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1. Introduction

Gaugetheoriesplay a fundamentalrole in our presentunderstandingof particlephysics. Originally
invoked to describeelectromagneticinteractions,the notion of a gaugefield has beenextendedand
usedin successfulmodelsof weak interactionsandstronginteractions.Attemptsto unify all theseforces
are also basedon gaugetheoriesand, if the connectionin generalrelativity is recognizedas a gauge
potential, it appearsthat all particleinteractionsmaybe accountablein termsof gaugefields.

Many of the predictionsof gaugetheorieshavecomparedextremelywell with experimentalresults.
This hasoccurredwheneverthe presenceof an effectively weakcoupling constantallows for the useof
the standardtechniquesof perturbationtheory. Yet, there are classesof phenomenawhich are
inextricablyassociatedwith a strongcoupling. To reducetheseproblemsto theoreticalanalysis,a very
interestingalternativeto the ordinaryperturbativeexpansionhasbeenproposed:it consistsin defining
the theory on a latticeratherthanin continuousspace-time.This provides,first, a regularizationof the
ultraviolet divergencesand,second,the possibilityof a simplestrongcouplingexpansion.

Every field theory can be definedon a lattice; all that is requiredis the replacementof the partial
derivatives occurring in the Lagrangianwith finite difference operators.However, the lattice for-
mulation of a gaugetheory is particularlyelegantand natural [1,2]. Indeed,let us rememberthat the
geometricrole of thegaugepotentialis to specifythe rotationof the frameof referencein someinternal
symmetry spaceas one moves betweennearbypoints in space-time.If the continuumof points is
replacedby the verticesof somelattice, the elementarydisplacementsbecomethosebetweenneighbor-
ing vertices,i.e., alongthe links of the lattice itself. Thus,to specifythe kinematicalstateof thesystem
onemustassociateonedefiniteelementof thegaugegroupwith eachof theorientedlinks of the lattice
(with the understandingthat the inverseelementis associatedwith the link in the oppositeorientation).
This collection of groupelements,which we shall sometimesalso call the “spins” of the system,takes
the role of the gauge potentialsof the continuum theory. Notice that finite group elements are
associatedwith the links of the lattice,whereasinfinitesimalgenerators(the gaugepotentials)appearin
thecontinuumtheory.In particular,andthiswill bequite important,on a latticeonecandefinetheories
alsowith finite gaugegroups,an option not allowedin the continuum.

As in the conventionaltheory, the dynamicsof the latticegaugesystemis formulatedthrough the
specificationof the action.This function of the spinsmustbe invariant,i.e., mustnot changeunderlocal
gaugerotationsat the individual verticesand underthe transformationcorrespondinglyinducedon the
spins. Although a variety of gaugeinvariant quantitiesexist, most commonly the action is definedas
follows. Oneconsidersthe productof the groupelementsalongthe closedorientedpathsof smallest
extension,or plaquettes(these would be the elementarysquaresof the lattice, if, as usual, a
hypercubicallatticeconfiguration is chosen),takesthe traceto obtain a gaugeinvariant quantity, and
sumsover all plaquettes.It can be shown that in an appropriatedefinition of the continuumlimit this
latticeaction reducesto the integral overspace-timeof the squareof the field strength.If, proceeding
further, the quantummechanical averagesare defined via a sum over all possible configurations
weighted (after a Wick rotation to imaginary time) by the exponentialof —1/h times the action, a
striking analogybetweenthe lattice gaugetheory and a statisticalspin systememerges,exp(—(1/h)S)
playingthe role of the Boltzmannfactor. Considerationsthat will be expandedin the nextsectionshow
that the squareof the gaugecouplingconstant(times h, to be exact,but we shall henceforthset h = 1)
playsthe role of the temperaturein thestatisticaltheory; thus,strongcouplingandhigh temperatureor,
respectively,weakcouplingandlow temperaturebecomeidentified. Of course,the fact that the system
is four-dimensionalremainsas a reminder that we are consideringa quantumfield ratherthan an
ordinary thermodynamicalsystem.
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Whenonespeaksof coupling constant,oneshouldrememberthat the parameterwhich governsthe
strengthof the interactionon the lattice is a bare coupling constant,rather than the physical one.
However interesting the lattice model may be per se, the ultimate goal of the field theorist is to
understandthe propertiesof the continuumsystem.Thus, one must proceedto a limit in which the
latticespacingvanishes.Thisdemandsa carefulreadjustmentof the couplingconstant(renormalization)
lest the whole physicscollapsetogetherwith the lattice itself. Indeed,to keepthe physicalcorrelation
lengths(and otherobservables)finite as the latticespacingis set to zero,onemust makethem extend
over larger and larger numbersof lattice points through a judicious changeof the bare coupling
constant.In the limit the correlationswill extendover an infinite numberof latticepoints,but this is the
very definition of acontinuouscritical pointof the system.We seethen,that the continuumlimit can be
recoveredfrom the latticeonly if the couplingconstantis renormalizedto oneof its critical values(zero
included). It is, therefore,of paramountimportanceto understandthe structureof the lattice gauge
system,its critical points, andtheir nature.

For many years,physicists studyinganalogousproblemsin ordinary statistical mechanicalsystems
havebeen able to obtaininvaluableinformation by meansof MonteCarlo simulations[3]. The basic
ideaof thesenumericalcomputationsis to representin the memoryof a highspeedcomputera definite
stateof the statisticalvariablesof the systemunderconsiderationandto set up a Markovianprocessin
whichthe stateis iteratively replacedby new configurations.The algorithmis definedin such away that
the processapproachesstatisticalequilibrium in the sensethat the probability of encounteringany
definite state becomesproportional to the Boltzmann factor. When this regime of equilibrium is
reached,statistical averagesmay be approximatedby averagesover a numberof the configurations
encounteredin the process.

Application of this method,which hasbeenextremelysuccessfulin the study of two- and three-
dimensionalmodels, to the four-dimensionalsystemsmet in lattice field theories may seemhighly
problematicbecauseof the large numberof statisticalvariableswhich mustbe consideredfor any but
the minimal size of the lattice. During the past few years,however,it hasbecomeapparentthat these
systemsare also amenableto Monte Carlo simulations.Even if the extentof the lattice is necessarily
small (the largest lattices so far consideredmeasure 16 sites in each of the four dimensions),a
remarkableamountof informationcan be derivedon the dynamicalstructureof the underlyingmodels.
Thus, Abelian and non-Abelianpure gaugesystemsand systemswith matter fields of bosonic and
fermionic nature all have been studied, with a degreeof detail dependenton the techniquesand
computerresourcesavailable.

In thisway, Abelian latticesystems,basedon the U(1) gaugegroup,havebeenshownto possesstwo
phases:a strong coupling phase where the chargesof the group are confined and a spin-wave
Coulombicphase,which containsthe quantizedphoton field in the continuumlimit. This two-phase
structureis in welcomeagreementwith theoreticalexpectationsandindeedessentialif lattice theory is
to be relevantto particle physics. At strong coupling, all quantizedgaugesystemsexhibit confining
properties;consequentlya critical point at some finite value of the bare coupling constant must
interveneif a non-confining continuumlimit representingelectrodynamicsis to exist. The Abelian
modelsconstructedwith finite subgroupsof U(1) alsoexhibit interestingproperties.There,beyondthe
two phasesdescribedabove, a further weak coupling phase,arisingfrom the discretenatureof the
group, also occurs.Duality argumentshavebeenusedto relate this phaseto the strong couplingone.

The situation with non-Abelianpure gaugesystemsis quite different. Monte Carlo computations
haveproducedsubstantialevidencethat thestrongcouplingphasepersiststo the limit of vanishingbare
couplingconstant.Moreover,the behaviorof the observablesas the couplingconstantbecomessmaller
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is in agreementwith a perturbativeanalysisvia the renormalizationgroup. Thus for the first time one
hasa demonstration,albeit of numericalnature, that non-Abeliangaugetheoriesdo indeed confine
isolatedchargesat largeseparationwhile behavingin an asymptoticallyfree fashionat short distances.
Beyondgiving evidencefor confinement,MonteCarlo simulationspermitthe computationof theactual
value of severalobservablesbeyondthe reachof perturbativeanalysis.By now a variety of relevant
physicalparameters,including the string tension,the deconfiningtemperature,and the massesof low
lying hadronshavebeenestimated.

Matter fields can also be incorporatedin the simulation. With scalar fields the generalizationis
straightforward.The simulation of systemswith fermionicdegreesof freedomis moredifficult. Various
computationalschemeshavebeendevisedto dealwith this situationandit appearsthat fermions can
alsobe subjectto the analyzingpowerof the MonteCarlo procedure.

The goalof this article is to describethe MonteCarlo methodin thecontextof latticegaugetheories
andto review the major resultswhich havebeenobtained.We addressour work both to the readers
whothemselvesintendto apply this powerfultechniqueto specificinvestigationsas well as to thosewho
only wish to be sufficiently informed about the method so as to appraisethe reliability of the
computations.Theplanof thereviewis asfollows. In section2 we presentabrief generalreview of the
lattice formulation of gaugetheories.In section3 we describethe basicideasbehindthe MonteCarlo
technique.Sections4, 5 and6 illustratevariousresultswhich havebeenachieved,respectively,on the
phasestructureof pure gaugetheories,on the determinationobservables,and on combinedHiggs—
gaugesystems.Section 7 is devotedto an analysisof the various techniquesto extend Monte Carlo
simulationsto systemswith fermions togetherwith the consequentresults.The expositionin section7
will be ratherbrief becausesubstantialresearchis still in progresson Monte Carlo computationsfor
fermionicsystemsand this topic maywell soonbe the subjectof a separatereview.Finally, very short
concludingremarksareoffered in section8.

2. Gaugetheorieson a lattice

2.1. Basicdefinitions

To formulatea gaugetheory on alattice it is useful to recall the geometricalrole of the potentials
A~(x)in the continuum theory.Thesespecifythe rotation U of the framein someintrinsic internal
symmetryspaceupon transportbetweenneighboringspace-timepointsx~andx5’ + dx5’:

U = exp{igA~(x)A~dxM}, (2.1)

whereg is the couplingconstantandAa arethe infinitesimalgeneratorsof the gaugegroup.
Let usdenoteby indices i, ~ the sitesof the latticeand assumethat everysite hasa well-defined

set of neighboringsites. Then, in analogywith the continuumcase,the dynamicalstateof the system
will be specifiedupon assigningan elementUfi of the gaugegroupG to everylink betweenneighboring
sitesi andj. U~shouldsatisfy

U~= L~. (2.2)

The rotationof theframein thetransportalonga path y proceedingthroughthe neighboringsitesi
1, 12,
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i3,. . . i~is given by

U,, = ~ U~U~21,, (2.3)

which playsthe role of the pathorderedoperator

U,, = Pexp{ig JA~(x)A,. dx
5’ } (2.4)

of the continuumtheory.
Gaugetransformationsare definedassigningto eachsite a group elementg, E G. The dynamical

variables Ufi transformas follows

U~
1~—* Ufi’ = g1U~g~’. (2.5)

This inducesthe transformation

U,, —* U,,’ = g1~U,,g11~- (2.6)

A priori thereis no restrictionon the geometryof the lattice. Most frequently,however,thisis taken
to be hypercubicaland, unless otherwisespecified, this is the discretizationof space-timewe shall
assume.We shall denotethe lattice spacingby a. In someapplicationsit is convenientto introduce
different latticespacingsa5 anda~in the space-likeandtime-like dimensions.

An interestingpossibility consistsin not taking a regular lattice, but ratherconsideringa random
distribution of pointsin space-time.By appropriatelydefining the measureof the distribution onecan
maintainPoincarécovariancein spiteof the discretestructureof space-time.This approachhasrecently
beenpursuedin ref. [4].

As a final remark,we would like to stressthat in lattice gaugetheoriesthe dynamicalvariablesUi.,
always representfinite (not infinitesimal) group transformations,becausethey correspondto the
transportalonga path of finite length. Thus in the lattice formulationthereis no restriction that the
gaugegroupshouldbea Lie groupandindeedit is sometimesconvenientto considermodelswherethe
gaugegroupis somediscrete,finite group.

2.2. Theaction

In analogy with the continuum theory the dynamicalpropertiesof the lattice gauge systemare

formulatedby introducingan action S. In the continuumcaseSis the functional

S=~Jd4xF~”F~, (2.7)

where

~ = dILAP — 3VASL** + igf’~”A,~A~~
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is the field strengthassociatedwith thepotentialA,~”andf’~”arethe structureconstantsfor the group.
The action is originally definedin Minkowski space-time.As we shall see in the next subsection;to
formulatethe quantumtheory it is usefulto performa Wick rotation to imaginarytime, which renders
space-timeEuclidean.There is then no distinction betweenupperandlower indicesand the integrand
in eq. (2.7) is positive definite. The following formulaearepresentedfor Euclideanspace-time;they
may be immediately extendedto Minkowski space-timeupon the introductionof suitable negative
signs.

The field strengthF,~,,” specifies the rotation of a frame in the transport aroundan infinitesimal
rectangularclosedpathof sidesdxr~anddx”. This rotation is representedby the operator

Up = exp{igF~”Aa dx5’ dx”} (2.8)

(no sumover ~ and ii).

In a latticetherewill be someelementaryclosedpathswhichplay the role of the infinitesimal rectangles
(dxi’, dx”). If the hypercubicalform is assumed,thesepathsarenaturally takenalong the sides of the
smallest squaresof the lattice, commonly referred to as “plaquettes”. The transporteraround a
plaquetteof vertices i

1i2i3i4 accordingto eq. (2.3) will be

U~=U~U~U~UI,JI. (2.9)

In the continuum theory F~VF~I”’ (sum over a only) vanisheswhen the transport around the
infinitesimal rectangle(dx”, dx”) gives the identity. The samequantity then takesincreasingpositive
values the more the transport deviatesfrom I. In analogy, we shall associatean action with the
plaquette

Spf3f(Up), (2.10)

wheref(Up) is a function with the following properties:
(i) it is a classfunction

f(gUpg

1) = f(Up) (2.11)

(whichguaranteesinvarianceof Sundergaugetransformations,seeeq. (2.6));
(ii) it vanisheswhen Up = I and takespositivevaluesotherwise;
(iii) S behavesas (a4/2)F ,Fa’~”’ (sum over index a only) if the link variables Ufi take the

infinitesimal form of eq. (2.1) andthe displacementsdx’~,dx” are identified with the latticespacinga.
(This last requirementis imposedso that onemay,at leastformally, recoverthe continuumform of the
action in a suitablelimit.)

The total action S will be obtainedsummingSover all plaquettes.
The parameterf3 in eq. (2.10)is a constantwhich is convenientto factorout of thefunction f. It will

beuseful to call f(U~)the (internal)energyof the plaquette./3 is a couplingparameter,whichgoverns
the strengthof the dynamicalgaugefield self-interaction.To illustrate this point let usassumethatfor
definitenessthe gaugegroup0 is SU(2). We shall then representthe groupelementsin the form

U=cosO+iu~nsinO, (2.12)
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where a. representsthe Pauli matrices and n is a unit vector. Following the standardconvention,
A,, = o-,,,/2. If we introducethe obviousnotation

U~1~= cosO~,+ io•. n11 sin O~, (2.13)

and

U~”CosO~+ia.npsinO~, (2.14)

simplealgebrashowsthat in the limit whereUfi assumesthe infinitesimal form of eq. (2.1) and up to
termsof higherorder

0,,, = ~g~A,~”ja, n11” = A~,”/iA,~”j (2.15)

and

0p ~ np~= FILV~/IF~,~”I (2.16)

(the modulusrefersto vectorsin the spaceof SU(2)generators,the componentsof which arelabelled
by the index a). The choice

f(Up)1~TrUp1cos0p, (2.17)

togetherwith the identification

/3 = 4/g
2, (2.18)

will guarantee

Sp’4(lcos O~) ~-F,~,”F,t” (sum overa only) (2.19)

for Op—÷0.If we now constructthe full action as a sumover all plaquettes,we find that in the formal
limit a-40

~ (2.20)
p 9P-’O~,,,

i.e. S reducesto the form of the continuumaction. (In deriving eq. (2.20) rememberthat the sum over
indices~, v countseveryplaquettetwice.)

The specific choice for the plaquetteenergygiven by eq. (2.17) (with its obvious generalization
f(Up) = 1—N1 ReTr U~for an SU(N)gaugegroup)correspondsto what is commonlycalledWilson’s
form of the latticeaction. But the formal passageto the continuumlimit requiresonly f(0) 02/2 for
0-40. We will later discusssomeother forms of the lattice action which havebeenstudied in the
literature.
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2.3. Theobservablesand thecontinuumlimit

A convenientway to define a quantumfield theory consistsin the following. A Wick rotation to
imaginary time is performedfirst, to allow for a morerigorousdefinition of functionalaverages[5]. The
observables,whichwill thusbedefinedin a Euclideanfour-dimensionalspace,can belater continued,if
necessary,backto Minkowski space-time.The quantumexpectationvalueof an observablefunctional
of the fields 0(A) is then obtainedby averagingits valueover all field configurationswith a measure
proportionalto exp{— S(A)}:

(0) = Z1 JdA 0(A)eS~ (2.21)

wherethe vacuumto vacuumpersistenceamplitudeor partition functionZ is given by

Z= J dA ~ (2.22)

Of courseone must give a meaningto the functional integralsintroducedin eqs. (2.21), (2.22) by a
suitableregularizationprocedure,but this need not worry us becauseit is precisely what we shall
achieveby replacingthe continuumof pointsof space-timewith a discretelattice.

In analogywith the continuumformulation,the expectationvaluesfor the observablesof the lattice
quantumtheory aredefinedby averages

(0) = ~ 0(U
1,)exp{—S(U31)}/Z, (2.23)

{U,,}

Z= ~ exp{—S(U,,1)} (2.24)
{U11}

wherethe sumsare ordinary sumsif the dynamicalvariablesU~belongto a discretegaugegroupor
multiple invariantintegralsoverthegroupmanifoldif wehaveaLie gaugegroup. It is usefulto initially
considera lattice of finite extent,containinga definite numberN of sites. Thenthe averagesin eqs.
(2.23) and(2.24)are well defineddefinite sumsor multiple integralsoverafinite numberof variables.
After the finite volume averagesareevaluatedoneproceedsto the thermodynamiclimit N -÷oc.

Although in the lattice formulation of the quantumtheory all quantitieshaveprecisemathematical
meaning,onemustnot forget the goal is to definea quantumsystemin continuousspace-time.For this
onemust proceedto a continuumlimit, letting the latticespacinga go to zero.A simple rescalingof a
to zero,however,is not sufficient to definea continuumquantumtheory.The divergencesof quantum
field theory force us to renonnalize the couplings. Any observablewith non-vanishingphysical
dimension,acorrelationlength 1 for instance,will begiven by an expressionof the form

l=aA(g), (2.25)

wherethe lattice spacingenterstrivially. The non-trivial aspectsof the theory are embodiedin the
dimensionlessfunction A of the coupling constantg (or, equivalently, of the couplingparameter/3).
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Clearly, it will be possibleto definea non-trivial continuumlimit only if as a approacheszerog can be
readjustedsoas to keepthe product I = a A(g) constant.This demandsthat thereexist a critical value
gcr suchthat

Jim A(g)=oo. (2.26)

Requiringthat I remainsconstantestablishesthen a functionalrelation

g=g(a): l=aA(g(a))=const. (2.27)

Thus g appearsas a non-renormalizedor barecoupling constant,which must be readjustedas the
cut-off is removed.

A furtherrequirementmust be satisfiedfor the lattice theory to definea continuumquantumfield
theory.The critical point g = g~must havescalingproperties;oncethe functionalrelationbetweeng
and a is determinedby demandingconstancyof a definite observable,the samerelationmustmakeall
otherobservablesalsotendto well definedvaluesas a-÷0.

