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With Monte Carlo methods we calculate the ratio of scale parameters for the adjoint and funda-
mental versions of SU(2) lattice gauge theory. We find good agreement with the perturbatively

predicted value.

The standard SU(3) Yang-Mills theory of quarks in-
teracting through gluon exchange is widely accepted as
the fundamental theory for strong interactions. In com-
parison with the theories for weak electromagnetic in-
teractions, it has yielded a limited range of testable predic-
tions. Perturbation methods and Monte Carlo simulation
on a lattice are the two common schemes for extracting
predictions. They are complementary: perturbative results
- apply to short-distance interactions where the coupling is
small (approaching asymptotic freedom), while lattice
work has been concerned mainly with such long-distance,
low-energy effects as the confining interquark potential.
Because the two techniques are usually disjoint, points of
contact between them have a special significance.

As an ultraviolet cutoff, the lattice removes divergences
and permits numerical studies of the theory as formulated
directly out of bare parameters. We expect that a gauge
theory will remain well defined as the cutoff is removed,
although there is no proof yet. (Such a proof would estab-
lish the existence of a nontrivial four-dimensional quan-
tum field theory.) If the theory is well defined as we ex-
pect, it should yield physical predictions that do not de-
pend on the cutoff scheme. Perturbative predictions have
been extensively checked for regularization-scheme in-
dependence, but now we can use lattice methods to test
scheme independence by varying the details of the lattice
cutoff. :

Numerous variants of Wilson’s formulation' have been
studied. These include changes in the plaquette action,’
changes in shapes of the basic loops used to define the
theory,® and more complicated lattices than the simple hy-
percubic.* The Wilson action is a sum over all plaquettes
of the plaquette action

SD=BtrUD N (n

where B is a constant and Up is the ordered product of
group elements around the plaquette. The group elements
are in the fundamental representation.

A general plaquette action preserving gauge invariance
would be a sum of traces in different representations. For
example, the SU(2) mixed plaquette action

So=B(1—+trUg)+B4(1—+tr Uy) Y))

has the first term in the fundamental representation and
the second term in the adjoint representation. This action
reproduces the classical Yang-Mills action if

2
1 _B_ % 3)

where g is the bare coupling constant. In this paper we
investigate the connections between SU(2) theory in the
fundamental (8 4=0) and adjoint (8=0) formulations.

The adjoint theory has been the subject of numerous
studies. Early work showed that it has a first-order phase
transition.’ In the fundamental theory no phase transition
is found, which supports the confinement hypothesis.
The adjoint transition was somewhat puzzling because the
classical continuum limit of both the fundamental and ad-
joint actions is the Yang-Mills field theory. Subsequent
work with the mixed action showed how to continuously
vary either the strong- or weak-coupling phases of the
SO(3) model into the SU(2) theory.® Thus the adjoint
transition is not deconfining. It has been ascribed to a
condensation of Z, monopoles; these monopoles are ex-
ponentially suppressed in the weak-coupling regime and
should not influence the continuum theory.

This paper concentrates on the asymptotic-freedom
scales of the two formulations. They are interesting part-
ly for technical reasons. First, a rather extreme variation
is predicted perturbatively: the ratio of the two scales is
28.9, a large number. To verify this ratio is to directly
compare perturbative and Monte Carlo techniques, testing
the reliability of both.

Second, the adjoint action has a peculiarity, in that it
does not distinguish between elements of the SU(2) group
differing by factors from the group center. Thus expecta-
tion values of Wilson loops in the fundamental representa-
tion automatically vanish. Numerical comparisons of the
two versions must rely on adjoint loops alone. Monte
Carlo matching of variant actions is usually based on the
string tension, measured by large fundamental loops. In
this way the scale parameters for the Wilson, Manton, and
Villian actions have been measured.”® Here we must
match some other quantity.’

Third, the phase transition in the adjoint model occurs
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at a small value of the coupling. Since the two theories
are to be compared in the weak-coupling region, we are
forced to use extremely fine lattices. In our work, the
bare coupling B=4/g,* is in the neighborhood of 10.
With previous measurements of the string tension K and
the physical SU(3) result V'K =400 MeV, this represents a
lattice spacing of about 1022 c¢m, a small value indeed.
The string tension would be far too small to measure. We
want to show that even these conditions permit useful
Monte Carlo simulation, and our results should be more
clear-cut since the former method requires guessing about
an appropriate scaling region. Since we are not restricted
to this region, we can also minimize corrections of order
g? which contribute when the ratio of scale parameters is
measured.'®

We start with measurements of the ratio R,, where
R,y is defined by

R,y=W(2N,2N)W (N,N)/[W(2N,N)]* - 4

and W (I,J) is the expectation value of a Wilson loop of
dimensions I times J in lattice units. The loops are mea-
sured in the adjoint representation since, as mentioned
above, the adjoint theory makes fundamental loops van-
ish. This ratio is designed to make any perturbative diver-
gences in the loops themselves cancel. R, has a perturba-
tive expansion in terms of the bare coupling

R2=1—p1g02(a)—p2g04(a)+ Tt (5)

