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We calculate Wilson loops for pure SU(3) gauge theory on a 12* lattice by Monte Carlo simula-
tions. All the Wilson loops up to size 3 X 3, previously calculated on a 6* lattice, are reproduced on
the 12* lattice. In addition we calculate all additional Wilson loops up to size 6 6. Using all of
these Wilson loops, we estimate the asymptotic-freedom scale parameter Ao.

In a series of recent papers, we studied Wilson loops for
pure SU(3) gauge theory on 6* (Ref. 1) and 8* (Ref. 2) lat-
tices. Because of finite-size effects, we can only study
Wilson loops of size as large as L X L on an L* lattice, so
we have been able to measure 4 X 4 Wilson loops on our 8*
lattice. However, a lattice of this size does not appear® to
be large enough to accommodate an elementary particle
such as a proton. It therefore seems reasonable to extend
our previous analysis to a larger lattice. The largest lattice
which will fit comfortably in real memory in the 2m-word
2-pipe CDC CYBER 205, operating in 32-bit mode, is a
12* lattice. As a result, we can measure all Wilson loops
up to size 6X 6, can test asymptotic freedom up to this
level, and improve our previous measurements of the
asymptotic-freedom scale parameter A,.

Our theory is formulated on a hypercubical lattice in
four Euclidean space-time dimensions. The sites of our
lattice are denoted by n=(n,n,,n3,n,). The link joining
any pair of nearest-neighbor sites is labeled by (n,u). The

degrees of freedom of our pure gauge field are defined on
the links of the lattice. U,(n) is a matrix-valued field in
the fundamental representation of the gauge group SU(3)
so that

U,(n)=exp[iB,(n)],
where

B,(n)=73agoh,A5(n), a=1,2,3,...,8,
where B, has compact support, the reverse path gives the
inverse group element, i.e.,

U_,(n+p)=U,"n),

a is the lattice spacing, g, is the bare coupling constant,
Aq are SU(3) matrices, and A;(n) are the vector potentials
of the gauge field. The Euclidean action of the theory is
given by

S[U1=3Sa= 3 {1—5ReTr[U,(n)U,(n+p)U_,(n+p+WU_,(n+¥)]},
[m]

np>v

where the sum is taken around all unoriented plaquettes [
and u and v are the two positive directions in a plane.
The integral we are simulating is the partition function
defined by

zp)=[ [H dU,,(n)]exp(—BS[U]),
links
where 3 is the inverse coupling constant squared given by
B=6/g,% and the measure in this integral is the normal-
ized invariant Haar measure for SU(3).
The contour C is a rectangular contour of length I and
width J. We define the Wilson loops* by the expectation
value

W(I,J)=+{ReTrUc) ,

where U is the parallel transporter around the contour C.
The leading-order strong- and weak-coupling expansions
are

B

w(I,J)=
(1,J) 13

1J
J [1+0(B)]
and

W<1,1>=1—%+0(3—2),
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TABLE L. Data for the SU(3) Wilson loops. The first number in each column is the average value
for the given loop. The second is the standard deviation over the 50 measurements. As discussed in the

text, this number is approximately five times the error in the loop measurement.

(a)

B (W(1,1)) (W(2,1)) (W(2,2)) (W(3,1))

5.6 0.5241, 0.0016 0.2925, 0.0017 0.1038, 0.0015 0.1654, 0.0015
5.8 0.5685, 0.0014 0.3504, 0.0016 0.1571, 0.0018 0.2200, 0.0017
6.0 0.5936, 0.0014 0.3836, 0.0015 0.1901, 0.0017 0.2527, 0.0016
6.2 0.6135, 0.0013 0.4100, 0.0013 0.2170, 0.0016 0.2793, 0.0013
6.3 0.6225, 0.0011 0.4222, 0.0013 0.2300, 0.0014 0.2919, 0.0013
6.4 0.6308, 0.0013 0.4332, 0.0013 0.2413, 0.0014 0.3033, 0.0013
6.5 0.6384, 0.0011 0.4433, 0.0012 0.2517, 0.0014 0.3136, 0.0011
6.6 0.6458, 0.0012 0.4535, 0.0012 0.2628, 0.0015 0.3243, 0.0013
6.7 0.6528, 0.0012 0.4629, 0.0012 0.2729, 0.0016 0.3343, 0.0013
6.8 0.6591, 0.0011 0.4715, 0.0012 0.2824, 0.0013 0.3434, 0.0012
6.9 0.6656, 0.0013 0.4807, 0.0013 0.2926, 0.0016 0.3534, 0.0015
7.0 0.6717, 0.0013 0.4890, 0.0012 0.3018, 0.0014 0.3621, 0.0012
7.5 0.6981, 0.0012 0.5259, 0.0010 0.3435, 0.0013 0.4026, 0.0012
8.0 0.7205, 0.0013 0.5577, 0.0012 0.3806, 0.0015 0.4381, 0.0013
9.0 0.7561, 0.0009 0.6095, 0.0011 0.4436, 0.0013 0.4975, 0.0012
10.0 0.7834, 0.0012 0.6502, 0.0011 0.4951, 0.0012 0.5456, 0.0012