In general,to establishthe existenceof a scalingcritical point constitutesquite a non-trivial problem.
In non-Abelian gaugetheories,however,perturbativeargumentstell us that g = 0 is suchapoint [6].
Precisely,it can be shownthat perturbationtheory is consistentwith thebarecouplingconstanttending
to zeroas the cut-off is removedandfor smallg the relationbetweeng anda mustbe governedby the
equation

g(a) 3 5 7a da = y(g) = y
0g + y1g + 0(g). (2.28)

The coefficientsYo and Yi assumethe values [6,7]

1 /11N\ / 1 \2 /34N
2\

Yo ~ ~—)~ ‘Ys = (j~~)(~) (2.29)

in apureSU(N) theory.Eq. (2.28)is solvedby

a = 1f(g) f(g) = (g2y
0)Y1/2~~eh/2Y0~

2(~+ 0(g2)), (2.30)

where a dimensionalintegrationconstantA hasbeenintroducedto set the scale.
The observationthat g = 0 is a possiblescalingcritical point in non-Abeliangaugetheoriesdoesnot

solve the problemof defining a continuumquantumtheory or evenwhethersuch can be defined.For
this purpose one needs to show that as the cut-off is removed the coupling constantdoes indeed
approachg = 0, without otherinterveningcritical points, andmoreoverthat the observablesscalein a
way consistentwith eq. (2.30).Namely,if themassdimensionof the observableq is d, q will begiven by
a formula

q = a~’~K(g), (2.31)
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where the dimensionlessfunction K(g) expressesthe value of q in lattice units. Then as g—*0, K(g)
shouldbehaveas

K(g) c[f(g)]’~ (2.32)

to makeq approachits physicalvalue.To establishthat the non-Abelianlatticegaugetheory definesa
continuumquantumtheory for g—*0, the behaviorof eq. (2.32) must be verified. If this is found to
occur, the actualvalueof the observable(in the continuumtheory)can be expressedin termsof A as

q=cA”. (2.33)

Althoughperturbativeargumentscanbe usedto establishthefunctionalform of the scalingbehavior
wheregcr = 0, the determinationof dimensionalobservablescannotbe doneperturbatively.Indeedthe
scalingrelationitself, eq. (2.30),demonstratesthatobservableswith non-trivial physicaldimensionmust
be givenby expressionswhich arenon-analyticat g = 0. Non-perturbativetechniquesarecalled for, and
indeedthis whole review is dedicatedto an expositionof a particular non-perturbativemethod of
computation.The observationthat g = 0 is apossiblescalingcritical point in non-Abeliangaugetheories
hasbeen,however,of fundamentalimportance.In particular,it hasprovided an explanationfor the
experimentalobservationthat, althoughtheconstituentswhichform hadronsappearpermanentlybound,
theyexhibitalmostfree behaviorwhenprobedat veryhighenergyandshortdistances.Indeed,the gauge
theory of thestronginteractionshasled to severalquantitativepredictionsfor short distancephenomena.

2.4. Inclusionof matterfields

While the gaugedynamicalvariablesare associatedwith the links of the lattice, matter fields are
morenaturally assignedto the sites. The matter field part of the action will in generalcontain terms
coupling different sites. The gaugevariablesmust then be used to transportthe matterfields between
neighboringsites and to constructgaugeinvariant quantities.For instance,if we denoteby i andj
neighboring sites, by ~ and ç61 the values that somematter field takesthere, and by a the lattice
spacing,the covariantderivativeof the continuumtheory

D,4 = 9,~4+ igA~,,”A,.çb (2.34)

will find its transcriptionin the covanantfinite difference(no sumover j)

(i~4~= ~ ~. (2.35)

It is assumedherethat 4’ transformsundera definite representationof the gaugegroup:A,. and Uq are
thenmatriceswhich expresstheinfinitesimalgeneratorsand,respectively,afinite transformationwithin
that representation.(J~servesthe purposeof transportingthe matter field from site j to site i. In a
gaugetransformationrepresentedby matricesgj, 4 and4’, transformas follows:

4’~—*qS~=g44’1, 4~-*çb~g,,41. (2.36)



212 M Creutzet a!., MonteCarlo computationsin latticegaugetheories

Then (~4’),transformsas 4’, itself:

-÷(z~q5)~= g
1(A4’)1 (2.37)

(rememberUq U,, = g1U11g~’).If wedenoteby 4’4’ a scalarproduct,invariant undertransformations
of the group G, the quantity (z~4’)~(i~4’),would be invariant undergaugetransformationsand could
serveto form the matterfield action.

A variety of matter fields are possible in a lattice theory. They may be of bosonicor fermionic
nature.It would serve little purposehereto try to classify the different possibilities.Specific models
incorporatingmatterfields will be discussedin later sectionsof this review.Let usonly mentionthat in
alattice theory the manifold of possiblevaluesfor the matterfield neednot necessarilybe continuous.
In the sameway as onecan considermodelswherethe gaugegroupis discrete,so the matterfield can
be restrictedto a discreteset of values,providedthis is consistentwith the action of the gaugegroup.

Theconsiderationsaboutnecessaryrequirementsfor theexistenceof acontinuumlimit applyalsoto
modelswith matter fields. As we shall discussin section 6, constraintson the matter fields of the
o-modelvariety, which for instancerestrictthe moduli to adefinite value, do not necessarilyprevent
the definition of a continuum limit (whereastheseconstraintsgenerally spoil renormalizability if
imposeddirectly in the continuumquantumtheory). Therenormalizedcontinuumfield would emerge
as averagesover severallattice sitesandwould thusnot necessarilybesubjectto the sameconstraints.

2.5. Analogywith statisticalmechanics

The averageswhich areusedto defineexpectationvaluesof observablesin the Euclidean quantum
theory bear a noticeable resemblanceto the expressionsfor thermal averagesof observablesin
statistical systems. These are also given by sums over all possible configurations, as in eqs.
(2.23) and(2.24),with aweight factor (the Boltzmannfactor) equalto

exp(—/3E), where/3 = (kT)
1

(T beingthetemperature,k theBoltzmannconstant)whereE is theinternalenergyof thesystem.If the
action of the gaugetheory is expressed,following eq. (2.10), as

S/3~f(Up) (2.38)

the analogyis complete,the coupling parameterof the quantumfield theory playing the role of the
inversetemperature,the sumover the “internal energies”of the plaquettesplaying therole of internal
energyof the system.We seethat aregimeof weakcoupling(remember/3 ~ 1/g2) correspondsto low
temperature,whereasstrongcoupling becomesequivalentto high temperature.

Of course,onemustnot forget that the analogyis only formal. Thefact that thelatticegaugesystem
is four-dimensionalis a reminder that one is dealing with a quantizedfield ratherthan with a real
thermalmedium.The true physicaltemperatureof the quantizedfield is zero. It is actuallypossibleto
extendthe formalism so as to incorporatefinite temperatureeffectsalso in the quantizedfield system
(the coupling parameter/3 hg2 then must not be confusedwith 1/kT). This will be discussedin
section5.
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In astatisticalsystemthe fact that the correlationlengthbecomesinfinite signalsthe onsetof a phase
transition(of orderhigher thanfirst). Theall importantcritical pointsof the latticegaugetheory which
areneeded to recover a continuum limit may thus also be seen as boundariesin the phasediagramof
the system.Givena latticegaugetheory,then,oneof thefirst questionswewould like to answeris what
is its phasestructure.

For the study of statistical systems a variety of techniqueshavebeen developed.Some are of an
analyticalnature. They are basedon expansionsfor either small or largevalues of the parameter/3.
Some studiesuseHamiltonian formulationswherethe continuousnatureof the time axis is kept and
only space is in lattice form [8]. Othermethodsof investigationrely insteadon numericalsumsover
configurationsof the system.Thesesumscan neverbeexhaustive,becauseevenfor thesmallestsystems
of physical interest, the number of terms would be prohibitively large. Rather, they are basedon
importancesampling.Somealgorithmis usedto generatea stochasticsequenceof configurationsin such
a way that the probabilityof encounteringanydefinite configurationin the sequenceis proportionalto
the weight factor exp(—/3E).Then the averagesover all configurationsare approximatedby averages
over the configurationsoccurringin the sequence.Theprocedureis known as MonteCarlo simulation.

MonteCarlosimulationshaveproducedinvaluableresultsfor theinvestigationsof statisticalsystems.
During the last few yearsthey havebeensuccessfullyapplied to the analysisof quantumfield theories
as well, and the purposeof this article is to review work done on this subject.Other techniques
availablefor the studyof statisticalsystemscan also be extendedto lattice field theories.Theywill be
verybriefly discussedin the nextsubsections.

2.6. Weakcoupling

Perturbationtheory forms oneof the mainstaysin the developmentof moderntheoreticalparticle
physics.As our space-timelatticemerelyrepresentsa regulatorfor ultravioletdivergences,in principle
all perturbativeresultscould be reproducedin this formalism. The basic expansionparameterg2
representsthe temperaturein the analoguestatistical system. At low temperaturesthe important
degreesof freedomarelow energyexcitationsinvolving gentle long wavelengthvariationsof the fields.
In magneticsystemsthe analogousexcitationsarereferredto as spinwavesandperturbationtheory is a
spinwaveexpansion.

Perturbativeanalysis did not motivate the original formulation of lattice gauge theory. Highly
developedmethodsfor calculationalready exist for other cutoff schemessuch as that of Pauli and
Villars or dimensionalregularization.Becauseof this, perturbationtheory on a lattice hasreceived
ratherlittle attentionandremainsquite awkward.It is somewhatironic that this weakcouplingregime
hasplayedsucha minor role in latticegaugetheory andyet it is exactlythisregion to whichwe mustgo
for a continuumlimit, as discussedabove.

As the inversecoupling/3 becomeslarge, the pathintegral is increasinglydominatedby Up nearthe
identity. Perturbationtheory beginswith a saddlepoint approximationtakenat this maximum of the
exponentiatedaction. We parametrizethe plaquetteoperators

= exp(iA”w”p) (2.39)

wherethe matricesA generatethe groupandarenormalizedsuchthat to leadingorderwe have

1— ReTr Up= of~o~~+ O(wp3). (2.40)
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Thuswe have

Z = JdU exp(_~w”,~w~1~+O(f3w~3)). (2.41)

For large /3 the exponentialis highly suppressedunless

= O(J3~”

2) = 0(go). (2.42)

The tap3 termsin eq. (2.41) arethen of order the couplingconstant.
To proceed we would like to evaluate the leading behavior of the integral in eq. (2.41) in the

Gaussianapproximation.Herewe encountera technicaldifficulty in that the integrandis not damped
in all directionswhen considered as a function of the link variablesU~.Indeed,a gauge transformation
can arbitrarily alter any given link andyet leavethe action unchanged.Gaugefixing is an essentialfirst
stepin the perturbativeanalysis.Our integrandreceivesa Gaussiandampingonly for thosedirections
which do not representgaugedegreesof freedom.

The detailsof thegaugechoicewill be unimportantto thediscussionhere.We merelynotethat after
the gaugefixing, one quarterof the degreesof freedom are no longer variables [9]. The remaining
dynamicalvariablesaredriven to the identity, aboutwhichwe can expand

U,, = 1 + iA”w”j, + 0(w~,) (2.43)

= ~ ta” + 0(w2). (2.44)

1IEP

The integrationmeasurein the vicinity of the identity takesthe simple form

dU11 = (J+ O(w~))dw (2.45)

where the weight J will ultimately be absorbedas an irrelevant constant.Now the partition function
assumesthe form

Z = K f dw exp(—~f3wD
1w) (2.46)

where K is an overall constantfactorandD~is amatrix operatingin the space of the variables wi,. The
operatorD is the propagatorfor the gaugegluons andentersinto the Feynmandiagramsof thetheory.

For actualcalculationstheselatticepropagatorsarequitecumbersome.Howeverwecanobtainsome
informationon the averageplaquettewith very little effort. As our integral is now Gaussian,its valueis
adeterminant

Z = K’ID/fJI(1 + O(fl’)). (2.47)

The matrix D hasthe dimensionalityof the parameterspace after gauge fixing; consequently, it is a
squarematrix of 3flgN rows. Here ng is the numberof generatorsof the group, 3 is the numberof
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non-fixed links per site, and N is the numberof lattice sites. Removing a factor of /3 from each row of
the matrix, wefind

Z = K’IDI/33”~”(1+ O($1)). (2.48)

For the averageplaquetteor internalenergythis implies

E=_~~logZ=~+0(J32). (2.49)

This result hasa simple interpretationin statisticalmechanics.We have 3ngN physical variables
distributedover 6N plaquettes.If we give eachdegreeof freedom~kT= 1/(2/3) averageenergy,then
we obtain exactly eq. (2.49). This simple counting of variablesreceives correctionsat higher tem-
peratureswherenonlinearinteractionscomeinto play.

2.7. Strongcoupling

In the statistical analogue,the strongcoupling regime is the high temperaturelimit. High tem-
peratureexpansionsare an old subject in solid statephysics, but before Wilson’s work they were
relativelyunknown to particletheorists.Indeed,in the continuumtheory the strongcoupling limit is
ratherunnaturalanddifficult to treat. In contrast,on the latticestrongcoupling is by far the simplest
limit. Onemerelyexpandsthe Boltzmannfactorin powersof theinversetemperatureandevaluatesthe
terms in the resulting series.In the gauge theory each power of /3 is associatedwith a plaquette
somewherein the lattice. This gives a simple diagrammaticintepretationin terms of graphsbuilt up
from suchplaquettes[1,10].

Considerthe internalenergyfor the SU(N) theory

~ (2.50)

wherewe haveexplicitly extractedthe factorof /3 from the action. We nowobservethat because

JdUU,~
1=0 (2.51)

E must go to unity as /3 goes to zero. Indeed,for each link in Up we must bring down at least one
correspondinglink from an expansionof the exponentialof the action to avoid the zeros from eq.
(2.51). Correspondingly, every link from the action must have a partner, either from the action itself or
the insertedloop. The first non-trivial contributionin the strongcouplingseriescomesfrom covering
our plaquette with another from the exponential. The simple integral neededto evaluate this
contributionis [11]

f dUUJ, U~J= N’ öik. (2.52)
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Combining the 8 functions and multiplying with f31(2N) for the plaquette brought down from the

exponential of the action, we obtain the result

1_~9~~+0(/32), N>2

E= (2.53)
1—~+0([3~), SU(2).

Strongcoupling expansionshavebeencarriedout for SU(3) to order /312 for the coefficient of the
linear interquarkpotentialand to order /38 for the mass gap [12]. Various attemptsto match these
expansionsontothe weakcouplingbehaviorin eq. (2.32) haveprovidedinterestingpredictionson the
numericalvaluesof theseparametersin the continuumlimit.

3. Monte Carlosimulations

3.1. Generaldiscussion

Thesumsover configurationswhichdefinequantumaverages(eqs.(2.23)and(2.24)) containsomany
terms that evenif the systemhasbeenrestrictedto a limited volume andthe dynamicalvariablesto
finite set,a straightforwardnumericalcomputationis impossible.On the otherhand,it is well known,
especiallyin thecontextof the analogousformulationof statisticalmechanics,thateffectively only asmall
subsetof all possibleconfigurationscontributesto the averages.The basicideaof MonteCarlo (MC)
simulations [3] is to samplethis set with a stochastic sequenceof configurationsC, such that the
probability of encounteringany definite configuration C is proportional to the measurefactor
exp{—S(C)}. Theaverageof anobservable0 can thenbe approximatedby the meanvaluetakenby the
observableover severalstatesin thissequence

0(C~). (3.1)

The passagefrom one configuration C, to the next oneC,+1 is determinedby a transitionmatrix
P(C—*C’), satisfyingthe constraintsof stochasticmatrices:

(3.2)

and

~P(C-*C’)= 1. (3.3)

In the customaryimplementationof theMC algorithm,the transitioninvolves thechangeof just oneof
the dynamicalvariablesat a time: U3 —* U,1’. The variableundergoingthechangecouldbe pickedup at
random,but it is computationallymoreconvenientto proceedthroughthe lattice in an orderlyfashion,
modifying oneof the dynamicalvariables(which constitutesa MonteCarlo step),thenanotheroneand



M Crewzetal., MonteCarlocomputationsin lattice gaugetheories 217

soon, until all the variableshavebeensampledand thusoneMonteCarlo iterationor sweepof the
lattice is completed.Properly speaking,therefore, one does not define a single transition matrix
P(C—* C), but a wholecollection P,1(C—* C),P3 coincidingwith the transitionprobability P(U3 —* U1)
for the variable Ui,, the otherdynamicalvariablesbeingkept fixed. A Markovianchainis still defined
by the matrix P~0~= ... P,,.,(C” —* C”)P,,.(C’ —* C”)P,,(C —* C’), where the product extendsover all
individual transitionprobabilities in the order in which the variablesaresampled.P~0~(C—*C’) deter-
minesthe changeat theendof onefull MonteCarloiteration.In the following we shallleavethe index
ji in P,,(C —* C’) implicit. Also let usmentionthat onecan define,andin someapplicationsthis maybe
necessary,MonteCarlo stepswheretwo or morevariablesaremodified simultaneously.

The goal is to define a stochasticsequencewith the property that, after statisticalequilibrium is
reached,the probability of finding any configuration C in the sequencebecomesproportional to
exp{—S(C)}. In other words exp{—S(C)} must be an eigenvectorof the stochastic processand the
probability vectorstateof the systemmustconvergeto it. A sufficient conditionis that eachstepof the
transitionmatrix obeysa requirementof detailedbalance:

e_S~P(C—* C’) = e_s~’)P(C’-+ C). (3.4)

(In the casewhere P~0~is a product it is sufficient that each piece satisfy this condition and not
necessarily the entire transition probability.) If eq. (3.4) is satisfied it is immediate to show that
exp{—S(C)} is an eigenvector.Indeedonehas

~e~~P(C—*C’)= ~e_S~P(C~~÷C) (by eq. (3.4))

= e_s~’) (by eq. (3.3)). (3.5)

To study the convergenceto this eigenvectorwe needa conceptof distancebetweenensemblesE
andE’, eachcontainingmanyconfigurations.Supposethat the probability densityof configurationC in
E or E’ is P(C)or P’(C), respectively.Thendefinethe distancebetweenE andE’ as

lIE — E’II = ~ P(C) — P(C’)I. (3.6)

Now it is possible to prove on generalgrounds that if E~representsan equilibrium distribution,
associatedwith the eigenvectorP~(C)of P(C—* C’), the algorithm neverincreasesthe distancefrom
equilibrium. Indeedif E’ is obtainedfrom E by the MonteCarlo algorithm definedby P(C —* C’) then

P’(C) = ~ P(C’ -* C)P(C’). (3.7)

We can nowcomparethe distanceof E’ from E~with the distanceof E from equilibrium

IIE’-E~JI=~ ~P(C’ -÷C)(P(C’)-P,.,~(C))~

� P(C’ ~ C)IP(C’) — Peq(C’)i = lIE — EcqIl, (3.8)
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where the propertiesin eqs. (3.2) and (3.3) have been used.This shows that the distancefrom
equilibrium never increases.Replacingthe weak inequality in eq. (3.8) with a strict inequality is less
straightforwardanddependson the detailsof the algorithm (it is possibleto definepathologicalcases
wherelIE’ — EeqII = lIE — EeqIl ~ 0). Moreover,oneis not really interestedin a theoreticalconvergenceto
equilibrium,but in arateof convergencerapidenoughtomakeapplicationof themethodpractical.In most
instancessuchconvergenceis indeedobserved.

The detailedbalancecondition eq. (3.4) does not specify completelythe transition probabilities
P(LJJ, —* U1~’).Therearevariationsof the MC algorithmwhichusedifferent forms for P(U,1 -÷Ufi’). We
describeherethe threeimplementationsof the techniquenormally followed.

(i) The methodof Metropoliset al. [131.The transitionfrom L5~to LJfi’ is a two stepprocess.First a
new candidatevalue LJ1~is selectedwith an arbitraryprobability distributionP0 obeying:

P0(U,1 -* a1)= P0((~1-* U,,). (3.9)

Thenthe changein action ~S inducedby the replacementU,,, —* (~,is computed:

L?&S = S(C~1)— S(U3) (all othervariableskept fixed). (3.10)

If E~S� 0 the changeis acceptedand U11’ = U1l; otherwisea pseudorandomnumberr, selectedin the
interval between0 and 1 with uniformprobability distribution, is generatedand:

— if

r � e~the changeis acceptedLI11’ =

— if

r > e~the changeis rejectedand U11’ = U,~.

Eq. (3.4) is clearlysatisfiedbecause,assumingfor instanceS(U1,) � S(U11),

P(U,1-* (2~,)= P0(U,, -* (~)e~ exp{—S(LC~1)} (3.11)

P(U,,-*U1,) P0(U,,-*U,,) 1 exp{—S(U,,)}

The goalof the Metropolis methodis to maximize the rate of changefrom one configurationto the
next, whichis achievedby making as largeas possible(indeedunity) the probability of thetransitionin
the directionwhich lowers the action.Its efficiency is howeverhamperedby the fact that,especiallyin a
regimeof weakcouplingwhereconfigurationsof low actionarefavored,mostof the proposedchanges
mayleadto a drasticincreasein actionandthusto a rejectionof the move.

(ii) The heat bath method [14]. The new value Ufi’ is selectedamongall possiblevalues for the
dynamicalvariablewith a probability distribution proportionalto exp{—S(U,,’)} (the other U’s being
kept fixed), irrespectiveof the previousvalue U,,. Eq. (3.4) is then satisfiedin an obviousway. The
advantageof this methodis that, all newcandidatevaluesof U,,, beingconsideredsimultaneously,there
is no possibility that theMonte Carlo steprejectsa changeonly becausea “poor” new candidatewas
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selected.On the otherhandchoosinga new valueof the dynamicalvariableon the basisof a definite
probability distribution is in generalcomputationallyratherdemanding.For instance,if the Li,,.,’ belong
to afinite set,all possiblevaluesof exp{—S(U,1’)} mustbecalculated,up to a commonfactor. Thereare
systems,though,wherethe selectionof the newvaluecan be donewith a simpleandelegantprocedure
for which the heatbath methodbecomesvery convenient.Thesearediscussedin subsection3.3.