The constant p; is independent of the choice of action,
but p, is not. We can define a renormalized coupling, at
this scale, by!!

g.2=(1—R;)/p; (6)

using the R, measured with adjoint loops. Renormaliza-
tion analysis predicts that g,* and g,? are both solutions
to the equation

a dgla)/da=PBg*a)+pg*a)+Bg a)+ -+ ,
(7

where a is the lattice spacing, Bo=11/24?, B,=17/967*,
and B, depends on the lattice action. The solution is

+ Blz— ZBO g2
28,°

Aa= |1 SR

— 2 _ 2
Xe 1/2B,8 (ﬁog2) B,/2By (8)

with scale parameters Ay and A,, respectively. This is a
perturbative result which has also been demonstrated in a
Monte Carlo simulation.!! We do not attempt to verify it
here, but we use the scaling relationship in determining A.

Now, we can choose either go(a) or g,(a) as our refer-
ence coupling. For a given gy(a), g,(a) will depend on
the choice of action; the difference will show up in A,.
On the other hand, g,(a) could be set to some physical
value which is supposed to be independent of the choice
of action. In that case gy must be adjusted to the choice
of action through A, The ratio of scales in one case is
the inverse of the ratio in the other. Following other au-
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thors,'%!2 we fix g,(a) and calculate the ratio of scales for

the bare coupling. According to Eq. (8), as the lattice
spacing becomes small, so do go*(a) and g,%(a); we can
use the first terms of the perturbation expansion. In

terms of the fundamental action '

1/g,%(a)=1/gor*(@)—par/p1+0(gor (@) , )
while for the adjoint action

1/g,(a)=1/804*(@)—p24/P1+0(go4*(@)) . (10)
From Egs. (8)—(10) it follows that Agp/A 4=exp[(ps4
—p2r)/2Bop1]-

The constant p; requires only a short calculation. In
the path integral, W(I,J) is

J1aU (m]e—Stx(TTV)
flav,me—s -

Here [dU,(n)] represents integration over all links of the
lattice, and [ U is the ordered product of group elements
about the I by J loop. The group elements can also
be written U,(n)=expligod,(n)], where A,(n)
=4,%n)o®/2 in terms of the Pauli matrices 0. Let us
define a source J,(n) to be 1 when J,(n) is on the loop
and u=1,2,3, or 4, —1 when J,(n) is on the loop and
u=—1,—2,—3, or —4; and zero when J,(n) is off the
loop. Then we can rewrite [[ U,

W (LJ)=tr{ [[U) = (11

[1 U=exp |igo X, 4,(n)J,(n)+commutator terms

(12)

The commutator terms appear because 4,(n) is a matrix,
but to order g, can be neglected.
Expanding the exponential, we have

W (LJ)=trl—(go2/2)tr 3,( A, (m)A4,(n))
XTI (m) (n)+ -+, (13)

where the sum is over all pairs of links m,n. To put the
propagator in a convenient form, gauge-fixing terms must
be added to the action, but they do not affect the tree-level
result. In a lattice version of the Feynman gauge the
propagator is

. o 7 dbg eitm—m ,
(4 u(m)Abﬂ(”)>=8 bafw _WE;%T (14
where D is
D =sin%(q;/2)+ -+ - +sin¥(q,/2) . (15)

The integral can be rewritten

f—#(zw)‘* 4D~ ? fo dx e "I (ny,x) - I(ng,x)

=Z(n,n,,n3,n4) (16)

with I(n,,x) denoting the modified Bessel function of or-
der ni, etc. In this form, it can easily be done on a com-
puter. Finally, we get a sum over Z constants:
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TABLE 1. Perturbative expansions for the ratio R,y. For
the continuum, the expansion is Rgo=1—0.0661C,g0>+ - -
and C,=2 for the adjoint representation.

2N Expansion
2 1—0.0724C,g0%+ - * -
4 1—0.0766C2g02+ R
6 1—0.0713C,80%+ - - -
8 1—0.0685C,g0%+ - - -
10 1—0.0673C,g0%+ - -

W (I,J)=trl —(gy2/2)C,
XEZ(mI——nl, .o

Here C, is the quadratic Casimir operator for the repre-
sentation and the sum is over all pairs of links m,n on the
same side or on opposite sides of the loop; S,,, is a sign
factor which is negative when the pairs are on opposite
sides. For example, a 2 by 2 loop in the adjoint represen-
tation is, to order g,?,

oMy —N4)Sy - (17)

W(2,2)=1—g,2[Z(0,0,0,0)+Z(1,0,0,0)
_Z(Z,0,0,0)‘_‘Z(zgl’oyo)] . (18)

In this way we have calculated R,y for N up to 5. Table
I shows the values, which are already close to the continu-
um value.!!