(b)

B (W(3,2)) (W(3,3)) (W(4,1)) (W(4,2)) (W(4,3))

. 5.6 0.0390, 0.0010 0.0102, 0.0008 0.0937, 0.0012 0.0148, 0.0007 0.0028, 0.0005
5.8 0.0758, 0.0016 0.0302, 0.0011 0.1388, 0.0015 0.0372, 0.0012 0.0125, 0.0008
6.0 0.1015, 0.0014 0.0472, 0.0012 0.1673, 0.0016 0.0554, 0.0012 0.0229, 0.0009
6.2 0.1234, 0.0014 0.0627, 0.0014 0.1911, 0.0013 0.0717, 0.0012 0.0332, 0.0010
6.3 0.1346, 0.0014 0.0713, 0.0015 0.2028, 0.0014 0.0804, 0.0014 0.0395, 0.0012
6.4 0.1439, 0.0012 0.0780, 0.0012 0.2133, 0.0013 0.0876, 0.0011 0.0442, 0.0009
6.5 0.1528, 0.0012 0.0845, 0.0011 0.2229, 0.0012 0.0945, 0.0012 0.0485, 0.0010
6.6 0.1627, 0.0013 0.0928, 0.0014 0.2330, 0.0013 0.1027, 0.0012 0.0549, 0.0011
6.7 0.1716, 0.0016 0.0994, 0.0016 0.2425, 0.0013 0.1099, 0.0015 0.0598, 0.0013
6.8 0.1800, 0.0014 0.1061, 0.0014 0.2511, 0.0012 0.1167, 0.0013 0.0647, 0.0011
6.9 0.1895, 0.0015 0.1142, 0.0015 0.2609, 0.0015 0.1248, 0.0015 0.0712, 0.0012
7.0 0.1976, 0.0012 0.1206, 0.0009 0.2693, 0.0014 0.1315, 0.0012 0.0762, 0.0009
7.5 0.2365, 0.0013 0.1534, 0.0013 0.3093, 0.0013 0.1652, 0.0012 0.1023, 0.0012
8.0 0.2728, 0.0016 0.1860, 0.0017 0.3453, 0.0013 0.1980, 0.0015 0.1298, 0.0015
9.0 0.3363, 0.0014 0.2449, 0.0016 0.4073, 0.0013 0.2578, 0.0015 0.1822, 0.0016
10.0 0.3905, 0.0015 0.2979, 0.0018 0.4590, 0.0012 0.3107, 0.0017 0.2311, 0.0020

(c)

B (W(4,4)) (W(5,1)) (W(5,2)) (W(5,3)) (W(5,4))