(iii) Themodified Metropolismethod.
The algorithmis basically the sameas in the Metropolismethod,exceptthat after the movefrom U,,

to LI11’ hasbeencompleted,thewhole procedureis repeatedoneor moretimeson the samelink before
proceedingto the next MC step (i.e., the next dynamicalvariable). We shall say that, rather than
upgradingthe valueof Li,, once,one performsn ungradingsper step.Of course,the net result is that
the probability of consideringan acceptablenew candidatefor U,,, is increased.The advantageof
performingseveralupgradingsper step,ratherthan simply doing moresteps,is that asizeablefraction
of the computationleadingto AS involvesonly the valuesof the neighboringdynamicalvariables,kept
fixed in the move, andthisdoesnot haveto be repeated.This is considerablymorebeneficialin gauge
theoriesthan spin modelsbecauseof the complexity of the interaction. It will be noticed that as the
numbern of upgradingspersteptendsto infinity, the modified Metropolismethodreducesto the heat
bath. This algorithm, therefore,interpolatesbetweenthe other two and usually a value of n which
insuresoptimalefficiencycan be foundempirically.

We concludethis subsectionwith two considerations,which may appearstraightforwardnow, but
will be of relevancewhenwe considerextensionsto systemswith fermions.

(i) The MC algorithm is possible becausee_S or, more precisely, e~Sis a well-definedpositive
number.Of course,thislookslike a trivial remark;but themeasurewouldnot bepositivedefinite if, for
instance,we were trying to calculate the quantumaveragesdirectly in Minkowski space. Then the
expectationvalueswould be the result of drastic cancellationsbetweengenerallycomplex terms, and
the summationbasedon importance sampling, as describedin this section, could not be applied.
Unfortunately, cancellationsamong positive and negative terms occur also when the sums over
configurationsare extendedto includefermionicvariables,and this makesthe applicationof the MC
methodto fermionsmoreproblematic.

(ii) It is clear that a successfulapplicationof the techniquerequiresaveragesover a very large
numberof configurations. SeveralMC stepsfor each dynamical variable must be performed.The
numberof timesthat thevariation in actionASmustbecalculatedis thusextremelyhigh, andevenwith
a powerful computer the simulation becomespossible only if the number of arithmeticoperations
requiredto determinethe variation of the actionis not too large.Luckily thisis the casebecauseof the
locality propertiesof the action.Evenin the lattice formulationthe actionis local, in the sensethat it is
built from terms which involve only couplings between a few neighboring dynamical variables.
Performinganefficient MC simulationbecomesmuchmoredifficult when,maybeas theresultof partial
summationsover someof the variables,the dynamicsis governedby a non-local effectiveaction.

3.2. Practicalconsiderations

While it is possibleto formulatethe generalprinciples on which MC simulationsarebased,no fixed
set of rulescanbeprescribedwhenit comesto doing an explicit computation.MC simulationsarean
art very muchakin to experiments:the specificsof th~executionwill dependon theobjectives,means
andcapabilitiesof the performer.There are,however,a few considerationswhich will enterinto any
MC simulation.They concernthe choicesof
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(i) observablesto measure,
(ii) latticesize,
(iii) boundaryconditions,
(iv) initial configurationand lengthof the simulation.

We shallcommentbriefly on thesepoints.
(i) Observables.Thereis of coursealargevariety of quantitieswhoseaveragescan bemeasuredby a

MC simulation. The limitations are in the amountof computationwhich maybe requiredand in the
magnitudeof the statisticalfluctuations,which maymakethe measurementmeaninglessif the average
valueto be determinedis too small relativeto the background.In general,bulk quantitiessuch as the
expectationvalue of the internal energy(i.e., the averageplaquetteaction) will be easierto evaluate
than quantitieswhich dependon correlationsbetweendynamical variablesat different points or on
correlationsamongdifferent MC iterations(suchas the fluctuation in the averageinternalenergy).On
the otherhand,bulk quantitiesarenormally lessdirectly relatedto the renormalizedobservablesof the
continuumlimit. Although measurementsmaybe easierto perform,they areof morerelevancefor the
propertiesof thelattice theoryperse.More refinedanalysisof correlation-dependentobservableswill be
neededto extractinformationon the continuumlimit.

(ii) The size of thelatticeshouldof coursebe largeenoughto accommodatethe physicaldimensions
involved in the measurementwithout markedfinite size effects. Experiencewith four-dimensional
latticegaugetheorieshasshown,however,that evenlatticesof rathersmall linear size can be usefulto
evaluatesomequantities(especiallyof bulk nature).This is probablydueto meanfield effectsfrom the
largenumberof neighborsin high dimension.Fig. 1 illustratesmeasurementsof theinternalenergiesin
the two phaseswhich coexistat the first-ordercritical point in the Abelian Z2-model [15].Onenotices
that latticesof 44 andeven34 sitesarelargeenoughto separateclearly the two phasesandprovide an
estimateof the energies.

I I I I I I

0.8 - Z2 /3~I3~ -

o RANDOM START

0.7 - ~ ORDERED START -

0.6 -

0.3- -

I 4

0 I~ 2~ 34 44 54 6~ 74 8~
LATTICE SIZE

Fig. 1. Monte Carlo measurements of the internal energy on various size lattices with the gauge group Z2. The runs were made at the temperature of
the phase transition in the four-dimensional model. The error bars represent root mean square fluctuations. On each size lattice results from both
random and ordered initial configurations are shown.
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Beyondthe advantageof reducingfinite size effects, largelatticesgive betterstatisticalaccuracyif
measurementsaremadeover all positionsthat an observablecan occupy in the lattice. This is a true
advantage,however,only if for sometechnicalreasonsa sweepof a largelatticecan bedoneat a faster
rate(in termsof the time it takesto upgradeonedynamicalvariable)than thecorrespondingnumberof
sweepsof a smallerlattice. Otherwise,onecan makeup for the loss of statisticalaccuracyin a smaller
latticeby performinga larger numberof Monte Carlo iterations.Finally, working with largelattices
may require longer simulationsto achievestatisticalequilibrium in the proximity of a higher order
critical point. This will be the caseif the correlation length which governsapproachto equilibrium
becomescomparableto the latticesize.

(iii) Theimportanceof choosingappropriateboundaryconditionsis clearlydemonstratedby the fact
that an8~lattice has8~— 6~= 2800 pointson its boundaryandonly 1296pointsin its interior. Periodic
boundaryconditionsare normally assumedin order to avoid finite size effects directly due to the
boundary.

Periodicitymayalsobe imposedmodulosometransformationon the dynamicalvariables.Doing so,
onecan force excitationsof topological natureinto the system.One speaksthen of twistedboundary
conditions [16]. In a one-dimensionalarray of Ising spins, which can be orientedonly up or down,
twistedboundaryconditionsconsistin assumingthat the neighborof the last spinin the arrayis thefirst
spinwith orientationreversed.Thenthe total numberof spin reversalsin the chainbecomesnecessarily
oddandcannotbe lessthanone.

Another variation of the periodic boundaryconditions, of technical nature rather than bearing
physical content(indeed,it shouldnot affect the physics),consistsin assumingperiodicityup to a shift
of one site in one of the orthogonaldirections[17].We usea two-dimensionalsystemof N2 sites to
exemplify thischoiceof boundaryconditions.The idea is that,proceedingcolumnwise,the neighborof
a spin 51,N will not be s

1,1 but rather 5j+i,i. Thus all the spins can be ordered into a single
one-dimensionalarray s11s12.. . ~ . . 52NS31 ..., in sucha way that neighborsin the array arealso
neighborsin the lattice. The procedurecorrespondsto assumingthat the lattice winds in a helical
fashionaroundthe toroidal manifold inducedby periodicity.

(iv) Initial configuration. With the possibleexceptionof investigationsfocussingon the dynamical
behaviorof the Markovianchain itself, MC simulationseffectively makeuseonly of the configurations
obtained after statistical equilibrium is reached.The specific choice of the initial configuration is
thereforein principle irrelevant.Onewould like howeverto reducethe lengthof the transientneeded
to reachequilibrium; and,also,a simple test for equilibriumlies in theindependenceof resultsobtained
from different initial configurations.Thus the selectionof an appropriateset of initial values for the
dynamicalvariablesbecomesof practicalimportance.

An obviouspossibility for the initial dataconsistsin settingall U,, variablesequalto the identityof
the group. The action is then minimal and one speaksof a cold or orderedstart. At the opposite
extreme,onecan let the U1, takeentirely randomvalueswithin the groupmanifold. This is theinfinite
temperatureconfigurationandonespeaksof a hot, or disordered,start.Fig. 2 illustratesthe behaviorof
the internalenergyas function of the numberof iterationsin the simulation of a Z6-model, very near
the valueof /3 wherethe systemis known to undergoa second-orderphasetransition [15].Onenotices
that, in spiteof thecritical slowingdownonemay expect,bothwith ordered(upperline) anddisordered
starts(lower line) the simulationconvergesreasonablyrapidly to statisticalequilibrium. However, an
analogoussimulation for a systemwhich undergoesa first-order phasetransition, evenslightly away
from the critical point, may fail to convergeto equilibrium becauseof metastabilityeffects. Fig. 3
illustratesthe resultsof orderedanddisorderedstartsfor the Z2-modelat thefirst-ordercritical point /3~
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Fig. 2. The internal energy as a function of number of Monte Carlo Fig. 3. The evolution of the internal energy from random and ordered
iterations for the Z~system at $ = 1, near the higher of its two critical configurations at the first.order transition of the Z2 system.
temperatures. The upper and lower sets of points represent random
and ordered configurations, respectively.

[15].The occurrenceof two distinct, stablephasesis what oneindeedexpectsat /3 = /3g. The problem is
that the computationproducessimilar resultsevenif /3 is movedaway from /3,. by as much as —5 to
10%,whereasonly one of the phasesshouldremainstable.

A useful procedureto overcomemetastabilityeffects consistsin assumingan initial configuration
whichis half-orderedandhalf-disordered[15].For example,wecould takea randomconfigurationand
thenset to the identity all links with timecoordinatelessthan or equalto half the total time dimension
in the periodic crystal.Onespeaksthenof mixed-phaseMC simulations.Fig. 4 illustratesthe resultsof
the procedurefor the Z2-model at severalvaluesof /3 in the neighborhoodof /3,. [15].As soonas /3 is
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0 100 200 300 400 . . . . . .

Fig. 4. The evolution of the Z2 system from mixed phase initial Fig. 5. A thermal cycle on the Zg system.
conditions. From the top to the bottom sets of points, /3 runs from
0.41 to 0.47 in steps of 0.01.
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madedifferent from /3,., the stablephaseovertakesthe metastableone. The almostlinear drift of the
internalenergyto be final value,in theproximity of a first-ordertransition,is rathercharacteristicand
can be relatedto the expansionof the boundaryof the stablephase.

Finally, let usmentionthat it is often usefulto performsimulationswherethe couplingparameter/3
is variedslightly afterevery iterationor everyfew iterations.Onespeaksthen,especiallyif /3 is moved
from someinitial value/3~to /3~andthenbackto /3~,of a simulatedthermalcycle. Thegradualchange
of /3 inducesa nearlyadiabatictransformationon the system,which will neverbe strictly in statistical
equilibrium, but in generalwill remain very close to it. In the vicinity of critical points, however,
becauseof the increasein the relaxation time, the departurefrom equilibrium will becomemore
markedand the simulation of the thermal cycle will exhibit characteristichysteresisloops. Fig. 5
illustratesthe resultsof such a simulationfor the Z8-model [15].The two very markedhysteresisloops
signal the occurrenceof two phasetransitionsin the system.

3.3. Technicaldetails

In thissubsectionwediscussa few pointswhichmaybeof interestto the researcherplanningto write
an explicit MC program.Readerswho areinterestedonly in the generalfeaturesof the methodandin
the resultsmay want to skip thissubsection.

The computation leadingto the upgradeof one of the dynamicalvariablesconsistsof threebasic
parts:

(i) A retrieval from memory of the required LI,, and its neighbors.The indiceswhich specify the
location in memoryof thesenumbersmustbe determinedtaking into accountthe boundaryconditions.

(ii) A computation,accordingto the algebraof the gaugegroup, of quantitieswhich remain fixed
during the upgrade.For instance,if the internalenergyof a single plaquetteis expressedas

—Tr( U~U,,,3U,3~U,~11) (3.12)

andif U~1,is the variableto be upgraded,it will be convenientto evaluatethe matrix product

V~=U,,,U,.,13U,,,, (3.13)

first. If the total action is the sum of the individual plaquetteenergiesmultiplied by /3, U,~1,will
interveneinto six termsof the action.It will beusefulto computetheproductsV~°,i = 1,.. . 6, asin eq.
(3.13), for thesesix plaquettesandaddthem up

v=~v~. (3.14)

The changein action inducedwhen U,~1,is variedwill then be given by

bS= —I3Tr(V6U,~11) (3.15)

andonly therelatively simplearithmeticoperationof taking the tracewill haveto be repeatedif U,,,,, is
upgradedseveral times before proceedingto the next variable. This is particularly important for
continuousgaugegroups,in whichcaseamajorportionof thecomputertime is devotedto calculatingV.
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(iii) The decision, basedon the extractionof a pseudorandomnumber, on whetherto accept or
reject the change.

A usefulobservationrelativeto point (i) is that periodic boundaryconditionsmaybe enforcedin a
very efficient way if the size of the lattice is a power of 2 and the compiler allows simple bit
manipulations.Onecan takeadvantageof the binary structureof the representationof numbersinside
the computer.For details see ref. [18]. Otherwise, it is covenientto imposeperiodicity by defining
arraysof nextandpreviousindices,following the obviousdefinitions (for periodicity moduloN)

next(i)=i+1, i<N, (316)
next (N) = 1,

previous(i) = I — 1, i > 1, 3 17

previous(1)= N.

Use of modulusoperationsor conditional statementsis moretedious.
About point (ii) — a generalobservationis that, if thegaugegroupis a finite groupof reasonablylow

order,it is muchmoreconvenientto recordtheresultof thegroupoperationinto a multiplication table,
which will be stored in memory,and to combine U,, variablesaccordingto this table, ratherthan
performing the explicit matrix algebra. A generalprogramfor the simulation of a systemwith finite
gaugegroupsis publishedin ref. [18].Also, as long asthe groupelementsmaybe labelledby an integer
rangingover a limited set of values,it becomespossibleto record several U,, variables in the same
memoryword, allocatingbits of differentpositionto the differentvariables.

Onecan thusreducethe memory requirementsandsometimesthis procedurealso allowsaparallel
processingof several U,, by a single computerinstruction.For details see [19]. This kind of parallel
processingshould not be confusedwith the capability of executingsimultaneouslyseveraloperations
that someof the most modernand largestcomputersoffer andwhich can be fruitfully applied to MC
simulations,with no restrictionon the groupinvolved [20].

If the groupis continuous,thereis little that can be saidof generalnature,althoughvariationsin the
way the program is written may imply substantialsavings in computer time. For instance,with the
algebraof the SU(3) group, it is more efficient to obtain the first two rows of the productof two
matricesanddeterminethe third oneusingorthogonalityrelations,than to proceedwith the full matrix
multiplication (a savingof about 10% in CP, centralprocessor,time is achieved).

On theupgrading,a usefulconsiderationis thatif the gaugegroupis finite it is moreefficient to store
the possiblevalues of exp{—AS} in a memoryarrayandretrievethem at the momenttheyarerequired,
thancalling the rathertime consumingexponentialfunction. If the groupis continuous,again,not much
of generalnaturecan besaid. The gaugegroupsU(1) andSU(2), however,aresimpleenoughto allow
efficient andelegantimplementationof the heatbathalgorithm,which wenow briefly describe.

We first discussthecaseof SU(2) [21].Whenworkingon aparticularlink, we needto consideronly the
contributionto the action coming from the six plaquettescontainingthat link. Considerthe matrix V
from eq. (3.14), the sum of the six productsof neighboringlink variablesthat interactwith the link in
question.The heat bath method requires that we replace U,, with a new group elementselected
randomlyfrom SU(2)with probability distribution

dP(U) oc dUexp{~/3Tr(UV)}. (3.18)
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The manifold of the groupSU(2) is the surfaceof a four-dimensionalsphere.This follows from the
parametrization

U=a0+ia~o, a~+a
2=1, (3.19)

where u representsthe Pauli matrices. In termsof this parametrization,the invariant groupmeasure
takesthe simple form

~ (3.20)

A usefulpropertyof SU(2)elementsis that anysum of them is proportionalto anotherSU(2)element.
In particular,it follows from the representationin eq. (3.19) that

V=kU, (3.21)

where U is an SU(2)elementandk is given by the determinant

k = I i,/~1/2 (3.22)

The utility of this observationappearswhenwe usethe invarianceof the groupmeasureto absorbU,

dP(UU’) cc dUexp{~I3kTr U}. (3.23)

Usingeq. (3.20)gives

dP(UU1) cc d4a ô(a2— 1) exp(j3ka
0). (3.24)

Thus the problemreducesto generatingpointson the surfaceof a four-dimensionalhyperspherewith
exponentialweighting along the a0 direction. Generatingan element U in this manner,the link in
questionis replacedwith the product

U,1’ = UU~. (3.25)

To generatethe appropriateweighting on the hypersphere,first do the IaI integral with the delta
function to obtain

— 1) d
4aexp(J3ka

0)—~~da0dfl (1— a~)
1’2exp(J3kao), (3.26)

wheredO is the differential solid angle of a. Thus we mustgeneratea
0 in the inteval [—1,+1] with

weighting

dP(ao) cc (1— a~)”
2exp(J3ka

0)da0. (3.27)

Changingvariablesto z = e~”’°gives
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dP(z)cc dz (1— f32k2 log2 z)~’2, e2’~”� z � ~ (3.28)

This changeremovesthe strongpeakingfor low temperaturesfrom eq. (3.27).Now z can be generated
by selectinga randomnumberuniformly in the allowed interval andrejectingit with probability

(1— k”2 /3_2 log2 z)1”2. (3.29)

This is repeateduntil a z is accepted.Then the direction for a is selectedrandomly and the group
elementcan be reconstructed.

ThegroupU(1) is isomorphicto SO(2),which in turn is justthe set of SU(2)matriceswhich arereal.
Thus the abovediscussionthrougheq. (3.25) repeatsitself exceptfor eq. (3.24) whichbecomes

dP(UU1)cc d2a6(a~—1)exp(f3kao), (3.30)

wherethe SO(2)elementsare parametrizedas

a
0 ai)+i (3.31)

—a1 a0

Thehypersphereis replacednow by the unit circle andweneedto generate

dP(ao)cc (1— ao
2)~’2exp(J3kao)da

0,
(3.32)

a1 = ±(1—

Herethe sign of a1 is chosenrandomly.
The generationof a0 is somewhatmore complicatedthan for SU(2)becausethe weighting in eq.

(3.32)is an unbounded(but integrable)function. The schemeweuse is to changevariablesto

1 2/3k 1z=exp1—-———arcosa01, (3.33)

e
21~”<z<1, (3.34)

dP(z)cc exp(/3kcos(~log — log dz. (3.35)

This weighting is boundedandis reasonablysmoothfor moderate/3. We selectz uniformly in the range
(3.34) andthenreject it with probability proportionalto the weighting in (3.35). As in the SU(2)case,
thisis repeateduntil az is accepted,andthe groupelementis reconstructed.

4. Phasestructure of pure gaugesystems

As we havediscussedin section2.3, the existenceand natureof the critical points of aparticular
lattice model are issuesof prime importance to the model’s possible relevanceto physics in the
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continuumlimit. Thus,one of the first thingsonewould like to learnabouta latticegaugetheory is its
phasestructure.The Monte Carlo methodsdescribedin section3 are particularly well suitedfor the
studyof the non-perturbativeeffectsresponsiblefor the critical behaviorof a statisticalsystem.

4.1. Abelianmodels

The simplestlattice gaugetheoriesare those in which the spin variablestake on a finite set of N
values uniformly distributedon the unit circle. They span the discreteAbelian group Z(N) of planar
rotations by integer multiples of 2ir/N For N = 2 the model correspondsto a gauge-invariant
generalizationof the Ising model, and as N approachesinfinity, the Z(N) modelsapproachthe U(1)
theory.Therefore,althoughthesetheoriesdo not necessarilyleadto sensiblegaugefield theoriesin the
continuumlimit, theyprovide a tool for studyingthe U(1) theory indirectly. Furthermore,as we shall
arguebelow,mostof the relevantpropertiesof the U(1) gaugetheorycan beanalyzedusingthediscrete
models, which, being amenableto treatmentusing the parallel processingtechniquesmentionedin
section3.3, allow a much more precise determinationof thesepropertiesthan is possible using the
continuousgroupdirectly.