The difference (p,r—p,4)/p, has been calculated with
the background-field method, in the limit of vanishing
a.'>® It is due to the single diagram shown in Fig. 1.
The value is =, so Ap/A 4=28.9 approximately. This is
the number we wish to obtain by Monte Carlo simulation
of the lattice theory. Recently, there has also been a cal-
culation to order g*(a) in the series'*

1/g04%(a")=1/gor*(a)+2Boln(a /a’) +cq
+g0F2(a)[2/j’11n(a /a’)+C1 ]

+0(gort(a)) . (19)
Thus
Ap/A4=(1—c,8%/2B,)
Xexp[(1/804>—1/80r")/2Bo] » (20)

where g2=gor’=g04> to order g% Our procedure is to

measure 1/g 42— 1/gor% Since we do this for nonvanish-
8oF

ing g2, we include the correction

1‘Clg2/2/30=l*aﬁ,Ag2—003182/2302 , (21)

FIG. 1. Gluon self-energy diagram for
(P2r—pP24)/p1, from Ref. 12.
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FIG. 2. A plot of 1/g* vs 1/g¢% with

1/g,2=0.1448/(1—R,). Points shown in parentheses in this
and following figures were not used in the analysis.

where
85,4 =(c1Bo—coB1)/2Bs*=1.23

is the result of Ref. 11.
The Monte Carlo algorithm has been described before.!
In this work we used periodic lattices of sizes 6* and 8*.
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FIG. 3. A plot of 1/g% wvs 1/g¢% with

1/g,>=0.5[1—W(1,1)/3]"L
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FIG. 4. Plots of 1/g% vs 1/gy% with (@) 1/g2=137[1—W(2,2)/3]"}, (b) 1/g2=2.31[1—W(3,3)/3]"!, and (0)

1/g,2=3.26[1—W(4,4)/3]7..

The difference in size did not seem to affect the results.
Figure 2 shows the results obtained using 1/g,?
=0.1448/(1—R;,). A fit to the fundamental and adjoint
points gives slopes to 0.98 and 1.02, respectively. The
predicted slope for both, to lowest order, is 1.00. We
could not use the results from the R, ratio because the
fluctuations were too high.

Up to this point we have been considering Wilson loop
ratios which cancel perimeter and corner divergences.
These ratios form physical quantities which have been
useful for renormalization-group studies. But here we are

‘ matching quantities directly on identical lattices.

The
divergences of the Wilson loops are purely perturbative,
and once the finite difference due to the different actions
is taken into account, the divergent parts should cancel.
Thus for our purpose of determining the size of this finite
difference, we can directly match the adjoint loops them-
selves. Given any adjoint loop, the difference due to
choice of action is given, in leading order, by the diagram
shown in Fig. 1. Small loops have reduced statistical er-
rors, so there is an advantage to using the loops directly
instead of the loop ratios. '
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TABLE II. Raw and corrected values of Ar/A 4 obtained from R,, W(1,1), W(2,2), W(3,3), and
W (4,4). The values of 1/g,2 chosen correspond roughly to 1/g,*=2, 3, and 4.

Data 1/g,* (Ar/A ) aw (Ap/A 4)corrected
R, 1.59 88.1 21.2—33.8
R, 2.61 51.6 26.8—29.6
R, 3.48 32.6 20.7-21.6

w(1,1) 2.00 71.4 19.9-28.8
wi(1,1) 3.00 49.2 26.1—28.7
w(1,1) 4.00 34.0 22.2-23.1
W(2,2) 2.46 72.4 20.0—29.2
W(2,2) 3.29 53.5 26.8—30.0
W(2,2) 4.38 35.8 23.1-24.1
W(3,3) 3.00 71.3 17.3—27.1
W(3,3) 3.92 54.1 27.7—30.8
W (3,3) ' 4.84 41.1 26.3—27.5
W(4,4) 3.59 78.6 14.0—26.7
W(4,4) 4.57 52.9 26.9—30.0
W (4,4) 5.54 35.6 23.1—24.1

In particular, we can define a new renormalized cou-
pling from the elementary Wilson loop:
1
1 B
ga)  1—-W(,1)/3 "

(22)

This coupling should satisfy the renormalization-group
equation with its own scale parameter, which can be
matched across the actions. Figure 3 shows the measured
values for this coupling as a function of bare fundamental
and adjoint couplings. Figure 4 shows the corresponding
comparison for larger loops. In each case 1/g,% is defined
as py[1—W(N,N)/3]"!, where W(N,N)=1—pn80*
+ cee

In Table II we list results for the ratio Ap/A, both
with and without the order-g?2 corrections. The range in
the latter is due to the range in g2 (since gop® and gg4° are

not exactly equal). Without the correction, there is rough
agreement, and for smaller g? the measured values ap-
proach the predicted 28.9. Including the correction, the
agreement is very good overall.

In summary, we have shown how matching of adjoint
loops and their ratios as obtained from Monte Carlo simu-
lation permits a reasonably accurate determination of the
relation between SU(2) and SO(3) scale parameters. The
results represent a direct comparison of perturbative and
Monte Carlo predictions. Further, this work shows the
usefulness of Monte Carlo simulation deep in the weak-
coupling regime, where standard quantities such as the
string tension would be unmeasurably small. Finally, the
fact that the numerical results connect so well with the
perturbative limit lends support to the existence of the
continuum limit of SU(2) lattice gauge theory, and to the
independence of the limit from the choice of lattice ac-
tion.
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