5.6 0.0006, 0.0007 0.0531, 0.0009 0.0056, 0.0006 0.0008, 0.0005 0.0002, 0.0008
5.8 0.0044, 0.0007 0.0877, 0.0013 0.0185, 0.0009 0.0053, 0.0006 0.0018, 0.0006
6.0 0.0102, 0.0007 0.1110, 0.0015 0.0305, 0.0008 0.0113, 0.0007 0.0047, 0.0006
6.2 0.0167, 0.0009 0.1310, 0.0012 0.0419, 0.0009 0.0179, 0.0007 0.0086, 0.0006
6.3 0.0206, 0.0011 0.1411, 0.0013 0.0485, 0.0012 0.0222, 0.0009 0.0111, 0.0008
6.4 0.0237, 0.0009 0.1501, 0.0012 0.0536, 0.0009 0.0252, 0.0007 0.0129, 0.0006
6.5 0.0264, 0.0010 0.1587, 0.0012 0.0588, 0.0010 0.0282, 0.0008 0.0147, 0.0007
6.6 0.0310, 0.0010 0.1676, 0.0014 0.0652, 0.0010 0.0329, 0.0010 0.0179, 0.0008
6.7 0.0345, 0.0011 0.1762, 0.0014 0.0709, 0.0013 0.0365, 0.0010  0.0203, 0.0008
6.8 0.0378, 0.0011 0.1839, 0.0010 0.0762, 0.0011 0.0400, 0.0010 0.0227, 0.0009
6.9 0.0429, 0.0012 0.1928, 0.0015 0.0827, 0.0013 0.0450, 0.0011 0.0264, 0.0011
7.0 0.0463, 0.0010 0.2005, 0.0014 0.0880, 0.0011 0.0485, 0.0008 0.0286, 0.0007
7.5 0.0661, 0.0012 0.2379, 0.0014 0.1160, 0.0011 0.0688, 0.0009 0.0434, 0.0008
8.0 0.0884, 0.0015 0.2724, 0.0013 0.1444, 0.0014 0.0915, 0.0013 0.0611, 0.0012

49.0 0.1331, 0.0016 0.3337, 0.0014 0.1982, 0.0015 0.1364, 0.0015 0.0982, 0.0015
10.0 0.1763, 0.0023 0.3865, 0.0013 0.2480, 0.0017 0.1804, 0.0019 0.1359, 0.0020
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TABLE 1. (Continued.)

(d)
B (W(5,5)) (W(6,1)) (W(6,2)) (W(6,3)) (W(6,4))
5.6 0.0301, 0.0008 0.0020, 0.0004 0.0004, 0.0005
5.8 0.0006, 0.0008 0.0553, 0.0011 0.0092, 0.0007 0.0023, 0.0005 0.0007, 0.0005
6.0 0.0020, 0.0007 0.0735, 0.0013 0.0168, 0.0007 0.0057, 0.0005 0.0022, 0.0005
6.2 0.0043, 0.0007 0.0898, 0.0011 0.0246, 0.0008 0.0098, 0.0006 0.0045, 0.0005
6.3 0.0058, 0.0009 0.0982, 0.0013 0.0293, 0.0011 0.0125, 0.0008 0.0060, 0.0007
6.4 0.0068, 0.0008 0.1058, 0.0011 0.0328, 0.0008 0.0146, 0.0006 0.0072, 0.0007
6.5 0.0076, 0.0009 0.1130, 0.0011 0.0368, 0.0009 0.0166, 0.0006 0.0083, 0.0006
6.6 0.0101, 0.0007 0.1205, 0.0013 0.0414, 0.0011 0.0199, 0.0009 0.0106, 0.0005
6.7 0.0116, 0.0007 0.1281, 0.0014 0.0458, 0.0012 0.0224, 0.0008 0.0121, 0.0007
6.8 0.0131, 0.0009 0.1348, 0.0009 0.0498, 0.0010 0.0248, 0.0007 0.0136, 0.0007
6.9 0.0158, 0.0010 0.1426, 0.0015 0.0549, 0.0011 0.0286, 0.0009 0.0164, 0.0008
7.0 0.0174, 0.0009 0.1493, 0.0014 0.0590, 0.0010 0.0310, 0.0008 0.0179, 0.0006
7.5 0.0280, 0.0008 0.1830, 0.0014 0.0816, 0.0010 0.0465, 0.0009 0.0288, 0.0007
8.0 0.0416, 0.0012 0.2150, 0.0013 0.1056, 0.0013 0.0648, 0.0012 0.0426, 0.0012
9.0 0.0717, 0.0015 0.2735, 0.0016 0.1526, 0.0015 0.1025, 0.0013 0.0728, 0.0014
10.0 0.1040, 0.0019 0.3255, 0.0014 0.1982, 0.0018 0.1413, 0.0018 0.1053, 0.0019
(e)

B (W(6,5)) (W(6,6))