Since the work of Kramersand Wannier[22] on the two-dimensionalIsing model, the conceptof
duality has played a crucial role in the study of spin systems. Generalization of the duality
transformationto more complicatedsystemshas been achievedand excellent reviews exist in the
literature [23]. In broad terms, this transformationcan be understoodas a geometricmap of a given
model into anotherdefinedin the samenumberof dimensions,but with a(generally)differentaction,in
such away that the couplingsof the transformedtheory becomemonotonicallydecreasingfunctionsof
the original couplings. The dual theory is one in which the original “order” variableshave been
replacedby a newset of “disorder” variables,whosefluctuationsaresmallatstrongcoupling,wherethe
fluctuationsin the original variableswere large.In this way, the strong-couplingregimeof the original
theory is mappedinto the weak coupling regime of the dual theory, and vice versa.Of particular
interestis the situationwherethe action of the dualsystemcoincideswith that of the original system.
Whenamodelhasthis propertyit is saidto beself-dual.In thiscase,anumberof very importantresults
follow. In particular,if a self-dualsystemundergoesa single phasetransition,the critical couplingmust
be the point at which the original anddualcouplingscoincide. Whenmorethan onetransitionoccurs,
the critical pointson one side of the self-dual point are relatedto thoseon the other. Furthermore,
when a systemis self-dual, expectationvalues of order and disorder operatorsare also relatedby
duality. In many casesof interest, this fact leadsto importantconclusionsconcerningthe natureof a
given phaseof the model.

With the Wilson form of the action, the Z(N) modelsareself-dualfor N = 2, 3 and4; the self-dual
pointsbeinggiven by [10,24]

/3sD_1ln(1+\/~) 044 . (4.1)

/3SD=21n(1+V~3)067 .. (4.2)

$SD=ln(1+V’~2)=0~... (4.3)

For N >4 thesemodelsareapproximatelyself-dualin that the dual theory is againafour-dimensional
Z(N) gaugetheory but with asomewhatdifferentaction.
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Fig. 6. Thermal cycles on the (a) Z,,, (b) Z3, (c) Z~,(d) Z5 and (e) Z, models.

A rough overviewof the phasestructureof the Z(N) modelscanbe obtainedfrom the simulationof
thermalcycles as discussedin section3.2. One exampleof sucha simulation was shownin fig. 5 and
moreareshownin fig. 6. In figs. 6a—cpronouncedhysteresis-likeloopsarepresentin the regionof the
self-dual pointsfor the Z(2), Z(3) andZ(4) models.Accordingly, we expectthe existenceof a single
phase transition in those theories. Figures 6d—e are noticeably different. A hint of further
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structureis apparentin the Z(5) model,andtheprobableexistenceof two separatetransitionsbecomes
moreevidentfor the largergroups.Thatthe N>4 modelsundergotwo transitionsis confirmedthrough
furtheranalysis.Sincethesemodelsareclose to beingself-dual,thetwo critical pointsareapproximately
relatedby duality. As discussedin section3.2, the natureof the phasetransitionscan be elucidatedby
studyingthe evolutionof specialinitial configurationsin the vicinity of the critical points. Recall that
systemsundergoingfirst-ordertransitionspossesstwo different stablestatesat the critical point which
becomemetastableas the couplingis variedslightly away from this value.Higher-ordertransitions,on
the otherhand, do not havethisproperty. In fig. 2 we plottedthe evolutionof theaverageplaquettein
the Z(6) model at the strong-couplingcritical point as function of the numberof iterations.The two
setsof points, correspondingto ahot start (upperset)and acold start (lower set)areseento converge
to a commonvalue after a relatively short time of about 700 iterations,indicating the existenceof a
single stablestateat this valueof the coupling and, hence,a continuoustransition.Basedon further
analysisdescribedlater in this section,it hasbeenfound that this transition is indeeda second-order
one.Becauseof duality, thisimplies that theweak-couplingtransitionis second-orderas well. Thesame
typeof simulation,whencarriedout with the N <5 modelsproducesvery different resultsas shownin
figs. 3 and 7. In this case,the Z(4) model appearsto havetwo stable stateswhen simulatedat its
self-dualpoint andthus seemsto undergoa first-ordertransition.However,becauseof the existenceof
metastablestates, these simulations do not determine the value of the transition point with
anyprecision.This difficulty is easilyovercomewith the useof mixed-phaseconfigurationsof the type
discussedin section3.2. The resultsof applyingthis techniquein the caseof the Z(2), Z(3) and Z(4)
modelsaredisplayedin figs. 4 and8. To within anaccuracyof ±0.005in /3, thesesimulationslendstrong
evidencesupportingthe existenceof first-orderphasetransitionsfor the N <5 modelsat their self-dual
points. Severaltechniquesexist for determiningthe critical couplingof continuoustransitions.A simple
but crudetechniqueconsistsin simulatinga configurationandrepeatedlyadjustingthe inversecoupling
afterseveraliterationsin such a way that the valueof the averageplaquetteremainsin the middle of
the hysteresiscycle.Othermethods,which aremoreaccuratebut requirea considerablylargeramount
of computertime, rely on the measurementof averagefluctuationsas a meansof finding themaximum
value of the derivatives of the free energywith respectto the inversecoupling. The patternwhich
emergesfrom this analysisis shown in fig. 9. The Z(2), Z(3) and Z(4) modelspossesstwo phases
separatedby a first-order transition;the modelsfor N >4 havethreephaseswhich areseparatedby
continuous,second-ordertransitions.Generalarguments[25] which identify the physical mechanism
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responsiblefor thesecontinuoustransitions,basedon an analysisof topological excitationspresentin
the middle phase,imply that, for large enoughN, the strong-couplingcritical point in thesemodels
should convergeto a value which is essentiallyindependentof N This is consistentwith the MC
analysispresentedabove.Since the point of approximateself-duality of thesemodels occurs at an
inversecouplingwhich grows linearly with N, the fact that onetransitionis essentiallyfixed at /3 1
leadsoneto expectthat the secondcritical point shouldoccurat a couplingg2 which vanisheslike 1/N2
as N goesto infinity. Indeed,sincethe energydifference(perplaquette)betweenthe groundstateand
the first excitedstatevanisheswith N as 1— cos(2ir/N) O(N2), it is natural to expectthe second
critical point to scale similarly. Agreementbetweenthe numericalresults and the abovetheoretical
expectationsis clearly seenin fig. 9. Determinationof the scalingcoefficient o~ 0.78 from theoretical
considerationsremainsavery difficult task.

Using a periodic Gaussianapproximationto the Wilson action for the Z(N) models, the phase
structuredescribedabove was being conjecturedby several groups [25] at the time this numerical
analysiswas being carriedout. Successfor theoreticalanalysisand the numericalsimulation is clear
from the welcomeagreementbetweenthesetwo approaches.

The natureof the threephasesin the Z(N) modelsis well understood.Thestrong couplingphaseis
characterizedby an area-lawdecayfor the Wilson loops andleadsto the confinementof elementary
excitations. In both the intermediateas well as the weakcoupling phases,correlationshavea slower
fall-off. However, unlike the weakcoupling phase,the intermediatephaseis dominatedby massless,
spin-waveexcitationswhich correspondto the physicalphotonfield in the continuumlimit of the N—*

model. In fig. 10 the averageplaquette for the Z(20) model is comparedwith the spin-wave ap-
proximation value of 11(4/3). The rather good agreementbetween the numerical results and the
spin-waveprediction in the intermediatephaseis apparent.
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Fig. 10. The internal energy of the Z,,1~model as a function of inverse temperature. The solid line is the lowest order spin wave prediction for the
U(1) model.
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Thephasestructureof the U(1) model,as obtainedfrom adirect simulationof thecontinuousgroup,
is shown in fig. 11. The single transitionpoint seenat /3 1 separatesthe confining phasefrom a
QED-like phasecontainingthe quantizedphoton field in the continuumlimit. The existenceof a
continuousphasetransition in the lattice formulation of the U(1) theory,as indicatedby the above
resultsas well as by the subsequentrigorouswork of Guth [26],gives very strongsupportto the belief
that the Wilson—Polyakovlattice formulationof gauge theory providesa correct regularizationtech-
niquefor defining aquantumfield theory.Indeed,hadthisformulationled to unphysicalresultsfor this
prototypegaugetheory, its usein the analysisof the lesswell understoodnon-Abelianmodelswould
clearlybesuspect.

Usingfinite-sizescalingtechniques,a detailedanalysisof the U(1) transitionhasbeencarriedout by
LautrupandNauenberg[27]. Later, various renormalizationgroup techniqueswere applied to this
modelby Bhanot[28] andby Hamber[29]. The resultsof theseanalysesprovidestrongevidencefor a
second-ordercritical point. In this connection,it is worth mentioning that the possibleexistenceof an
essentialsingularity in the correlation length was part of the current lore when this transitionwas
discovered.The main reasonfor this belief was that the U(1) theory,being intimately relatedto the
planar (X—Y)spin model in two dimensionsthroughthe Migdal—Kadanoff recursionrelations,might
sharethispropertywith thespinsystem[30].Althoughwenowhavegoodevidencethatthetransitionisnot
of infinite order,thework of Bhanotindicatesthattheweak-couplingphaseof the0(2)modeldoesshare
with the spin systemthe propertyof beinga line of renormalization-groupfixed points.

Before passingon to discussthe non-Abeliangroups,we will anticipatethe analysisdescribedin
greaterdetail in section5 concerningtopological excitationsin thesetheories.As is the casewith the
planarmodelandotherspin systems,a possibledescriptionof the Abeliangaugemodelsis in termsof
variables which represent their topological excitations. In an interesting analysis, DeGrand and
Toussaint [17,31] identified a physical mechanismresponsiblefor the U(1) transition as being the
condensationof suchtopologicalexcitations(monopolesin this case)at the critical point, in a manner
analogousto the way in which thecondensationof vorticesis responsiblefor thephasetransitionin the
planarmodel.

A consequenceof the study of these theories in terms of such topological variables (which
correspondto the elementaryvariablesin the dual theory)is that, away from the freezing transition
observedfor finite N, the Z(N) modelsin the intermediatephaseareessentiallyindistinguishablefrom
the U(1) model.The computationaladvantagesof this fact areobvious.Although the argumentsleading
to the aboveassertionscannotbe simply appliedto the non-Abelianmodels,it is believedthat,at least
with the Wilson action, modelscorrespondingto discretesubgroupsof a non-Abeliangroupcan also
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Fig. 11. A thermal cycle on the U(l) model.
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mimic the continuousgroup for somerangeof values of the coupling.As we discussin the following
subsection,for the extensivelystudiedcaseof SU(2) andits discretesubgroups,the evidencein favor of
this belief is rathergood.

The critical propertiesof spin systemsdependcrucially upon the dimensionality of the lattice
wherethe model is defined.In view of the deepstatisticalanalogieswhich existbetweengaugemodels
andspin systems,one expectsthe existenceof critical dimensionsfor gaugetheories.In particular,we
have presented evidence that the U(1) model in four dimensions has a continuum limit
describingfree masslessphotons, in accordancewith physical expectations.The questionis whether
d = 4 is the critical dimensionfor gaugetheoriesin the sameway that d = 2 is for spin systems.This
hasbeen investigatedfor both the Abelian as well as the non-Abeliancases.The expectationis
that the d = 3 U(1) model cannotavoid the confinementof photons,whereasthe expectedconfining
propertyof non-Abelianmodelsshouldbe lost whend > 4. This pictureis now known to be rigorously
truein the Abeliancase,aswe briefly discusshere.The situationwith the non-Abelianmodelswill be
analyzedin the nextsubsection.

An analysisof the d = 3 Z(N) models,entirely analogousto the onepresentedabovefor d = 4, has
beencarriedout [32].The main finding is that thesemodelsundergoasingle continuoustransition for
all N, with a critical couplingwhich scaleswith the actiongapandthereforevanisheslike N2 in the U(1)
limit. In accordancewith theseresults,renormalization-groupanalyses[29,33] indicate that the d = 3

U(1) model is disorderedfor all finite couplings.A direct simulation of the U(1) model in d = 3 and
d = 5 gives further evidenceof the critical nature of d = 4. It is observedthat, while the three-
dimensionalmodel does not seemto undergoany transitions,the second-ordercritical point of the
four-dimensionalmodel hardens into a clear first-order transition [32] when d = 5. Finally, in a
very recentinvestigation,a rigorousproof confirming thesenumericalfindings hasbeen achievedby
GopfertandMack [34].

4.2. Non-Abelianmodels

In this subsectionwewill describethephasestructureof the physically relevantnon-Abeliansystems
correspondingto the SU(2) and SU(3)gaugegroups.The methodsused in this analysisare entirely
analogousto thoseusedin the study of the Abeliangroups,so the discussionwill be brief.

Most of the advantagesandlimitations encounteredin the MonteCarlo analysisof the U(1) model
usingits discreteZ(N) subgroupsapply in thiscaseaswell [35,36]. In particular,from a computational
point of view, the ability to store several spin variables in a single computerword allows for the
simulation of larger lattices [37]. Although this is not a major advantagein the study of the phase
structureof the models,it will be crucial in the analysisof nonlocalobservables,as will be discussedin
section5. As we havediscussedin section3, the fact that the groupoperationis morecomplicatedhere
thanin the Abeliancasemakesthe parallelprocessingof severalspinsthrougha logical implementation
of the groupalgebragenerallyimpractical.However, as long as the groupis not too large,the product
of two groupelementscan be performedby retrieving the result from a multiplication tablestoredin
memory,aprocedurewhichtakesmuchlesstime thancarryingout the matrixmultiplicationsexplicitly.
If the order of the group is very large, the groupoperationcan be reproducedby first factoring the
groupelementsinto productsof the elementsof a subgroupH timesa representativeof the cosetsof H.
A few tableswhich specify how theseelementsare commutedand multiplied can then be storedin
memory.
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An obviousdifficulty with non-Abeliangroups,which is absentin the U(1) case,stemsfrom the
fact that, whereasthe sequenceof Z(N) subgroupsof U(1) is infinite and its limit is densein U(1),
non-Abeliangroupshaveonly a finite numberof truly non-Abeliandiscretesubgroups,if we exclude
trivial generalizationsof their Abelian subgroups.Thus, for example, the dihedral groupsD(N),
obtained by combining rotations of 2ir/N around a fixed axis with rotations of IT around axes
orthogonalto it, reveal little of the non-Abeliannature of the three-dimensionalrotation group. As
was the casewith the Z(N) groups, it is clear that at sufficiently weak couplings the physics of the
discretenon-Abeliansubgroupswill differ from that of the Lie groupunderstudy.Therefore,in order
to profit from the use of discretesubgroups,it is crucial that the Lie groupin questionshouldhavea
sufficiently dense subgroupso that the interestingphysical region one wishes to probe occurs at
couplingswherethe continuousgroupis still well approximatedby thediscretegroup.Indeed,whereas
the approximationto the SU(2) modelby discretesubgroupsis excellent,the interestingphysicalregion
wherethe crossoverbetweenstrongandweak couplingtakesplacefor the SU(3) theory is outsidethe
rangeof couplingsfor whichthe approximationobtainedfrom the largestdiscretesubgroupis still good
(at leastwith the Wilson form of the action)[38].Recentwork [39]hasshownthat it maybe possibleto
overcomethislimitation by consideringsetsof groupelementswhich do not themselvesform asubgroup.
Using the exactaction, derivedfrom tables as notedabove, for the productof elementsaroundthe
plaquettes,one obtainsa useful schemefor rapid computationwith such an approximationto SU(3).

The relevantsubgroupsG of SU(2) can be reducedto subgroupsG of 0(3) by factoringout the
centerZ(2). The subgroupsof 0(3) are the symmetrygroupsof the polyhedra.Excluding Abelianand
dihedralcases,the finite subgroupsof 0(3) are:

(i) the 12 elementsymmetrygroupof the tetrahedron,denotedby T;
(ii) the 24 elementsymmetrygroupof the cubeandthe octahedron,denotedby 0;

(iii) the 60 elementsymmetrygroupof the icosahedronandthe dodecahedron,denotedby Y;
togetherwith their subgroups.Correspondingto these,SU(2)has the following subgroups:

(i) T (24 elements),
(ii) 0 (48 elements),

(iii) Y (120 elements),
whereG/Z(2) = G.

For the abovesubgroups,anytwo differentneighborsof the identity, that is, any two elementsof the
form g = cos0+ i sin 0o~• n correspondingto the smallestnon-vanishingvalueof 0, call it Om, andsuch
that they are not mutual inverses,generatethe whole group. Moreover, any such g generatesa
maximalcyclic group.If thisgroupis Z(N), then On, = 2ir/N andtheactiongapof themodel is the same
as in the Abelian systemwith gauge group Z(N). Thus, T has 8 neighborsof the identity and its
maximalAbelian subgroupis Z(6), 0 has6 neighborsof the identity with maximal Abeliansubgroup
Z(8) andY has12 neighborsof the identitywith maximalAbeliansubgroupZ(10).

In figs. 12—14 wedisplay [35] the resultsof thermalcyclesfor the modelswith gaugegroups0 (the
eight elementquaternionsubgroupof 0 with maximal Abelian subgroupZ(4)), T and 0. A clean
hysteresisloop, indicating the existenceof a single order—disordertransition, is clear in all cases.The
critical couplingis seento movetowardg = 0 as the orderof the group increaseswith no sign of other
critical points. This situation, pointedly different from the observedbehaviorof the Z(N) systems,
supportsthe notion that the SU(2)modelshould haveno transitionsfor finite coupling. A particularly
striking differencebetweenAbelianand non-Abeliancasescan be seenbetweenthe thermalcycle of
the0 model in fig. 14 andthat of the Z(8) model in fig. 5. The actiongapof thesemodelsis the same,
but, whereasthe Z(8) modelshowsthe appearanceof a spin-wavephasebehindthe transitionwhich
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Fig. 12. A thermal cycle with the quaternian group 0 = {±1,±io-}.

scaleswith thegap,no suchphaseis seenin the0 system.A comparisonof the- averageplaquettein the
O modelwith the correspondingquantity obtainedfrom a direct simulationof theSU(2)systemis also
shownin fig. 14. An excellentagreementis seenalmostup to the phasetransition.

Using mixed-phasesimulations,the transitionsin thesethreemodelshav~beendeterminedto be
first-orderandthe critical pointsareestimatedto be

= 1.23 ±0.02, G= 0 (4.4)

/3~=2.175±0.025,G=T (4.5)

/3~=3.21±0.01, G=O. (4.6)

The resultsof thesesimulationsareshownin fig. 15.
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Fig. 13. A thermal cycle with the group T.
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Fig. 14. A thermal cycle with the group O. The crosses represent cooling, plusses, heating and the circles are the internal energy for the SU(2)
model.

Thelargestsubgroup,Y, shows[36,37]asingle,first-orderphasetransitionat/3~ 5.9.Thesimulationof
this model was done on a very large lattice of 16 sites in eachdirection [37]. As notedbefore,the
advantagesof being able to simulate systemson largerlattices becomesapparentwhen the measure-
ment of extended,non-localoperatorsis needed.In the nextsection,wherewe discussthe observables,
the highstatisticsresultsfor SU(2) wereobtainedon this system.A moresubtleadvantageof usingthis
large lattice, also discussedin further detail in the next section,comes from the fact that the high
(physical)temperaturedeconfiningtransitionobservedin the SU(2) modeloccursat a valueof /3 which
increaseswith the size of the lattice accordingto the relation a(/3~) (1/ T~)d,where a is the lattice
spacing,T~is the physicaldeconfiningtemperatureandd is the lattice size.

A precisedeterminationof the averageplaquettefor the groupY is shownin fig. 16 as a function of
the inversecoupling.The statisticalerrorsaresmallerthanthe size of thepointsin the graph.The solid
linesshowncorrespondto variousPadéapproximantsto astrong-couplingseries,evaluatedto orderJ2°
by Wilson [40],whereJ is given by

J(/3) = ~ log(JdUeti Tr 11/2). (4.7)

A very good agreementbetweendata andseriesresultsis seento occurup to /3 2, after which the
seriesresultsdepartsharplyfrom the MC data.

Direct simulation of the SU(2) model showsno signs of a phasetransition at finite coupling. For
furthersupport of confinementat all couplings, in the next sectionwe will showthat the behaviorof
observablesis consistentwith renormalization-grouppredictionsassuminga vanishingcritical bare
coupling.Here we shallendourdiscussionof the numericalanalysisof the phasestructureof the SU(2)
model by mentioning that, becauseof the samemotivationwhich led us to study the U(1) model in
threeandfive dimensions,a studyof the SU(2) model in five dimensionshasbeencarriedout [41].In
striking contrastwith the four-dimensionalsystem,the resultsof this analysisreveal the existenceof a
first-orderphasetransitionat an inversecoupling/3~ 1.642±0.015,thusgiving furtherevidenceto the
critical natureof four dimensionsfor gaugetheories.
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We closethis subsectionwith a discussionof the phasestructureof the SU(3) model,the relevant
gaugegroup for the strong interactions.There is little reasonto suspectthat SU(3) would have a
deconfiningtransitionif sucheffect is absentin the SU(2) model,andindeed,adirect simulationof this
system[42]showsno sign of a phasetransitionin the exploredrangeof couplings.

