow inversion step. The procedure should
work particularly well when the quarks are heavy so that the first
terms in the hopping parameter expansion adequately describe the
effects of fermions. It remains to be demonstrated how effective such
an approach will be when the quarks become light and the effective
action requires terms of increasing non-locality.
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