5.6 0.0001, 0.0006

5.8 0.0003, 0.0005 0.0002, 0.0008

6.0 0.0009, 0.0005 0.0003, 0.0006

6.2 0.0021, 0.0005 0.0010, 0.0007

6.3 0.0031, 0.0006 0.0016, 0.0008

6.4 0.0038, 0.0006 0.0019, 0.0007

6.5 0.0042, 0.0005 0.0023, 0.0007

6.6 0.0058, 0.0006 0.0032, 0.0006

6.7 0.0069, 0.0005 0.0040, 0.0007

6.8 0.0077, 0.0006 0.0045, 0.0007

6.9 0.0097, 0.0007 0.0058, 0.0009

7.0 0.0107, 0.0007 0.0064, 0.0007

7.5 0.0183, 0.0007 0.0119, 0.0008

8.0 0.0287, 0.0010 0.0196, 0.0010

9.0 0.0527, 0.0012 0.0385, 0.0013

10.0 0.0801, 0.0017 0.0613, 0.0018
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respectively. The string tension, the coefficient of the area
term in the asymptotic Wilson loops, is obtained by form-
ing the logarithmic ratios

wuJIwiuI—1,J—1)
wW(LJ -1)W (I —1,J)

X(I,J)=—In

The leading-order strong-coupling expansion for the string
tension is given by
B

. 1
18 +0(B) (1)

X(I,J)=—In

In the region where asymptotic-freedom scaling sets in, we
have an asymptotic-freedom scale parameter A, which
sets the scale for our theory, e.g., mass ratios are defined
in terms of Ay. This parameter is defined by

—51/121
exp | — 477'23
p 33

33
8728

Because of the difficulty of graphical representation, we

(2)

present our Wilson loops up to size 6 X6 in Table I. This
table should make this paper more useful to the reader. In
some previous calculations, it was found that, for in-
stance, the full 64-bit word length of the CDC CYBER
205 was not necessary to retain the accuracy of our re-
sults. The CDC CYBER 205 has a facility for working in
half-word length, i.e., 32-bit word length, which effective-
ly doubles the amount of memory available and doubles
the result rate for arithmetic vector operations. Working
in the 32-bit mode is found to be, in general, accurate
enough for our needs. However, for reasons of numerical
stability and greater confidence in the values associated
with the larger loops, it is advisable to carry out the renor-
malization using 64-bit arithmetic. This was done for all
the results presented here. Our calculations were per-
formed by first carrying out 600 iterations through the 124
lattice with 9 Monte Carlo updates per link. These itera-
tions were used to equilibriate our lattice and no averaging
took place during these 600 iterations. The Wilson-loop
averages were then obtained from the next 200 iterations
through the lattice. However, there may be correlations
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TABLE II. Error estimates for the SU(3) Wilson loops. The first number in each column is the aver-
age value for the given loop. The second is the error estimate obtained as discussed in the text.

B=6.0 B=6.2 B=6.5
(w(,1)) 0.5936+0.0003 0.6135+0.0002 0.6384+0.0002
(W(2,1)) 0.3836+0.0005 0.4100+0.0003 0.4433+0.0003
(W(2,2)) 0.1900+0.0005 0.2170+0.0004 0.2517+0.0002
(W(3,1)) 0.2528+0.0005 0.2793+0.0003 0.3137+0.0002
(W(3,2)) 0.1015+0.0005 0.1234+0.0004 0.1528+0.0001
(W(3,3)) 0.0472+0.0004 0.0627+0.0004 0.0845+0.0001
(W(4,1)) 0.1673+0.0005 0.1911+0.0003 0.2229+0.0002
(W(4,2)) 0.0554+0.0004 0.0717+0.0003 0.0945+0.0001
(W(4,3)) 0.0229+0.0002 0.0332+0.0002 0.0485+0.0001
(W(4,4)) 0.0102+0.0001 0.0167+0.0002 0.0265+0.0001
(W(5,1)) 0.1110+0.0004 0.1310+0.0002 0.1587+0.0002
(W(5,2)) 0.0305+0.0002 0.0420+0.0002 0.0588+0.0001
(W(5,3)) 0.0113+0.0001 0.0179+0.0002 0.0282+0.0001
(W(5,4)) 0.0047+0.0001 0.0086+0.0001 0.0147+0.0001
(W(5,5)) 0.0020+0.0001 0.0043+0.0001 0.0076+0.0002
(W(6,1)) 0.0736+0.0003 0.0898+0.0002 0.1130+0.0002
(W(6,2)) 0.0168+0.0001 0.0246+0.0002 0.0368+0.0001
(W(6,3)) 0.0058+0.0001 0.0098+0.0001 0.0166+0.0001
(W(6,4)) 0.0022+0.0001 0.0045+0.0001 0.0084+0.0001
(W(6,5)) 0.0009+0.0001 0.0021+0.0001 0.0042+0.0001
(W(6,6)) 0.0003+0.0001 0.0010+0.0001 0.0023+0.0002