A simulationof the SU(3)systemthroughastudyof its discretesubgroupswouldbe extremelyuseful
given the complexity of the group operationsinvolved in a simulation of the continuousgroup.
Unfortunately,the interestingphysicalregion for this modeloccursat an inversecoupling /3 6, as will
be discussedin section 5, whereasthe largest discrete subgroupof SU(3) has [38] a (first-order)
transition at ,8~= 3.6. Therefore, the continuumlimit of the SU(3) theory cannotbe usefully ap-
proximatedwith anyof its discretesubgroups,at leastwith the Wilson form for the action.We briefly
presentthe resultsof the analysisof thesemodelsnot only for completeness,but also becauseit is
known that the region of couplingsfor which the strong coupling region turns into the asymptotic
freedomregion, the so-calledcrossoverpoint, dependsstrongly on the specific form of the action
employed.Therefore,it is possiblethat an action otherthantheWilson form maystill permit theuse of
discretesubgroupsin this caseas well.

Apart from its dihedralsubgroups,SU(3)with thecenterZ(3) factoredout hascrystal-likesubgroups
which can be thought of as the generalizationsof the polyhedralsubgroupsof 0(3) to the eight-
dimensionalsphere[43].We describeherean analysisof the groupscontaining108, 216, 648 and1080
elements,which weshall denoteby S(N),N beingthenumberof elements.In fig. 17 weshow theresults
of a thermalcycle for the S(1080) model togetherwith a strong-couplingseriesup through order /35~
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Fig. 17. A thermal cycle with the S(1080) subgroup of SU(3) as the gauge group.

Mixed-phase simulations for this model indicate a first-order transition at /3~= 3.58 ±0.02. Both
kinds of simulationshave been performedwith the other models as well, with the results that a
first-order transitionis presentat /3~(108)= 2.5 ±0.2, /3~(216) = 3.2 ±0.1 and /3~(648)= 3.43 ±0.02. The
reasonJ3~remainsrelatively smalldespitethe large numberof elementsis that the actiongap, which
setsthe scalefor the critical coupling, is neversmalland the increasein entropywhich would tendto
increasef3~is neversufficient to offset this effect.

We closethis subsectionby mentioningthat greatprogresshasbeenmadethroughvery recentwork
of Tomboulis[44]in the attemptat finding an analyticproofof the absenceof a deconfiningtransitionin
thesemodels.Hopefully, this proofcan be completedin all rigor in the nearfuture.

4.3. Phasestructureof modelswith generalizedactions

The imposition of a cut-off on a field theory is a highly non-uniqueprocedure.Even in the
framework of a lattice theory,variationsareinteresting to study with Monte Carlo simulation. Such
analysesprovideimportantconsistencytestson theextractionof continuumnumbersand indeedbear
directly on the questionof uniquenessof the continuumlimit.

A simplealternativeto the Wilson model is to placea vector field AN on the latticesitesanddefine
an action by replacingderivatives in the continuumYang—Mills Lagrangianwith nearestneighbor
differences.This formulation differs from conventional lattice gauge theory in two fundamental
respects;first, exactlocal gaugesymmetryis broken,and,second,the integralover gaugesis no longer
compact.The latter featureforcesthe imposition of gaugefixing at the outset.Patrasciou,Seiler and
Stametescu[45] haveperformedpreliminarysimulationswith this model.Theyhaveasyet not seenthe
arealaw in large loops, but this is probably due to a renormalizationof the barechargemaking the
linear potentialobservableonly at extremelystrongcoupling.
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Remainingcloserin spirit to the Wilson formulation,Edgar [46]consideredreplacingthe plaquette
with the 2x 1 Wilson loopas the fundamentalterm in the action.Simulationswith this “fenêtre” action
show a clear first-ordertransition.Oneimportantconclusionis that the merepresenceor absenceof a
phasetransition is not auniversalpropertyof the gaugegroup. Indeed,when the latticespacingis not
small, variationsof the action can introducenew physicsas latticeartifacts.

Drawingstill closerto theWilsontheory,onecan keepthe actionasa sumover classfunctionsof the
group elementsassociatedwith the plaquettes,but changethe form of that function. Manton [47]
presenteda particularlysimplealternative,taking for the actionon a plaquette

S~(U)= /3d2(U,1), (4.8)

whered is the minimal distancein the groupmanifold betweenthe elementU andthe identity. This
takesadvantageof thefact that thereexistsaunique(upto an overall normalization)invariantmetric in
a Lie groupmanifold. In the caseof SU(2) the distanceis simply

d(U
1, U2) arccos(~Tr(U1U~

1)). (4.9)

The Manton action is convenientfor analyticwork in the weakcouplinglimit but is singularfor those
elementswith maximumdistancefrom the identity (—1 for SU(2)). This singularity resultsin a transfer
matrix which is not positivedefinite [48].

Another generalization,similar in spirit but different in detail from that of Manton, is the ~‘heat
kernel” or generalizedVillain action [49].The Boltzmannweightor exponentiatedaction

exp{ — S~(U)} (4.10)

shouldpeakstrongly nearthe identity for weakcouplingbut shouldbecomeuniform over the groupfor
asimplestrongcouplinglimit. This is reminiscentof theexpectationof the evolutionof thetemperature
distribution in a piece of material shapedlike the group manifold and initially possessinga delta
function temperaturespike at the identity. As time evolvestowardsinfinity, the hot peakwill spread
andeventuallybecomeuniform overthe group.This canbe mademathematicallypreciseusingagroup
theoreticalgeneralizationof the Laplacian to formulateaheat equation.The exponentiatedaction is
then identified with the solutionof this equation,wherethe couplingconstantcorrespondsto the time
after the initial singulardistributionof heat. This action hasthe technicaladvantageover the Manton
formof beingsmoothovertheentiregroupmanifoldandof giving riseto apositivedefinitetransfermatrix.
Both the Mantonandheatkernelaction havebeensubjectedto MonteCarlo analysis[50]andshow no
phasetransitionat finite /3.

An interestingchangein the phasestructureof the SU(2) theory resultsfrom simply replacingthe
traceof a plaquettewith the correspondingtrace in the adjoint representation[51]. This amountsto
working with the groupS0(3). In fig. 18 we showa thermalcycle on this modelwith a 54 lattice [51].
Fig. 19 showsthe evolution of this systemfrom random andorderedstartsat our estimateof the
transitiontemperature.As far as the classicallimit is concerned,S0(3)andSU(2)theoriesareidentical.
They only differ in their global propertieswhich come into play when quantumfluctuationsbring
plaquetteoperatorsfar from the identity. As with the fenêtreaction,the new transitionoccurswhenthe
latticespacingis largeandlatticeartifactsshouldbe expected.

Onepossibleexplanationof this S0(3)transitionis in termsof Z
2 monopoleexcitations[53]. These
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Fig. 18. A thermal cycle with the gauge group SO(3). and ordered starts at /3 = 2.5.

arisebecausethe adjoint representationof SU(2) doesnot see the Z2 centerof the latter group. A
plaquettevariable near—1 hasthe sameenergyas onenear+1. This can be used to define a Dirac
string asa sequenceof plaquettesnear—1. Severalclosely relatedschemesfor making this precisehave
been presented[54,55]. We will present that of Halliday and Schwimmer, which entails a slight
modification of the theory.To makethe actioninsensitiveto the groupcenter,introducea new setof
variables{o~},eachfrom the groupZ2 = {±1}, locatedon the latticeplaquettes.We studythe partition
function

Z=.~JdUexpf/3~o-~TrU~}. (4.11)

As the actionis linear in o~,that sum can be doneto give

Z= JdU exp{/3 ~ S~(U~)}, (4.12)

where

S~(U~)= ln(2cosh(J3Tr Un)). (4.13)

This is an even function of Tr U~and thusdoesnot see the group center.Halliday and Schwimmer
studiedthis variation of the S0(3)theory andfound that it also hasa first-orderphasetransition.

The quantity o~is essentiallya Dirac string variable: ~ = + 1 weights Up towardsthe identity and
= —1weightstowards—1. A naturaldefinition of a monopoleis to countthe numberof negative

strongvariablesenteringany given three-dimensionalcubeandto saythatamonopoleis in that cubeif
this numberis odd. In four dimensionsthesemonopolestraceout world lines andthe stringssweepout
world sheets.Halliday andSchwiminermeasuredthedensityof thesemonopoleworld lines andfounda
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sharpincreaseat the transitiontemperature.Note that the path of a Dirac string can be changedby
absorbingfactorsof —1 in the link variables.The string is not physically observablebut its endpoints
are.

The monopolesareeasily suppressedwith the addition of a massterm. Thus we can considerthe
partition function

Z = ~ J dU exp(/3 ~ rpTr U + A ~ fl Tp), (4.14)
{op} P C PEC

wherethe new sumin the exponentis overall three-dimensionalcubesin the lattice.The presenceof a
monopolein anyof thesecubesis now penalizedby a factore_2A. As A becomeslarge,the productof
the string variablesover the surfaceof anycubemustgo to unity. When this is the case,an elementary
exerciseshowsthatthereexistsa set of Z

2variableson the links such that any o’p is the productof these
aroundthe given plaquette.In this event,all Z2 factorscan be absorbedin the SU(2)measureandthe
theory goesover into the usualSU(2)modelwhich hasno phasetransition.Another interestinglimit is
/3 = 0. In eq. (4.14) thisgives arathercomplicatedlookingZ2 system.However, aduality transformation
turns it into the usualfour-dimensionalIsing modelwhich hasa single secondorderphasetransition.
Halliday and Schwimmerprovided MonteCarlo evidencethat as A is increasedthe S0(3)transition
movesto smaller/3 andeventuallybecomesthe Ising transition.Thevalueof A at which the transition
changesfrom first to secondorder is unknown.

An alternativemethodfor continuingbetweenSU(2)andS0(3)beginswith both representationsin
the action. Thus for the plaquetteactionto be insertedin eq. (4.12) wetake

S~(U) = ~/3Tr( U) + ~/3A TrA( U). (4.15)

HereTrA denotesthe traceof U in the adjoint or spin onerepresentationandthe factorsareinserted
for normalizationconvenience.For /

3A = 0 thisbecomesthe oridinary SU(2)model;on the otherhand,
/3 = 0 gives the S0(3)theory.A third interestinglimit is reachedas/3A goesto infinity, in which caseall
plaquettesareforced to lie in the centerof the gaugegroup. Up to a gaugetransformation,all links are
themselvesdrivento the center.Thus for SU(2)the modelbecomesa Z

2 gaugetheory with coupling /3.
At the outset,therefore,we know this model hasat least two first-order transitionlines entering its
phasediagram.

MonteCarlo simulationshaveexploredtheevolutionof thesetransitionsinto thetwo-couplingplane
[52].The resultingphasediagramis shownin fig. 20.Note that theZ(2) andS0(3)transitionsarestable
andmeetat a triple point locatedat

(/3, /3~)=(1.57±0.05,0.78±0.05). (4.16)

Fromthis triple point extendsafirst-orderline whichpointstowardsthe Wilson axisbut terminatesat a
critical point beforereachingit. This line pointsdirectly at thepositionof the peakin the specific heat
of theordinarySU(2)model.Thus the peakmaybe thoughtof as a remnantof thistransition,a shadow
of its critical endpoint.

As the parameter/
3A increasesrelativeto /3, the extremum of the action at U = —I changesfrom a

maximum to aminimum.This occursalongthe line

/3A=31318. (4.17)
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Fig. 20. The phase diagram for SU(2) lattice gauge theory with both fundamental and adjoint couplings.

Finally, alongthe PA axis the two minima aredegenerate.Note that the critical endpointlies slightly
abovethe line in eq. (4.17).Bhanothasstudieda similar two couplingSU(3) theory andfinds a critical
endpointagainnearthe appearanceof new minima of the plaquetteaction at group elementsin the
groupcenter[56].As theN of SU(N) increasesbeyondfour, thoseelementsof thegroupcenternearthe
identitybecomeminima of the action even for the ordinary Wilson action.This observationcorrelates
well with the MonteCarlo resultsthat theWilson SU(4),SU(5)andSU(6)theoriesall displayfirst order
phasetransitions[57]. Presumablya negative PA will permit continuationaround thesetransitions,
which would thereforenot be deconfining.

5. Observablesof a purequantumgaugetheory

The Monte Carlo method,beyondallowing one to obtain information on the phasestructureof a
lattice quantumgauge theory, permits the actual determinationof several observablesof physical
interest.The quantumexpectationvalueof anobservable0, whichwouldbe given exactlyby eq. (2.23),
is approximatedby the averagevalueof 0 takenover severalconfigurationsin the MC sequence,after
a certain number of initial configurationshavebeen discardedto allow for the onset of statistical
equilibrium (seeeq. (3.1)). Of course, in the applicationsto quantumgaugefield theories,one must
rememberthat the latticeversionof themodelconstitutesa regularization.So,whateverobservableone
determines,one must make sure that the numbercan be legitimately extrapolatedto the continuum
limit.

Although anyfield theorycan in principle be formulatedon the latticeandsimulatedby the Monte
Carloalgorithm,themajorinterestof themethodliesin its applicationto quantumchromodynamics,the
gaugetheory of stronginteractions,becauseof themanyfeaturesof this theorywhich arenot accessible
to ordinaryperturbativeanalysis.Thus, the most valuableMC results on physical observableshave
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beenobtainedpreciselyfor the theory of stronginteractions,wherethe gaugegroupis SU(3), the group
of color transformations.As a matter of fact, whereasseveralMC computationshavebeendonewith
the full SU(3) gaugesystem,very frequently SU(2) hasbeentaken as an approximationto the color
group.The hopeis that the non-Abeliannatureof SU(2) alreadyaccountsfor most of the propertiesof
the correct theory andthat the passagebetweenthe SU(2)and the SU(3)gaugegroupsinvolves only
minor extrapolations.Of coursefrom the technicalpoint of view, using SU(2) ratherthan SU(3) as a
gaugegroupimplies agreatreductionin the computertime neededfor a simulation,a savingwhich can
bemadeevengreaterif SU(2) is approximatedby its discretesubgroupY (for thevaluesof /3 whichare
of practicalinterest, the SU(2)-modelandthe Y-model areessentiallyindistinguishable).

Particularlyrelevantquantitieswhich havebeendeterminedby MC simulationsarethe stringtension
0’, i.e., the valueof the constantattractiveforce felt by two static sourcescarryingfundamentalcolor
(quarks)at largeseparation;the deconfiningtemperatureT~,i.e. the temperatureabovewhich, because
of thermalfluctuations,the excitationsof the gaugefield (in the adjoint representation)can effectively
screensourcesin the fundamentalrepresentation;the massgap, mg, or mass of the glueball, i.e. the
massof the lowest lying statein the spectrumof thepurequantizedgaugetheory.Moreover,properties
of thepotentialat short separationhavebeendeterminedby MC computations,finding agreementwith
the analysisof perturbativeQCD, andsomeinterestingobservableswith topologicalsignificancehave
been evaluated.We shall consider the MC determination of these various quantities in separate
subsections.For reasonsof spacewe will not describein this reviewcomputationsof observables,such
as the string tensionin the confining phaseof QED, which do not havean immediatebearingfor the
gaugetheory of stronginteractions.

5.1. Thestring tension

The measurementof the string tensionis achievedby consideringthe expectationvalueof transport
operatorsdefined along suitable closedpaths. Let y be a closed path and U,, the corresponding
transportoperator(seesection2.1). We form a gaugeinvariant quantity W,,, called the Wilson loop
factor,by consideringa suitableclassfunctionof U,,:- typically U,, will berepresentedby matricesin the
fundamentalrepresentationand W,, will be given by

W,,=~TrU,, (5.1)

if the groupis SU(N); the expectationvalueof W,, will thenfurnish informationon the propagationof
sourcesin the fundamentalrepresentation.

With the normalizationgiven by eq. (5.1), W,, will takevalue 1 if the gaugevariablesU~alongthe
path equalthe identityor a puregaugeform U~,= g1g1’. A completelyrandomaveragingoverevena
single link variablein U,, will insteadproduce(W,,)= 0. We expecttherefore(W,,~to takesmallerand
smallervaluesas the correlationbetweengaugevariablesalongthe path decreases.In particular,(WJ)
will decreasetowardzerowhen the size of the loop y becomeslarger,becausemorelink variableswill
enterin the averagingand becausethosefarther away will becomeless and less correlated.Crucial
informationis containedin the specificsof the rate of decayof (W,,~.To appreciatethis it is usefulto
developamorephysicalpicturefor the meaningof the Wilson loop factor.

The insertion of W,, in the integralover configurationsof exp{—S0} correspondsto adding to the
action of the systema perturbationdue to the propagationof a sourcealong the path y. This is
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particularlyevident in the formal continuumlimit: W.1, reducesthen to the trace of a (path ordered)
exponentialwhereA~is coupledto a currentloop. It is convenientto takefor y a rectangleextending
for m and n lattice sites alongtwo directions,which, for definiteness,we shall taketo be the x and t
directions.We shall denoteby Wm,n the correspondingW,,. The physical dimensionsof the rectangle
are given by x = ma, t = na, a being the lattice spacing. Introducing a complete set of energy
eigenstates4, defined in presenceof the sources,(Wm.n) (which equals the ratio of the partition
functionsin presenceandabsenceof thecurrentloop) can be expressedas follows

(Wm.n> = ~ (4~0)~~exp{—Ect,t}, (5.2)
4,

where(t~I0)representsthe amplitudefor the transitionbetweenthe ordinaryvacuumstateand a state
with two staticsourcesat separationx, inducedby the part of the transportoperatordefinedalongthe x
sideof the rectangle,andwhereexp{—E4,t} representsthe correctfactor for the propagationof a state
with energyE4, along a duration t of Euclideantime. The energyof the statewill of coursebe a
function of the separationof the sources:E4, = E4(x). For sufficiently largetime t the termwith lowest
E4, will dominateandwe conclude

(Wm,n)+C e_E~t, (5.3)

wherenowE(x) standsfor thegroundstateenergyin presenceof staticsourceswith separationx. Thus,
on generalgrounds,weexpectthat a measurementof (Wm,~)on the latticewill producea result

<Wmn)’*C e_~9.m)?2, (5.4)

s being a dimensionlessfunction of the barecouplingconstantg, and the separationin latticeunits.
Comparisonwith eq. (5.3) gives

E(x)= a
1 e(g,xla). (5.5)

E(x)cannothoweverbe immediatelyextrapolatedto thecontinuumlimit becausethe self-energyof the
sourcesis still includedin the expression.

A quantity of particularinterestis the possiblelinear term in the asymptoticbehaviorof E for large

E(x)—.ux. (5.6)

The coefficient u of thislinear termis calledthe stringtensionandrepresentsaconstantattractiveforce
betweenthe sourcesatlargeseparation.In the latticemeasurementssucha lineartermis revealedby a
behavior

e(g,m)—’K(g) m. (5.7)
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We thenhave

~=K(g)Ia2. (5.8)

Contraryto E(x), which requiresasubtraction,0’ is arenormalizationgroup invariant,i.e., oneexpects
the continuumlimit for ~ to be obtainedsimply by letting g approachthe scaling critical value g,~
(g~= 0, in the caseof a non-Abeliansystem)and simultaneouslytaking the lattice spacinga to zero
accordingto the functionaldependenceexpressedby eqs. (2.27and2.30).

Clearly, for rectangularpathsof increasingsize, and in general for any loop of increasingsize, a
non-vanishingstring tensionmanifestsitself with an arealaw decayof (W,,),

(W,,) ~ (5.9)

where A is the area, in lattice units, of the minimal surfaceenclosedby the loop. For the above
rectangularpathA = mn. Given the implication of a non-vanishingstring tensionfor the problemof
quarkconfinement,aMC determinationof 0’ is of obviousimportance.This was donefirst in ref. [21]
for an SU(2)theory, throughthe considerationof squareloopsof increasingsize.A fit to the measured
valuesfor (Wmn) in the form

(Wm,n) ‘=exp(—Km2—bm — c) (5.10)

allowedextractionof K(g). The analysis,beyondshowingthat K(g) was not vanishing,also revealed
that when /3 = 4/g2 becameof the order of 2, the functional form of K underwenta ratherrapid
crossoverfrom abehavior(for /3 <2) well fit in termsof astrongcouplingexpansion,to a behavior(for
/3 >2) consistentwith the scalingform

24 2 102/121

K(g)= ua2(g)=f~ (-j~j-~) exp{—(241T2/11g2)} (5.11)

predictedby the renormalizationgroup.
The determinationof K from a studyof squareloopsonly is besetby ambiguities:factorsother than

thoseincludedin eq. (5.10)mayappearin the size dependence;finite size effectsmaydistort the results
(as the squareloop comescloseto the size of the periodic lattice, correlationsbetweenthe variables
alongthe loop and thoseon the imagesinducedby periodicity tendto make (Wm.n) grow againand
maskthe fall-off). It was suggestedin ref. [35]and ref. [42]thata betterdeterminationof K might be
achievedconsideringratiosof Wilson factorsfor loopswhich aresimilar in shapeanddiffer only by one
unit of area.The expression

Ken(g, m)
1~(Wm.m)(Wm-i~m_i) (512)

,fl,Pfl-1

appearsto be particularlyconvenient,as onecan showthat variousdependenceson the size (perimeter
terms, logarithmic terms) cancel out of the ratio, at least in a perturbativeanalysis [58].K hasbeen
dubbedK~ffin eq. (5.12), becausein principle one would want to proceedto the limit m ~ but
statisticalfluctuationsinherentin the MC methodlimit the maximum sizeof the loop onecan consider
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to 5 or 6 lattice spacings((Wm,n) becomestoo small for larger sizes to be distinguishedfrom the
fluctuations). Thus onemeasuresan effective, rn-dependent,string tension and tries to obtain in-
formationon the asymptoticlimit [35,37,42,59]. Suchmeasurementsaredisplayedin fig. 21 for SU(2)
[42] andfig. 22 for SU(3) [60]. One notices in fig. 21 that, for fixed m, Kett as a function of /3 = 4/g2
follows first quite closely the strongcouplingprediction, then departsfrom it at /3 2 andappearsto
follow for a while the scalingbehaviorof eq. (5.11). The larger m is, thelonger the domainbecomesfor
which the scaling behavior is followed. This is of course to be expected,as well as the eventual
departurefrom the scaling curve: when /3 becomeslarge enoughthat the physical size of the loop
becomessmallerthan the confinementscale,thenperturbativebehaviorKeff(J3,m)c constx f31 should
set in.

Still, in the envelopeof the curvesKe~(J3,m) onerecognizesa curveK(J3) with the expectedscaling
behavior.Fitting the functionaldependenceof eq. (5.11) to the envelope,oneobtains

0’ = (5.9±1.8)x i0~A2 SU(2)
(5.13)

~ (2.8±0.9)xiO~A2 SU(3).

In ref. [37] the Y subgroupof SU(2) was usedas an approximationto the continuousgroup in the
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Fig. 21. Extracting the string tension for SU(2) lattice gauge theory.
The quantity X(I, I) refers to Kd(g, 1) of the text. Fig. 22. Extracting the string tension for SU(3) lattice gauge theory.
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definition of the latticegaugemodel.The approximationis well justified by the fact that the crossover
to the scaling region occurs at /3 2, whereas the transition to the ordered phase,due to the
discretenessof the group, does not occur until /3 6. Thus the SU(2)-modeland the Y-model give
practically indistinguishableresultsfor the observablesup to valuesof /3 which place the systemwell
inside the scalingdomain.Thecomputationaladvantagesof dealingwith afinite groupareremarkable.
In ref. [37] for instance,it was relatively easy to simulatea systemextendingfor 16 sites in each
dimension,thuscontaining262144link variables.A fastprogramfor simulatingthe Y modelhasbeen
publishedin ref. [18].

The result of eq. (5.13) does not really constitutea determination of the string tension, rather,
assumingthe string tension as basic observableto set the scale of all physical quantities,it fixes the
valueof the latticescaleparameterA. The computationof anysubsequentobservablewill now give a
resultexpressibleentirely in termsof 0’, with no referenceto the barecouplingconstant.No freedomof
adjusting parametersis thus left in the theory and all observablesare uniquely determined.The
trade-offbetweenthe couplingparameterof the regularizedlattice theory andthe only, rathertrivial,
freedom of selecting oneobservablein the continuum limit to set the standardfor dimensional
quantitieshasbeengiven the marvellousnameof dimensionaltransmutation[61].

The values of physical observablesmay be expressedstraightforwardlyin terms of 0’ if they are
computedwithin the sameschemeof regularization(namely, the lattice gaugetheory with Wilson’s
action). Otherwisethe scales introducedin the definition of the various renormalizationprocedures
must be related. In computationsof perturbative QCD theorists use different methodsof renor-
malization (the lattice regularizationwould indeedbe a quite awkward one) and the resultsmayfor
instance be expressedin terms of a convenient parametercalled Amom [62]. With an elaborate
computationthe scalesA andAmom (in the Feynmangauge)havebeenrelated,ref. [63], andonefinds

A = 0.0174Amom for SU(2),
(5.14)

A = 0.0120 Amom for SU(3).

The values

Amom= (0.75±0.12) ~1/2 SU(2),
(5.15)

Amom (0.5 ±0.1) ~1/2 SU(3)

that one would infer from eq. (5.13) are not in disagreementwith values estimated in various
applicationsof perturbative QCD (for instance, to scaling violations in deep inelastic scattering,
Drell—Yan process,etc.).A direct comparison,however,requiressomecautionbecausetheperturbative
analysisitself is not free of ambiguitiesandalsothe calculationaboveneglectslight quark loops.

It is neverthelesspossible to compareresultsobtainedwith different renormalizationprescriptions
entirely within the framework of MC simulations.This hasbeendone in ref. [50] wherethe string
tensionwasmeasuredusingalternativeactions to Wilson’s in the definition of the latticegaugesystem.
This possibilitywas mentionedin the previoussection.Precisely,expressingalwaysthe actionas

S~f(4p,$), (5.16)
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where4~is definedby

Up=cos4~+io’~nsin~p (5.17)

(SU(2) gaugetheory), Wilson’saction correspondsto

fnsfw(cbp,/3) = /3(1 — cos*~p), (5.18)

whereasthe form of the plaquetteaction fM proposedby Manton [47]

fM(4~P,/3)=~j3~, —1T<~�1T (5.19)

andthe so-calledheat-kernelaction [49]

exp{—f~(~p,~= ( ~ exp{—~/3(t~p+2iTfl)2})( ~ (1 4pfl2~.2) exp{_2/3n21r2})
(5.20)

havebeenconsideredin ref. [50].Manton’sactionis a simplequadraticexpressionin 4~,assumingthat
4~is definedsoasto lie in the range— ir < ç&p � ir. It is singularnearU = —I. Theheat-kernelaction is
definedso as to makethe measurefactoritself equalto thematrix elementof the operatore~ where
LI is the Laplaciandefinedover the SU(2) group manifold. The heat-kernelaction generalizesto an
arbitrary group the measureproposedby Villain [64] for the U(1) system or x — y model, i.e., a
periodic sum of Gaussians.

Use of a differentaction in the latticetheory correspondsto a different renormalizationprescription
and we shall denoteby A~(formerly simple A), AM andAHK the scalesfor the systemsdefinedwith
Wilson’s, Manton’s and the heat-kernelaction respectively.The MC computationsdone in ref. [50]
haveshownthat the string tensionscales,afterthecrossoverregion, in Manton’s andin theheat-kernel
systemsas well (seefig. 23). Indeedthe patternof the Ken(m,/3) curvesis quite similar to the one
alreadyfoundwith Wilson’saction.For theratiosbetweenstringtensionandscalesoneobtainshowever

AM = (0.0616±0.0020)V
0-, (5.21)

A~= (0.0206 ±0.0011)V~. (5.22)

This must be comparedwith A~= (0.013 ±0.002)V’~obtainedin ref. [42].The ratiosbetweenthese
variousscalesmaybe computedtheoreticallyandonefinds [50]

AMJAWI5h = 3.07, (5.23)

= 1.25. (5.24)

From the numerical computationsonefinds instead

AMIAWIMC= 4.74, (5.25)
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Fig. 23. Extracting the string tension for (a) Manton’s action and (b) the heat-kernelaction for SU(2). The variable K refers to K~5in the text.

AHK/AWIMC = 1.58. (5.26)

The discrepancymay be explainedrememberingthat the theoreticalratios are calculatedwith a one
loop perturbativecomputation,attheendof whichthe limit g—*0 is taken(andtheresultsareexact,no
truncationof an expansionis involved); the numericalestimatesinsteadaremadeat finite valuesof the
bare couplingconstant.The scalingresultis

C 24 2 102/121 24ir
2K = ~ (-j-j~r) exp{_-j~-j~}(1+ C~°g2+C~2~g4...) (5.27)

wherei refersto the schemeof regularization.Thehigher-ordertermscould in principle be computed,
or estimatednumerically,but in practiceareneglected.As wework with g2 of orderunity, theseterms
could easily, account for the discrepancy.Thus one should regard with some caution MC results
estimatedsoonaftertheonsetof scaling.Thepowercorrectionsto scaling,however,areuniversal,in d = 4
as is the casehere,within a definite schemeof regularizationand thereforethe direct comparisonof
observablesevaluatedwithin the samelatticemodel shouldbe lesssensitiveto finite coupling effects.
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5.2. Deconfinementtemperature

The MonteCarlotechniquemaybeusedto studypropertiesof quantizedfields atfinite temperature
T The investigationproceedsthrough areformulationof the formula for the partition function,

Z=Tre’~’T (5.28)

(we useunits with the Boltzmann’sconstantk equalto 1) in termsof a functionalintegral

lIT

Z= f d4~exp{_~f dtJd3x.~?[~]J. (5.29)
4,(x,i/T)=4,(x,0) 0

Ther.h.s. of eq. (5.29)is of courseonly a formal expression,to which a precisemathematicaldefinition
mustbe given; but onceagain,this is preciselywhat is achievedby the latticeregularization.Fromeq.
(5.29) we infer that finite temperatureeffects are takeninto accountby consideringa lattice which
extendsto infinity in thethreespace-likedirections,but only for afinite numbern~of latticesitesin the
temporaldirection.Periodicboundaryconditionsin time must be imposedon the dynamicalvariables
andthe temperatureis relatedto n

5 andlatticespacinga by

~ (5.30)
n5a

We areultimately interestedin the limit of a going to zeroandn~increasingsoas to keep T constant.
In actual Monte Carlo simulationsone works with a lattice which is finite also in the space-like

directions, extending for n~lattice spacings,and typically with periodic boundaryconditions. In
principle n5 shouldbe muchlargerthann~,althoughin practicethisideal conditionis neverrealizedand
onemustbe carefulaboutfinite spaceeffects.In thissubsectionweshall assumethat thesystemandall
pertinentmathematicalexpressionsaredefinedon an n~X n5 lattice.

The free energyF0 of the discretizedsystemis given by

F0=—T1nZ0, (5.31)

where

= ~ exp{—S({U,1})} (5.32)
{Ujj}

(the summationsymbol standsfor a multiple integrationover the group manifold if the group is
continuous).Oneof the most interestingquantitiesto consideris theshift in freeenergyi~Finducedby
a staticsource.The propagationof astaticsourcein time is representedin the continuumformulation
by the insertionof

lIT

TrPexp{ig J Aodt}
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in eq. (5.32)with the factorexp(—S).This term is the traceof the transportoperatoralongapathin the
time-like direction, closed by virtue of the periodic boundary conditions. We shall denote the
correspondingtransportoperatoron the latticeby U~:

U~= LII,, UU (5.33)

where i
1, ~ i, indicate a sequenceof lattice sites in the temporal direction at fixed spacelattice

coordinatex. A correspondingWilson loop factor is defined

W~=~TrU1 (5.34)

(the normalizationis for the group SU(N) and a sourcein the fundamentalrepresentation,but the
normalizationof W~is irrelevant for the considerationswhich follow). The free energyin presenceof
the staticsourceis then given by

F=—T1nZ, (5.35)

where

Z = ~ W~exp{—S({U,,})}. (5.36)
{U3,}

It follows that the variation of free energycan be expressedin termsof the averagevalueof W~,

z~F=—Tln(Z/Zo)=—Tln~W~), (5.37)

a quantity particularlyadaptedfor a MonteCarlo numericalevaluation.
Beforepresentingresultson z~Flet uscommentbriefly on the physicalexpectations.If confinement

occurs,the free energyof a singlesourceshouldbe infinite andthereforeoneought to find

(5.38)

Notice that an infinite i~Fcannotresultfrom an ultravioletdivergence(which shouldbesubtracted)in
the regularizedlattice version of the theory: if ~F comes out infinite, it is an infrared effect and a
genuinesignal of confinement.It is interestingthat SU(N) and also U(1) systemspossessa symmetry
which would insure(Wy)= 0 for a sourcein the fundamentalrepresentation,if realizedat the level of
expectationvalues.The symmetryoperationconsistsin multiplying all the link variablesUj, associated
with links in the temporal direction and a fixed time coordinateby a constantelementC~= e

2”~”
from the centerof the group. Since any plaquettecontainseither noneor a pair of theselinks with
oppositeorientations,andbecauseC~commuteswith all elementsof the group,the plaquettetransport
operatorsU andthe actionarenot affectedby the transformation.This is thereforea symmetryof the
system. (As a matter of fact the value of any transportoperatorfor a closed loop entirely contained
within t = 0 and t = lIT will alsobe unchanged.)But thepathsalongwhich U~is definedareclosedby
virtue of the periodicboundaryconditions,whichgive to the systemthetopology of atorus,andcontain
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a single oneof the links affectedby the transformation.The valuesof all U~thereforechange

Ux*e2”””~”Ux (5.39)

andsochangethe loop factors

W~-* e2” ~ W~. (5.40)

If the symmetryis realizedat the level of quantumaverages,then

(WX) = e2’~t”~(W~) (5.41)

and(Wi) = 0 follows.
The symmetry expressedby eqs. (5.39—41) mayhoweverbe dynamically broken,resulting in finite

expectationvaluesfor (WX) andi~~FThe meaningof this symmetryviolation is that the excitationsof
the gauge field induced by thermal fluctuations, althoughin the adjoint representation,effectively
screenthe quantumnumbersof the sourcein the fundamentalrepresentation(Debye screening);the
infraredeffectsaresuppressedand the sourcebecomesdeconfined.

In ref. [65]theoreticalargumentsweregivenfor a deconfinementof quarks,dueto Debyescreening,
when the temperaturebecomessufficiently high. Finite temperatureeffectsin an SU(2)gaugesystem
were first consideredby meansof MonteCarlo simulationsin the work of refs. [66,67]. The numerical
results clearly showedthat at low temperature(Wi) = 0, but that (WX) becamenonzerowhen T
exceededsome critical temperatureT~.Notice that the temperatureof the lattice systemmay be
increasedeither by lowering n~(rememberT= 1/n

5a)or by making the latticespacinga smaller. The
latter, by virtue of the functional relationbetweencoupling parameter/3 anda neededto achievea
continuumlimit, correspondsto increasing/3. If deconfinementis aphysicaleffect, it mustoccuratfixed
Tc, at leastfor sufficiently small latticespacing.It was confirmed in ref. [67] that, whenn~was made
larger, the valueof /3 at which(Wi) becamenon-vanishingalso increased.Moreoverthe relation

n~a(J3,~(n5))= const, (5.42)

with a03) given by the renormalizationgroup formulaeq. (2.30), appearedbeautifully verified. The

deconfinementtemperaturewas thusestimatedas
T0~(0.35±0.35)x\/~, (5.43)

ci being the string tension. A computationof T~in the SU(3)systemwas done in ref. [68] with the
result, T~ A

tm0m 200MeV.
Consideringthe expectationvalue of the productof severalloop factors W~,W

1,~,...at different
spacelocationsone can evaluatethe free energyof a systemof severalsources.This wasdonein refs.
[66,67]for two SU(2)sourcesin the fundamentalrepresentationseparatedalongalatticeaxis, and,also
in the SU(2)theory,for arbitraryseparationin ref. [69J.TheMonteCarlo resultsclearlyshowthat the
potentialbetweenthe sourcesis confining for T < T~,with a stringtensionwhich becomesprogressively
smalleras the temperatureincreases,andDebye-screenedfor T> T~.A graphillustratingthe behavior
of the forcebetweenthe sourcesas a function of separationandtemperatureis displayedin fig. 24.
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Fig. 24. Theforce between fundamental SU(2) sources as a function of separation and temperature.

Beyondconsideringthe thermalpropertiesof asystemof staticsources,MonteCarlo computations
can be usedalso to investigatedirectly the propertiesof the finite temperature,quantizedgaugefield
(gluon gas).Thesecould be derivedfrom a knowledgeof Z

0, the partition function of the systemitself.
But Z0 alwaysappearsas normalizingfactorin the quantumaveragesandcannotbecomputeddirectly
in MC simulations.Rather,onemust considersuitablederivativesof Z0 with respectto the physical
parameters:on the one hand, thesederivatives can be related to statistical averages,such as the
averageof the plaquetteaction, on the other hand they havean interpretationin terms of physical
quantities, such as pressureand internal energy. These ideas have been pursued in a series of
investigationsby Engelset al. [70], and several interestingpropertiesof the gluon gas havebeen
determined.In particular,the occurrenceof the deconfiningphasetransitionshasbeenobservedin the
thermodynamicquantities.Thesefinite temperatureeffects also provide information on the glueball
spectrum[70,71].

5.3. Themassgap

A pure gaugetheory, like anyquantummechanicalsystem,will be characterizedby a spectrumof
eigenvaluesfor theenergyoperator.With Lorentzcovariance,this translatesinto a massspectrum.On
the latticeratherthan energyeigenvalues,one should properly speakof eigenvaluesof the transfer
matrix T, i.e., the operatorwhichgeneratestranslationsby onelatticespacing.In the continuumlimit,
however,one may identify T with e~”(whereH is the Hamiltonian and the exponential is real
decreasingbecauseof the rotation to imaginarytime) and reconstructthe eigenvaluesof energyfrom
thoseof T

In a confined theory whereno long rangeforcesarepresentone expectsthe absenceof zero mass
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states.Themassspectrumshouldthereforebeginwith the first stateabovethevacuumhavingapositive
definite masseigenvaluemg: this is called the massgapof the theory. It representsthe massof a well
definedparticle-like excitation of the pure gaugesystem.In the applicationto quantumchromody-
namics,this stateis often referred to as a glueball, a term which is applied also to similar statesof
higher mass.In the absenceof quarks,at leastthe lowest lying glueballmustbe stable.The couplingto
quarkscomplicatesthe picture and glueballsmaybe experimentallydetectedonly as resonantstates
outsideof the mainquarkmodelsequence.

In any event,given a non-Abeliansystem,it is of obviousimportanceto determinethe valueof the
massgap.Monte Carlo computationsof mg havebeendonefor SU(2)andSU(3)systems.