between iterations through the lattice. In order to reduce
correlations and because measuring loops is rather time
consuming, every fourth iteration was used in our average.
Thus, only 50 lattice configurations were used in our aver-
ages. We renormalized our SU(3) matrices, in order to
eliminate rounding errors, every four iterations through
the lattice. To check if the renormalization procedure had
any effect on our results, we carried out identical runs
with the renormalized procedure carried out every four
and eight iterations through the lattice. The results were
effectively the same. In order to satisfy ourselves that the
results are independent, to within reason, of the sequence
of random numbers used, we repeated a run (for 3=35.6)
using two different sequences of random numbers. Again,
the average values were in good agreement. Also, totally

nonoverlapped sequences of random numbers were used
for different 3 values. Another test was done to check if
the system is indeed equilibriated and if the use of 50 con-
figurations for calculating the Wilson-loop values is suffi-
cient. An additional run was executed for 8=6.4 as fol-
lows: The system was equilibriated using 1200 iterations,
then 100 configurations taken for the average loop values
where 7 configurations were discarded between each one
taken. Results for the different runs were in reasonable
agreement. The CDC CYBER 205, a pipelined vector
processor, performs one upgrade per link in 76 usec when
operating in the 32-bit mode. The upgrade-per-link time
quoted here includes the time spent in 64-bit arithmetic
renormalization every four iterations. In the 64-bit mode
the upgrade-per-link time is 105 usec. It must be em-

TABLE III. Data for the SU(3) loop ratios. The first number in each column is the average value of
a given ratio. The second is the standard deviation on the five sets of ten average as discussed in the

B=6.2

B=6.5

text.
B=6.0

X(1,1) 0.5208+0.0008
X(2,2) 0.2686+0.0013
X(3,2) 0.2145+0.0007
X(3,3) 0.1518+0.0039
X(4,2) 0.1966+0.0046
X(4,3) 0.1166+0.0074
X(4,4) 0.1064+0.0214
X(5,2) 0.1921+0.0026
X(5,3) 0.1226+0.0275
X(5,4) 0.0499+0.0228
X(6,2) 0.2003+0.0063
X(6,3)

X(6,4)

0.4881+0.0006
0.2314+0.0007
0.1809+0.0008
0.1129+0.0041

0.1625+0.0028
0.0898+0.0072
0.0661+0.0149

0.1606+0.0045
0.0949+0.0116
0.0175+0.0219

0.1582+0.0039
0.1003+0.0186
0.0179+0.0437

0.4492+0.0003
0.2039+0.0008
0.1543+0.0005
0.0943+0.0031

0.1310+0.0021
0.0747+0.0035
0.0732+0.0067

0.1347+0.0025
0.0601+0.0049
0.0530+0.0115

0.1272+0.0042
0.0630+0.0120
0.0341+0.0154
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FIG. 1. The string tension X(I,J) for pure SU(3) gauge theory on a 12* lattice as a function of the inverse coupling constant
squared 8. The leading-order strong-co\tyﬁng expansion of Eq. (1) is also shown, as well as lines corresponding to the behavior of Eq.
(2) with Ap=7X 1073V K and 9X 1073V'K.

TABLE IV. The quantity A(I,J) related to the loop ratios with the scaling form removed [Eq. (3)].

B=6.0 B=6.2 B=6.5

A1, 1) 0.003 25 0.002 68 0.001 99

AM2,2) 0.004 53+0.00001 0.003 89+0.00001 0.00295+0.00001
A(3,2) 0.00507+0.00001 0.004 40+0.00001 0.003 40+0.00001
A(3,3) 0.006 02+0.000 08 0.005 57+0.000 10 0.004 35+0.00007
A(4,2) 0.00529+0.000 06 0.004 64+0.000 04 0.003 57+0.00003
A(4,3) 0.006 87+0.00022 0.006 25+0.000 25 0.004 88+0.000 11
A(4,4) 0.007 19+0.000 72 0.007 29+0.000 82 0.00493+0.000 23
A(5,2) 0.005 35+0.000 04 0.004 67+0.000 07 0.003 64+0.00003
A(5,3) 0.006 70+0.00075 0.006 08+£0.000 37 0.005 44+0.000 22
A(5,4) 0.005 79+0.000 63
A(6,2) 0.005 24+0.000 08 0.00471+0.000 06 0.003 74+0.000 06
X(6,3) 0.00591+0.000 55 0.00531+0.00051

X(6,4)

0.00723+0.001 63
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phasized that no shortcuts, e.g., only calculating two
columns of an SU(3) matrix and reconstructing the third
column by orthogonality to the first two, have been used.
Using such tricks, the SU(3) upgrade time per link, when
the CDC CYBER 205 is operating in the 32-bit mode, can
be further reduced. The crossover point""? between strong
and weak coupling for SU(3) is B~<5.6. Thus, for all our
runs we used ordered starting lattices for 8>5.6 and
disordered starting lattices for B < 5.6.