The numerical analysis proceedsthrough a study of the time dependenceof the connected
correlationfunction

G(t) = (0(t) 0(0))— (~)2, (5.44)

where0 is somesuitableoperatorand 0, 1 representtime coordinateson the lattice (i.e., t is some
multiple of a). 0 musthavea non-vanishingmatrix elementbetweenthe vacuumandthe soughtafter
state.In the latticetheory thesimplestchoicefor 0 is the traceof thetransporteraroundtheplaquette,
the samequantitywhich appearsin thedefinition of the action.Such achoicemakes0 dependenton a
latticespatialcoordinateandon the orientationof the plaquetteP whichwedenoteby thesubscriptor:

Oor(X, t) = Tr U~. (5.45)

The plaquette—plaquettecorrelationfunction

Gor.or’(X, t; X’, 0) = (Oor(X, t) Oor’(X’, 0))— (0)2 (5.46)

can be expandedinto aseriesby insertionof acompleteset of eigenstatesIn) of energyandmomentum

Gor,or’(X, t; x’, 0) = ~ (OIOorIfl) (nIOor.I0) exp(—E~t— iP~. (x — x’)). (5.47)
n�o

EarlyMC studiesconsideredpreciselythisquantitywith x = x’ = 0 andor = or’ correspondingto parallel
plaquettesfacing eachother.Thesumtakesthe form

~ I(nI0I0)I~e~’.
n~’0 -

For t sufficiently largethe rateof decreaseis dominatedby the term with lowestE, which in principle
allows a determinationof mg. In practice,the correlationlength turns out to be rathersmall, of the
orderof onelatticeunit, throughoutthe /3 domainswherethe MC simulationis possible.G(t) falls off
very fast andfor t = 3 or 4 latticespacingsit becomesatmostof the orderof the statisticalfluctuations.
At suchshort separationsthebehaviorof G is still strongly influencedby power-liketerms,inducedby
the summationover momenta,and thesemask the exponentialfall-off. For all thesereasonsa direct
studyof plaquette—plaquettecorrelationscan produceonly ratherroughupperestimateson the valueof
mg.
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A morerefinedanalysis,suggestedin the strong couplinganalysisof MUnster [12],proceedsthrough
asummationover all spacepositionsx andorientationsof the plaquettes.This removesfrom the sum
stateswith nonzeromomentumor higher spins,andleavesonly statesfor which E = m~.We therefore
define

0’(t) = ~ Oor(X, t) (5.48)
x,or

and

G’(t) = (0’(t) 0(0))— (~)2 . (5.49)

Oneexpects

G’(t) = ~ I(nIO’)12 exp(—m1) (5.50)

n

and

G’(t) exp(—mgt) (5.51)

for t sufficiently large.
In aMonteCarlosimulationG’(t) is measuredfor t of the orderof a few latticespacingsat most.Let

= na anddefineeffectivemassesin latticeunits

/.Leff(fl, /3) = — ln ~~) (5.52)

(the alternativedefinition

G’(na)
/~Leff(fl, /3) = —In G’((n — 1)a)

mayalso beused: z’ convergesfasterto the asymptoticvaluebut is affectedby largererrors).The true
massgapatfinite ,8 is given by

mg= lim/.Len(n, /3) a1. (5.53)

As one approachesthe continuumlimit /3—* °~,a(/3)—*0, oneexpectsto observea scalingbehavior

/.Leff(~, ~3)—* Ca(J3), (5.54)
fA-.oo

whichallows in turn a determinationof the physical mg:
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mg=CA. (5.55)

Thediscussionalreadypresentedfor the measurementof the stringtensioncan now be repeatedto
arguethat the numericalcomputationwill give an indication of the scalingbehavioras an envelopefor
the curves~e~(fl, /3). As a matterof fact, the situationis somewhatworse thanfor the string tension
becausethe perturbative,large /3 behavioris ~a~ff(n,/3) —* const (rather than 0(11/3)as for the string
tension).Theseconstants,which can beevaluatedin aspin-waveexpansion,areratherlargefor smalln
andapproachzeroonly slowly for n —* oo~Thebehaviorof ~ in the SU(2)theory,asdeterminedfrom a
MC study doneon a 43x 16 lattice [72]is illustrated in fig. 25. The dashedcurverepresentsthe leading
term in the strong couplingexpansion.The solid lines illustratethe scalingbehaviorcorrespondingto

mg = 2.4±0.6V~. (5.56)

A further refinementof the numericalstudy is achievedconsideringfor 0 a linear combinationof
operatorscorrespondingto Wilson factorsarounddifferent shapesof loops:

0”(t) = ~ a,W,,,(x,t). (5.57)

Theideais that, if it were possibleto define an operator0”(t) whichhasmatrix elementsonly between
the vacuumandthe lowestquantummechanicalexcitation,then the behavior

s~~Mi7o.;3a~ ~

- I
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Fig. 25. The SU(2) mass gap in lattice units as obtained from the plaquette—plaquette correlation at separation of 1, 2 and 3 lattice sites.
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G”(t) (0”(t) 0”(O)) — (Oul)2 = 1(11010)2 exp(—mgt) (5.58)

wouldbe true at all separations,not only asymptotically,andonemight expressmg as

1~G”(l)
a nGll(O). -

While it is impossibleto find suchan operatorexactly,onemay changethe parametersa, soas to come
as closeto it as possible.In otherwords,in analogywith a variationaldeterminationof the eigenstates
of the Hamiltonian, one obtainsbetter upper boundsto mg by consideringvariationally improved
effectivemasses

~ /3) = mn (—-iIn ~ (5.59)

This procedurehasbeenfollowed in refs. [72—76].Onefinds thatthe variationaltechniqueindeedgives
muchbetterlower boundson m5 at a definiteseparationin time. The inclusionof moreoperatorsin the
analysis,however,especiallyif they are coupledmainly to higher excitations,increasesthe amountof
statistical fluctuationsandit becomesmoredifficult to increasethe separation.Fromfig. 26, takenagain
from the work of ref. [72], one seesthat the variational computationwith t limited to 2a gives
comparableresultsto the analysisbasedon the single plaquetteoperator,whereGcould be measured
at separationt = 3a.

I (170.1±30.) I AL I

1.625 1175 2.125 2.375 2.625

Fig. 26. The SU(2) massgap as obtained from the variational techniques.
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Togetherwith the estimatemg= (2.4± 0.6)V0 of ref. [72] the following resultshavebeenobtained
for the SU(2)theory: m5= (2.9 ±0.4)\/cr, ref. [73],andmg = (2.5 ±0.3)’I~,ref. [74].In refs. [75and76]
computationsfor the SU(3) systemwere presented,with the estimatesmg = (2.6 ±0.3)V~ and mg=

(1.8 ±0.1)\/~,respectively.
By addingsuitable weights in the sum over orientationsone can project out statestransforming

accordingto a non-trivial representationof the lattice rotationgroups.Theserepresentationscan in turn
be expandedinto sumsof representationsof the 0(3) rotation group, which will typically start with
angularmomentumgreaterthan zero. Following this procedurea few authorshaveattempteda MC
evaluationof the massesof higher spinglueballs.The resultstend to.beratherlargewith respectto the
estimateof the mass of the 0~state,which may be due to substantialcontributionsfrom higher
excitedstates.We refer to the original literature[76]for adetailedaccountof the results.

Further information on the glueball spectrumcan be obtainedfrom finite size effects [71] or from
considerationof alternativeboundaryconditions[77].The internalenergyon afinite latticediffers from
that on an infinite lattice by correctionsexponential in the massesof all possibleglueballs. These
effectsarevery sensitiveto the numberof states,anddetailedmeasurementsindicatea rich low energy
spectrum[71].

5.4. Potentialand recoveryof rotationalsymmetry

MonteCarlo computationscan be usedto measurethe behaviorof the potential V(r) betweentwo
staticsourcesat small separation.Although thisis a domainwhere,becauseof asymptoticfreedom,the
perturbativeanalysisis applicable,the Monte Carlo resultscan be usedto confirm the validity of the
method.

In ref. [37] the potential (or, more properly, the free energy)betweentwo SU(2) sourcesin the
fundamentalrepresentationwas determinedfrom the correlationfunction (Wi.W0) (seesubsection5.2)
at theratherhighvalue /3 = 4.5. This correspondsto alatticespacinga = 0.002(V~)_1.Theanalysiswas
madeapproximatingSU(2)with its icosahedralsubgroupandworking on a 16~lattice.The resultsfor
V(r) areshownin fig. 27: the Coulombicbehavioris apparent.(Noticethat evenif onemayarguethat
the values for a andn~placethe systemin the deconfinedregion,althoughn~~‘ n~would be required
for a clear-cut interpretation, the range of distancesover which Debye screeningshould become
manifestexceedsby far the maximumseparationconsideredin the measurement.)

The resultsillustrated in fig. 27 do little more than confirmthe compatibility of the MC simulation
with aperturbativespin-waveanalysisfor sufficiently large/3. Working at smallervaluesof /3 one can
achievemore. Indeed,as the separationbetweensourcesgrowslarger(reducing/3 increasesthe lattice
spacing),one expectsthe potentialto be for a while still of the Coulombicform, but with a running
couplingconstant

V(r) cc g
2(r)/r. (5.60)

A measurementof V(r) will thengive informationon the scaleA~
0~1present.

A ratherdetailedstudy of the potential V(r) betweentwo SU(2) fundamentalsourceshasbeen
presentedin ref. [78]. V(r) (or rather,onceagain,thecorrespondingfree energy)was obtainedfrom the
measurementof the correlation(W,W0) for all possibleon-axisandoff-axis separationsx leadingto a
statistically significant result.Latticesextendingfor 8~x n~,n~= 4, 6 and8, and16~X 6 sites, at valuesof
/3 spanningthe wholecrossoverregionwereconsidered.An accuratedeterminationof thepotentialfrom
the analysisof Wilson loopsin the SU(2) theory hasalso beenrecently presentedin ref. [79].
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Fig. 27. The SU(2) interquarkpotential as a function of separation in lattice units.

An interestingstudyof the rotational propertiesof the potentialin the U(1) modelwas presentedin
ref. [31]. The main goal of the analysisof ref. [78] was to study thesepropertiesof the SU(2) lattice
potential,but, as a by-product, information of the thermalpropertiesof the systemand on the short
distancebehaviorof the potentialwas obtained.In the confining region the curvesobtainedfor the
forcebetweensources(seefig. 24)appearconsistentwith a fit

F(r) = ~ [{r~ ln(1 + A~ui2r2)} — Ac0012] + cr(T) (5.61)

with A~ 0.3Vcr. This formula incorporatesa constant,but temperaturedependent,stringtensionat
largeseparationanda Coulombicbehaviorwith runningcouplingconstantat smalldistances[80].The
valuefound for the scaleis compatiblewith previousMC andperturbativeresults[81—82].

Returningto the rotationalpropertiesof thepotential,theresultsobtainedfor V(r), whichis defined
of courseonly at the latticesites, were interpolatedthroughoutthe lattice in the following way. Several
lines of nearby,alignedlatticesites wereconsidered(the lines did not haveto passthroughthe origin)
andthe valuesassumedthereby V(r) were fit accordingto a formula

V(r)= a+b/r+ C(r).

Equatingthis expressionto a fixed value V0 allows thento determinethe point (in betweenlatticesites)
wherethe interpolatedpotentialwould assumea fixed constantvalue. The equipotentialpointsthus
found for severaldifferent values of V0 and for /3 = 2 (on a 8~x 4 lattice) and /3 = 2.25 (on a 16~x 6
lattice) are reproducedin figs. 28 and 29 respectively.The lines joining the points are fits to the
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S

Fig. 28. Equipotential surfaces for fundamental sources in SU(2) lattice gauge theoryat $ = 2.0, just before the crossover.

equipotentialsurfacesof the form r = r(4i) = ro(1+ i~cos4~). Notice that, with Wilson’s action, the
crossoverfrom thestrongcouplingregimeto thescalingregimeoccursratherabruptlybetween/3 2.0

and~8 2.25. The resultsof ref. [78] show that the crossoveris also accompaniedby a restorationof
rotationalsymmetry,as onewould expecton physical grounds.

.

/
/1

/.
.7 \ .

Fig. 29. Equipotential surfaces at $ = 2.25, just after the crossover.
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5.5. Observableswith topologicalsignificance

It haslongbeenrecognizedin thestudyof spin systemsthatexcitationsof a topologicalnatureplaya
crucial role in determiningthe critical propertiesof such theories.These are local excitationsof the
lattice fields with propertiesdeterminedby global constraintsalone.

There are two basically different kinds of topological excitationsof interest in the study of gauge
theorieson a lattice.The first kind concernsexcitationswhich areinvolved in the critical andcrossover
propertiesof the lattice model itself and are not presentin the continuumlimit, whereasthe second
kind concernsexcitationswhich are relevantfor the continuum propertiesof the theory. Thus, as
mentionedin section4.3, in anSU(2) latticegaugetheorythe condensationof Z2 monopolesandstrings
can be invokedas the underlyingdynamicalmechanismresponsiblefor the rapidcrossoverfrom strong
to weak coupling observedin this model [53—55].Such objects, though, are not present in the
continuumtheory becauseir1(SU(2)) = 0. Likewise, confinementin the strong-couplingphaseof the
four-dimensionalU(1) model can be understood[831 as arising from the condensationof magnetic
monopoles,which can only exist for finite latticespacing.On the other hand,the continuumSU(2) pure
gauge model doeshaveinstantonsas topological excitationsand it hasbeen argued[84] that their
presencemay lead to a solutionof the UA(l) problemin QCD.

The existenceand propertiesof both types of topological objectscan be studiedby Monte Carlo
methods.In this subsectionwe reviewsomeof the resultswhich haveemergedfrom theseanalyses.

The first Monte Carlo analysisof the topology of gaugefields was done for the U(1) model by
DeGrandand Toussaint[17]. Dirac monopolesinsidea volume V can be detectedby countingthe net
numberof Dirac stringswhich crossthe closedsurfaceS bounding V. The effect of a stringcrossinga
plaquetteis to contributean integermultiple of 2ir to the plaquetteangle.By defining the physical
fluctuationsin O~to lie between— ir and ir, this providesan algorithmfor decidingwhethera given
plaquettehas a string passingthrough it. If one looks at unit three-dimensionalcubesone can thus
decide whether a given cubecontainsa monopole.In four dimensionsthe topological excitations
correspondto continuousstringsof monopolecurrent,i.e. monopoleworld lines.Two observableswere
measuredto test the effect of thesestrings on the critical propertiesof the theory.By measuringthe
total length of the monopoleworld lines appearingper configurationone can determinethe average
densityof monopoleloopsat fixed coupling.The results[17]show a dramaticchangein the behaviorof
this function as the coupling is varied through the critical point [15,41,27, 28] at /3~ 1. In the
strong-couplingphasethedensityof stringsis largeandslowly varying; it dropssharplyat f3~,and,asthe
couplingis loweredpast /3~,the densityfalls exponentiallywith /3 (asexpectedfrom an analysisof the
Villain version of the theory [83]). This behavior is a clear indication that the topologicalexcitations
play a role in driving thesystemthroughits phasetransition.To understandbetterwhat this role is, one
can study the magneticsusceptibilityof thesystem.A practicalway of doing this is to placethe system
in an external magneticfield andobservethe responseof the monopolesby measuringthe total field
deepinside the system.A time-independentexternalmagneticfield which pointsin the z-directioncan
be introducedby fixing, in each time slice, all the plaquettesin the xy face of the lattice at z = 0 to
somevalue. However, for the flux to be anythingother than an integermultiple of 2ir, the boundary
conditionsin the z-directionmustbe twistedby addingto the links in the x-direction an amountsuch
that the sum of the angles on this face equals the flux passing through it (modulo

21T). If the
susceptibilityis infinite, magneticfields are screenedbecauseof thepresenceof unboundmonopoles.A
finite susceptibilitycorrespondsto a finite renormalizationof electricandmagneticcharges.

A finite systemwith twisted boundaryconditionscan be thoughtof as a slice in the middle of an
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infinite systemin anexternalfield. The total flux throughthe systemlies between—ir and ir. (Theseare
just the twisted boundaryconditionsintroducedby ‘t Hooft [16].)The resultsof thesesimulationsare
striking [17].When /3 <f3~ 1 the averageflux vanishes,implying theconfinementof electricchargeby

the magneticcondensate.As /3 is increasedpast/3~,however,thereducedflux rapidly risesto aconstant
value, implying a finite valuefor the magneticsusceptibility.Becausethis picturedirectly indicatesthat
the systemcan supportlong rangemagneticfields when/3 > /3~,the aboveresultslendstrongevidence
to the existenceof a Coulombphaseand, therefore,of a masslessphoton in the continuumlimit of
latticeQED.

A mechanismwhich is formally analogousto the onegiven abovehasbeeninvokedto describethe
phasetransitionspredictedfor the S0(N) latticemodelsand seenin MonteCarlo simulations[51—55].
Furthermore,Z(2) monopolesand strings can be defined for SU(2) lattice configurations, and a
mechanismof condensationof theseobjectshasbeenproposedto explain the SU(2) crossoveras well
[54]. Thesepapersalsodiscussextensionto the Z(N) monopolesandtheir possiblerole in thedynamics
of SU(N) theories.Herewe only mention that the Monte Carlo proceduresneededto study these
objectsareof thesamenatureas thosedescribedabovefor the U(1) case.Twisted boundaryconditions
arealsoof valuein the non-Abelianmodels[84,85].

As a last exampleof a topological observable,we will discussthe caseof instantonsin the SU(2)
theory.Monte Carlo results hereare on a lessfirm footing than those discussedabove. Part of the
reasonsfor this are technicalin nature but there are also problemsof principle in measuringthe
topologicalchargeof thecontinuumtheory from a local latticeoperatorwith theappropriatecontinuum
limit. All the latticeoperatorswhich havebeenusedsuffer from the problemof havingperturbative
contributionswhich must be subtractedfrom the data before a comparisonwith a scaling law can be
made.Further,becausefor the latticedefinitionsusedin MonteCarloanalysesoperatorsof arbitrarily
high dimensioncontribute to the weak-couplingexpansionof the charge, this subtractionis not in
generalpossible.Nevertheless,undercertainassumptions,this procedurehasbeentried [86]for several
definitions of the lattice topologicalchargedensity.Self-consistentresultswhich are not in complete
contradiction with phenomenologicalestimatesand which provide a plausiblesolution to the UA(1)
problemin QCD havebeenobtained.

Themain problem of principle whichis involved in the constructionof anadequatelatticedefinition
of the topological chargeis the fact that any latticegaugefield can be continuouslydeformedto the
identity. Therefore, for finite lattice spacing, the SU(N) models have no topological structure. A
possibleway out of this hasbeenrecentlyproposedby Lüscher[87],who observedthat, since oneis
really only interestedin a regionnearthe continuumlimit wherethe barecoupling constantis small, it
is possibleto restrict the fields overwhich the functional integral is definedto a set with small action
density.Imposingthis constraintintroducesadegreeof space-timecontinuity on the fields and allows
oneto prove that thesesmallaction fields carry an integertopologicalcharge.An explicit form for this
chargehasbeengiven [87].Unlike otherdefinitions,thischargehasno perturbativetail. Unfortunately,
becauseof its complexity,no numericalwork hasyet beendonewith this quantity.

6. Coupledspin-gaugesystems

Realistic modelsfor particle interactionswould contain dynamicalmatter fields beyondthe gauge
field themselves.The matterfields could representfermionic degreesof freedom(suchas thoseof the
quarksin quantumchromodynamics)or bosonicdegreesof freedom(such as thoseof Higgs particles)
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andarenaturally associatedwith thesitesof the lattice. In this sectionwe shall considerbosonicmatter
fields.

Let us denoteby 4~the matterfield associatedwith the latticesite with the index i. Of course,more
thanone typeof bosonicfield could enterin the definition of the theory,but we shall not considerthis
possibilityhere:all the argumentswe presentfor a single matterfield can be easilygeneralizedto the
casewhereseveralarepresent.4, will transformaccordingto somerepresentationof the gaugegroup
with indiceswhich we shall usuallyleaveimplicit. Thus the notations

(6.1)

and

(6.2)

definingthe gaugetransformationof ç5 andthescalarproduct,will standfor themoreexplicit formulae

= (g1)’~s~f~ (6.3)

and

q
5 ~ (6.4)

where(g
1)”~arethe matrix elementsof g, in the representationunderwhich 4, transforms.

Crucial ingredientsof the continuumaction are the derivatives 11,4. On the lattice thesewill be
replacedby finite differences(4~— çb,)/a where i andj denoteneighboring lattice sites. However, a
straightforwarddifferencebetweenthevaluesof qS at neighboringsiteshasno gauge-invariantmeaning.
Rather,oneshouldform the covariantfinite differences

(t~)j = (4~— Uj,41)/a, (6.5)

where4 is transportedfrom site i to site j by thelink variable Ufi beforethedifferenceis taken.Under
a gaugetransformation(z~4~transformscovariantly:

(~4~—* (g14,— g1U11g,
1(g~4,))/a= g

1(,b~ — U~,4,)/a= g1(iXçb)1. (6.6)

Fromthe modulussquaredof (A4i)3, i.e. the gaugeinvariant quantity ~ (i~4)~,summingover all -

latticesitesandall orientationsof the links, onecan constructakinetic termfor the matterfield in the
action.

In the latticeregularizationof a theory it is often convenientto imposeaconstrainton the modulus
of the bosonicfields 4,. This turns the systeminto a o--like model.While imposinga constrainton I4iI
would spoil the renormalizabilityof the continuumtheory,such aconstraintis acceptablein the lattice
versionandis not expectedto rule out the possibilityof a well-definedcontinuumlimit. Indeed,in the
processof renormalization(a -*0), the quantumfield of the continuumlimit ~R~fl(x)should not be
identified with the fields 4, at definite lattice points but ratherwith averagesof 4, over extended
domainsof the lattice; thus,eventhough the modulusof the renonnalized4~maybe constrained,no
constraintlimits the possiblevaluesof the continuumfield.
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If the modulusof thematterfields 4, is constrained,thenthekinetic termin the actionreducesto the
form

S~= /3~~ {4~U,4+ c.c.} (6.7)
{ij}

wherethe sum is extendedover all pairs of neighboring sites, i.e., over all links of the lattice. /
3M is

a suitablecouplingparameterfor the matter field. We shall refer to the expression

EL = {~U,4+c.c.}

as the (internal)energyof thematterfield associatedwith thelink L = ij andto SL= /3MEL asthe action
associatedwith L. A rescalingof (4) can be absorbedinto a redefinition of 13as andwe shall therefore
assume

= 1. - (6.8)

Sometimesthemanifold definedby eq. (6.8) coincideswith the manifoldof thegaugegroupitself: then
the dynamicalvariablesof the theory consistof groupelementsassociatedwith both links andsitesof
the lattice.

This classof modelspossessesa rich structure.Severalauthorshavediscussedthe resultingphase
diagrams[5, 10, 88]. When the site spinsarein the fundamentalrepresentationof the gaugegroup,the
orderedspin phase describing the Higgs mechanismis analytically connectedto the disordered
confinementphaseof the puregaugefield. This remarkableresult showsthe complexnatureof the
confinementmechanismwhenscalarfields arepresent.If the spinsarein ahigher representationof the
gaugegroup, the confinementandHiggs phasescan be distinct.

SeveralMonte Carlostudies[89—94]havebeenmadeon thesesystemswith gaugegroupsZN, U(1)
andSU(2).We describefirst the ZN system,whichpossessesgaugevariablesU, on the links in addition
to spinvariabless on the sites.The s, areelementsof the groupZM wherewe requirethatthe quotient

l=NIM (6.9)

be an integerso that ZM is a subgroupof ZN. Thedynamicsof thesevariablesare determinedby the
action

S=f3M~EL(i,j)+/3~Ep. -
(i.1) P

Thefirst sum is over all nearestneighborpairsof sites(i, J) andeachsuchpair contributes

SL(i, j) = f.3MEL = (1— Re[s,U~~,s,]) (6.10)

wherethe power I is definedin eq. (6.9).The secondsum is over all elementarysquaresandrepresents
the action usedfor the puregaugetheory,

Sp = f3Ep= /3(1— Re(U
11UJk Uk,U,,)) (6.11)

where i, j, k and 1 circulatearoundthe plaquette.