All the results of this paper for Wilson loops up to size
3X 3 agree perfectly with the results of Ref. 1. However,
some of our results for Wilson loops up to size 4X4 do
not agree well with the results of Ref. 2 and when we take
the logarithm of the ratio of products of these Wilson
loops these discrepancies are acccentuated. These
discrepancies can be clearly seen in Figs. 2 and 5 of Ref. 2
where there is a nonsmooth merger of the mixed-phase
and ordered-phase starting lattice data at 3=7.0. The ori-
gin of this discrepancy is not hard to find. It lies in the
fact that in Ref. 2 we only used 20 iterations through the
lattice to equilibriate our 8* lattice. This was clearly too
short a time to equilibriate a 4 x4 Wilson loop except for
large values of 3. When the results of Ref. 2 are
reanalyzed by throwing away the first 200 iterations
through our lattice, the results of Refs. 1 and 2 and the
present calculation all agree. In the present calculation
the 600 iterations used to equilibriate our lattice were
clearly enough.

To obtain a good error estimate, we repeated our runs at
B=6.0, 6.2, and 6.5. The Wilson-loop measurements were
divided into 5 batches of 10 numbers. Assuming each
batch was statistically independent, we calculated the
standard deviation of the mean from these 5 averages.
The results of this calculational procedure are presented in
Table II. This error estimate, when compared with the
standard deviations in Table I, is about five times smaller.
We believe this factor can be safely applied to all the data
in Table I.

The logarithmic ratios X(I1,J), for I,J=1,2,...,6,as a
function of the inverse coupling squared B are shown in
Fig. 1. The leading-order strong-coupling expansion of
Eq. (1) is also displayed in Fig. 1(a). Also shown in Fig. 1
are two lines corresponding to the functional form of Eq.
(2) with

Ao
VK

where K is the string tension. In our earlier work!? we es-
timated (6+1)x 10~2 for this ratio. These new data sug-

=7%10"%and 91073,
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gest a somewhat larger value. Note that the higher statis-
tics data presented here indicate that the string approaches
the scaling behavior of Eq. (2) from above. As the errors
in different loops may be correlated, we calculated the er-
rors in the ratios, X, at $=6.2 and 6.5 in the same way as
they were calculated for the Wilson loops, i.e., by calculat-
ing the standard deviations of the means derived by divid-
ing our measurements into 5 groups of 10 values. These
results are presented in Table III.

To see how the string tension approaches the scaling
behavior we form the following quantity:

1
VXUIT)

4723
33

33
8728

ML) = (3)

—33/121
] exp

This is the loop ratios with the scaling form removed. In
the asymptotic-freedom region, this quantity should ap-
proach Ay The results of this calculation are shown in
Table IV. Note that the largest loops still show a slight
trend with increasing loop size. This makes an accurate
determination of the limiting value for this ratio rather
subjective. The 4 X4 ratio scales well from $=6.0 to 6.2
and agrees with the 6 X4 ratio at $=6.6. From this we
feel that a value of Ay/VK =(7.5+0.5)x1073 is a
reasonable estimate but conservatively this should be re-
garded as a lower bound.

Our results are consistent with a recent study on lattices
of up to 10* sites,” where Ag/VK =(7.9+0.5)% 10~3 was
quoted. We also note that an increase in A, over old re-
sults is claimed in a limited study on a 16* lattice in Ref.
6.

A string tension decreasing towards its asymptotic form
was previously observed for SU(4) and SU(5) gauge
theories.” These models have a residual but not deconfin-
ing first-order phase transition. A related critical end
point is present® for SU(3) for a more generalized ‘action
than that of Wilson. It is likely that new physics near this
critical point is affecting the scaling in all these models,
delaying somewhat the onset of asymptotic-freedom
behavior.’
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