266 M Creutsetat..MonteCarlo computationsin lattice gaugetheories

The theory is definedby the pathintegral

Z= ~ e~ (6.12)
s,.Uu

wherethe sum is overall configurationsof the site andlink variables.For the U(1) systemboth s, and
U~,are takenfrom the groupU(1) andthe modeldependson the integerI appearingin eq. (6.10). The
simplestgaugeinvariantcorrelationfunctionstostudyaretheaveragelink andaverageplaquetteenergies,
definedby

L = (EL(i,j)) = —~-~—lnZ(J3,/3M), (6.13)

E = (Er) = —~-~ ln F(f3, 13M), (6.14)

whereN~is the numberof latticesites.
This systemhasfour simple limits, 13M -*0, co and/3 —*0, ~ For 13M = 0 the site spinsrandomizeand

themodel reducesto thepuregaugetheory.For f3M~* ~ theaveragelink energyL mustvanish.Usingthe
gaugeinvarianceof the system,the spinscan all be set to unity; consequently,vanishingL implies

U~
1=1. (6.15)

Thus the theory reducesto pure Z, gaugetheory in this limit. If I = 1, i.e. if the spins are in the
fundamentalrepresentationof the gaugegroup, the theorybecomestrivial andboth L andE vanish.
When /3 —*0 the link variablesdecoupleandthe theory can be solvedto give

L(f3 = 0,/3M) = —-—~---ln[ ~ exp{—/3M(1 — Re(U’)}], (6.16)
UEZN

E(J3 = 0,/3M) = 1—(1— L)
45,

1. (6.17)

Finally we cometo the limit /3 —* ~. Here all plaquettesmust go to the identity. The gaugefields are
thengaugeequivalentto total orderandthe model reducesto apureZM spin system(M state“clock”
model)with nearestneighborcouplings.The Z2 systemis thenthe Ising model.

We expectthesemodelsto havetransitionlines enteringtheir phasediagramsfrom the pure gauge
transitionsat /3M = 0 or co aswell asfrom any transitionexhibitedby thespin systemat /3 = ~.Thelatter
transitionline is called theHiggs line becauseit arisesfrom an orderingof the spin or “Higgs” fields.
When theparameter1 is unity, no phasetransitionsareexpectedalongthe lines/3 = 0 or /‘

3M = oc~These
lines connectthe confinementregimeof the puregaugetheory with the orderedon “Higgs” phaseof
the purespin system.In ref. [88]it wasshownthat thissmoothcontinuationbetweenthe regimescan be
extendedinto the phasediagram.This is the resultmentionedearlier that the distinctionbetweenthe
Higgs mechanismand confinementis obscurewhenthe Higgs fields arein the fundamentalrepresen-
tation.

In figs. 30 and31 weshow MonteCarloresultsfrom ref. [89]for contoursof constantL andE in the
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Fig. 30. Contours of constant L in the coupled Z

2 gauge-Higgs Fig. 31. Contours of constant E in the coupled Z2 system.
system.

four-dimensionalsystemwith gaugegroupZ2 andHiggs field alsoin Z2. Theseresultswere obtained
usingthe heatbath techniqueon both the links andspin variableson a 54 lattice.The trajectoryof the
gaugetransition through the diagram is apparentas a “cliff” in the values of E and L. The Higgs
transitionappearsas a steep“hill” in the valueof L. This hill disappearsbeneaththe cliff at a triple
point. Beyondthis triple point a first-orderline continuesinto the diagramuntil it unfolds at a critical
point. Beyondthat critical point the systemappearssmooth,as predicted.Thesefeaturesof the phase
diagramfor this systemareshownin fig. 32. This analysishasbeenextended[90] to negative/3 to give
the phasediagramin fig. 33. The diagramis symmetricunder/3M —*

Ref. [90]alsopresentsresultsof a MonteCarlo studyof the three-dimensionalversionof this model.
The phasediagramobtainedis similar in structureexceptthat the gaugeand Higgs transitionareboth
second-orderanddualto eachother.Beyondthetriple point thetransitionis first-order,similarto thatseen
in four dimensions.

In figs. 34 and 35 we show phasediagramsfrom ref. [89] for the 4 gauge systemcoupled
respectivelyto 4 andZ3 Higgsfields.The4 Higgscaseis similar to that for the Z2 systemexceptthere
arenowtwosecond-ordergaugetransitionsratherthanasinglefirst-orderone.Correspondinglythereare
two triple points. When the Higgs field is in Z3, the valueof 1 is 2 andat /

3M = thereis aresidualZ
2

gaugetheory.Thefirst-ordertransitionof thistheory smoothlyjoins the first-orderline comingfrom the
low /3 triple point connectingthe gauge and Higgs transitions.Thus in this model the Higgs and
confinementphasesaredistinct, as theymustbeby the argumentsin ref. [88].Recentstudies[91]of the
d = 4 U(1) modelessentiallyreproducethe Z6 resultswith thelarge/3 gaugetransitionmovedto /3 =

The U(1) coupledsystemin threedimensionswas studiedin ref. [92] as an exampleof a system
wherethe pure gaugetheoryhasonly a confining phase.When I = 2 the spin transitionandthe gauge
transitionof the residual12 theory areconnectedby a single critical line. When 1 = 1 the resultswere
somewhatambiguous,but, supportedby small /3 seriesanalyses,the authorsof ref. [92] suggesteda
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Fig. 32. The phase diagram for the coupled Z2 system.

single transitionline entering the diagramfrom the spin transition at /3 = co and ending at a critical
point.

The gauge-Higgsfield system basedon the non-Abeliangroup SU(2) has been studied in refs.
[93,94]. The most interestingsituationsare thosewherethe Higgs field q5 transformsunder the (a)
fundamental,(b) adjoint representationof SU(2). In case(a) the Higgs manifold,with the constraint—
44 = 1, is the three-dimensionalsphereS

3, i.e., is isomorphicto the groupmanifold itself. Indeedone
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2 phase diagram including negative $.



M 0-cutset a!.,MonteCarlo computationsin latticegaugetheories 269

1.0 I I
Z

6 GAUGE
Z6 HIGGS

(CRITICAL POINT
1’NN

- ,,~_TRIpLE:NTs~ -

ELECTRODYNAMICS
CONFINED PHASE

PHASE GAUGE

0 0.5 ~—TRANSITI0NS--—.. 2.0

Fig. 34. The coupled Z
6 gauge.matter phase diagram.

.5 I I I

Z6 GAUGE

Z3HIGGS
16’

\0’

‘-4

‘p
.0- \~,

\o
HIGGS
PHASE

sri

0.5 - #.l’oes
CONFINED

PHASE

ELECTRODYNAMICS
PHASE

GAUGE
4—TRANSIT IONS—.-—~

0 I
0 0.5 1.0 1.5 2.0

$

Fig. 35. Phase diagram for Z~,gauge field coupled to Z
3 spins. Note the surviving Z2 gauge theory as $M~~*~.

maysetup aone-to-onecorrespondencebetweencomplexfield elements4 4,. (a= 1, 2) andgroup
elementsVa~(a, /3 = 1, 2) by defining

Vns(~~~2
\42 (7~i

In case(b) the Higgs manifold is isomorphic to the quotient spaceSU(2)/U(1)= S
2 and the field

elementscan be put in aone-to-onecorrespondencewith the elementsof anynon-trivialclassof SU(2).
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Onecan, for instance,define V(çb)= cos~ + io~.4 sin~, where4i is the Higgs field and~ is a fixed
angle,different from 0 or ir. Theseisomorphismshavebeenexploitedin ref. [93] to approximateboth
the gaugefield andthe Higgs field by finite sets(thus reducingthe requiredcomputertime). This work
usedthe 120-elementicosohedralsubgroupY of SU(2) to representthe groupvariablesandthe Higgs
variablesin the fundamentalrepresentation,and used the 12 elementsof the class Y/Z10 to represent
the Higgsvariablein the adjoint representation.MonteCarlo simulationshavebeendoneto determine
thebehaviorof (EP) and(EL) in thermalcyclesat fixed /3 or /

3M~Theresultsareillustratedin figs. 36 and
37. Hysteresisloopsor increasedstatistical fluctuationsare signalsof possiblephasetransitions.From
the MonteCarlo simulationsthe authorsof ref. [93] inferredthe phasediagramsshownin figs. 38 and
39.Both graphsexhibit a line originatingat /3 6, which representsa spuriousphasetransitioninduced
by the discretizationof the gaugemanifold. The other lines are expectedto approximatewell the
transitionsin the continuoussystems.In both cases,as /3 —* co and the systemsreduceto systemsof
coupled spins, theselines tend to the transition point /3M of the correspondingpure spin models.
With 4 in the adjoint representationa U(1) gauge symmetry still survives in the Higgs phase.
Correspondinglythe line of phasetransitionspersiststo /3M = co, with /3 approachingthe critical valueof
the U(1) model. (As a matter of fact, with the discretizedmanifolds the gaugesymmetrybecomesZ

10
for /3M = co and the two lines of phasetransitionsapproachindeedthe two critical pointsof the Z10
Abelianmodel,seesection4.1.)

Fig. 36. Hysteresis cycles for the SU(2) system coupled to Higgs fields in the fundamental representation.
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Fig. 37. Hysteresis cycles for the W(2) system with adjoint I-Eggs fields. 
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Fig. 38. The phase diagram inferred from fig. 36. 
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fig. 39. ne phase diagram inferred from fig. 37. 
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With theHiggsfield in thefundamentalrepresentation,notwithstandingthecriticallines,all pointsin the
/3, /

3M planecanbejoinedbypathswithoutsingularities,andthusthesystemreally possessesasinglephase;
thiscorrespondsto theconceptof duality betweentheconfining andHiggsrealizationsof thesymmetry.
Although in thismodelno orderparameterdiscriminatingthe two realizationsexists,one still wonders
whethertheywill still bedistinguishablein somephysicalway. In ref. [93]thecorrelationbetweenmatter
fields 4,, and4,~attheoppositeverticesof thehypercubesof thelatticewasstudied,by measuringthescalar
products

X=N;’4,,(~ ~ (6.18)

In thisequationL, U~representsthe sum of all possibletransportoperatorsfrom i to j alongthe sides
of thehypercubeandN,, thetotal numberof suchpaths.The distributionsof averagevaluesof X found
at /3 = 5.2 and/3M 0.6,0.7, 0.8, 0.9areshownin fig. 40. Oneseesthattheorientationsof 4,, andçb~are
always correlated.When /3M is lower than the value /3M 0.75, at which the transitionoccurs, the
fluctuationsand averagevalue of X are of the sameorder; however,as f-3M increasesbeyondthe
transitionvalue,the averageof X becomesmuchlargerthanthe fluctuations.This is preciselywhat one
would expectto justify the semiclassicalapproximationarounda Higgs vacuumobtainedin a suitable
gaugeby setting(4,)� 0.

120 120

3=50 ~3=50

~ 02 03 04 -O~1- ~

120 120
3=50

100 fl=08 100 fi =09

~I1 4 ~0h1 0 0’l 0J04
Fig. 40. The correlations X between Higgs fields at the oppostie corners of unit lattice hypercubes.
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7. Systemswith fermionic fields

Realisticmodelsfor particle interactionsincludefermionic fields and it is thereforeof paramount
importanceto simulatesystemswith fermionicdegreesof freedom.For reasonswhichwe shall elucidate
shortly, thesesimulations are computationallyvery demandingand no way has yet been found to
performMonteCarlo calculationsfor four-dimensionalfermionicsystemsas efficiently as theycan be
done with only bosonic fields. The topic we are consideringin this section constitutesa field where
researchis currentlyparticularly active: an exhaustivereviewof what hasbeendoneup to now would
addtoo manypagesto thisalreadylong report.A later time, when the resultswill havebecomemore
definite, may be more appropriatefor such a review.Thus, we shall give hereonly an outline of the
major difficulties encountered,the techniquesproposedto overcomethem and the most relevant
results.

Thevery definitionof afermionicsystemon alatticeinvolvesconceptualproblems.Onemustdefine
a latticeequivalentof Dirac’s action

SFcontinuum = 4i(D + m)4’, (7.1)

whereD denotesDirac’soperator

D = ~ + igA~). (7.2)

Difficulties arisein the lattice transcriptionof the first-orderderivatives.As with bosonicmatterfields,
fermionicfields areusuallyassociatedwith latticesitesanda naturalsubstitutefor 3~4i,which preserves
the antihermiticitypropertiesof D, is the centraldifference

ili(x+4)—4i(x—4)
2a

wherex representsa genericlatticesite, a is the latticespacingand4 is thedisplacementvectorby one
site in the ~ direction.This leadsto what weshall call the naivelatticeaction

SF = ~ (ç’.,y” U~,~+44i~+4— Px+i=7~’ U~+4.~~/i~)+ m ~ l~Ifr~, (7.3)

where the gaugelink variableshavebeen insertedto makethe coupling amongnearestneighbors
covariant.The useof the centraldifferenceeffectively makesthe size of the unit cell equalto 2a, twice
the latticespacing.If oneconsidersthe free theory,with U = I, andsolvesfor the spectrum,onefinds
that the lowestenergystates,thoseexpectedto dominatein the continuumlimit, areobtainednot only
in correspondencewith the obviousmodesof small latticemomentakM 0, but alsoin correspondence
to modeswhereanyof the componentsof k,,, is shiftedby iT/a. In thesemodesalong range,smooth
variation of ifr is modulatedby factorswhichalternatein sign from situto site. Thus,in aD-dimensional
latticeonefinds 2” modeswhich survive in the continuumlimit: the naivetheory exhibitsan unwanted
2” degeneracyin the numberof fermionsas the cut-off is removed(a—‘0). Thisagreeswith the notion
that the unit cell is of size 2a andcontainstherefore2°degreesof freedom.

Theactionof eq. (7.3) is of coursenot the only possiblefermionic latticeactionandonewould think
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that a moresophisticatedtranscriptionof Dirac’s operatoron the latticecould eliminatethe problemof
unwantedmultiplicities. This is correct,but with reservations.It can be indeedshown [95]on the basis
of topological argumentsor of argumentsrelative to the Adler—Bell—Jackiwanomalythat one cannot
definea latticeactionhavingall the formal propertiesof the continuumfermionicaction.In particular,
onemust either give up the existenceof acontinuouschiral symmetrytransformationwhen m = 0 or
acceptadegreeof multiplicity whichinsuresacancellationof the anomalyin thecurrentsassociatedwith
thesurvivingchiral symmetries.We shall notelaborateon thismatteranyfurther,but for futureuse,shall
only mentionthat the most widely usedfermionic lattice actionsare thoseintroducedby Wilson [96]:

S~= ~ [~(y~ +1) ~ ‘x+4 — 41x+$(7~L — 1) uX±$,X~iX]+ ~ ~I1x~I1x (7.4)

andone which representsa generalizationto the Euclideanlattice [97] of an action introducedby
Kogut andSusskindin a Hamiltoniancontext [98]:

S~= ~ S~.,,(1P~U~,~+,iI~J~±,1— ç
t’x±,sU~+

4.~i/i~)+ m ~ ~iJ~~clJ~, (7.5)

with

Sx,M = 1 for ~ = 1, (_1)x1 for ~ = 2, (_1)x2~2for p~= 3, (_l)x~fx2+x3 for .i = 4.

Heret1li is aonecomponentspinor;thefour Diracspinorcomponentsresideon differentsites,aswill be
discussedbelow.

In Wilson’s formulation additional terms, which effectively give to the 2D — 1 unwantedmodes
massesof theorderof 1/a,areinsertedin the kinetic part of the action.In eq. (7.4) the massparameter
which wouldmultiply the ~ i/n/i termhasbeentradedoff for a parameterK (the hoppingparameter)in
front of the kinetic term.In thefree case,it can be shownthat the massof the lowestmodebehavesas

1 1K,~Km—-~—-~—---y2 (7.6)
cr “Cr

whereK approachesthe valueKcr = 1/8. Thedepartureof K from a certain“critical” valuemeasures
the baremassalso in the interactingtheory,but Kcr is renormalizedby the interaction.In the strong
couplinglimit Krr takesvalues~1/4; for genericvaluesof /3, Kcr must bedeterminednumerically.The
extraterms in S~violate chiral invariance,andoneexpectsthat a chirally invariant systemmay be
recoveredonly in asuitably takencontinuumlimit. MonteCarlo simulationshaveshownhowever,that
as K—~Krr the massm(K) of the lowestpseudoscalarexcitationin the theory approacheszero.This is
takenas a signal thata vestigeof chiral symmetry,realizeddynamically through the occurrenceof a
Goldstoneboson,is recoveredin t~iatlimit. As a matterof fact,K~is determinedpreciselyasthe value
of K for which m(K) vanishes:this is not acircular argument,becauseit is not apriori obviousthat any
massshouldgo to zeroas K is varied.

In the generalizedSusskindformulationasingle componentof the wavefunction is assignedto each
site of the lattice (hencethe absenceof y matrices in eq. (7.5)). The factorswith alternatingsigns
effectively introducean algebraof y matricesin Fourierspace.The actionof eq. (7.5) reduces,but does
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not eliminate,the degeneracyproblem;the theorydescribes,in thecontinuumlimit, four degenerate
fermions.A chiral symmetryis howeverrecoveredfor m = 0: the symmetryoperationconsistsin global,
but separate,phaserotationsof the fermionic fields at odd andevensites of the lattice [99,100]. In
terms of the degeneratemodesthis is not a diagonalchiral transformationand no violation of the
theoremon the anomalyoccurs. In the rest of this sectionwe shall denoteby D (or D(U)) the lattice
Dirac operatorswhich can be inferredfrom eq. (7.4) or (7.5).

The vacuumexpectationvaluesof observablesaregiven by

(0) = Z1 J fl dU
1, fl d~,fl di/i, 0(U, i~, t/i) exp{—2S0(U) — ~(D + m)i/i}, (7.7)

Z f fldi/~fld4~exp{—S~(U)--~(D+ m)i/i}, (7.8)

wherethe fermionic fields i/i andt~areto be consideredas independentanticommutingelementsof a
Grassmannalgebra,integrationbeingdefinedby f di/i = 0, f i/i di/i = 1. Becausetheyanticommute,one
cannotrepresentthe valuesof the fermionic fields with numbersin the computermemory as doneto
encodethegaugefield configurations.Only for 2-dimensionalsystems(1 space—itime coordinate)it is
possibleto representthe sumover configurationsas a sum over fennionic occupationnumberswhile
maintaining a positive measure[101].Then Monte Carlo simulationscan thenbe performedupon
upgradingsequentiallythe c-numberbosonicfields andthe fermionicoccupationnumbers;applications
to this procedureto a variety of two-dimensionalsystemshavebeenquite successful.

Anotherpossibility, availablewheneverthe action is quadraticin thefermionic fields, as in the case
of the modelsof practicalinterest,consistsin performingexplicitly the integrationover the fermionic
variables.This leadsto [102]

(0) = Z
1 Jfl dL~

1(0)~exp{—So(U)}Det(D+ m), (7.9)
{ij}

Z = Jfl dU11 exp{—50(U)}Det(D+ m), (7.iO)

{ij}

where(0)~representsthe expectationvalueof the observable0 in the backgroundof the fixed gauge
field configuration{U1,}. For instance,if 0 is given by i/i,4i,, then wehave

(~i;,i/~)~={D(U)+ m}~1. (7.11)

In eqs. (7.9) and(7.10)thequantumexpectationvaluesareexpressedas averagesoverall configurations
of the gaugefield alonebut with a newmeasure

exp{— Se~(U)}, (7.12)

where

Se~(U)= SG(U)—lnDet{D(U)+ m} = S0(U)—Trln{D(U)+ m}. (7.13)
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In mostcasesof interest,symmetrypropertiesof the Diracequationguaranteethe reality andpositivity
of Det{D + m} and thereforethe Monte Carlo techniquecan be applied to the estimateof quantum
averages,providedthe variation of S~~(U) in the proposedupgrading U -÷U’ can be calculatedin an
efficient way.

This last requirementis not straightforwardto meet. Indeed,whereasthe actionsencounteredsofar
alwayshadpropertiesof locality, so that the changeU —* U’ modified S only throughthe variation of a
few termsinvolving nearbydynamicalvariables,the quantityTr ln{D(U) + m} is non-local andan exact
computationof its variation at eachupgradingstepwould makethe MonteCarlo algorithmexcessively
slow. A substantialpart of the recentresearchon MonteCarlo simulation for fermionic systemshas
gone precisely into finding efficient approximatemethodsfor evaluating~Sett [103—108]. The most
promisingtechniquesall makeuseof thefact thatif {D(U) + m}1 isknown, thenthecalculationof z~S~

0
becomesalmostimmediate.We illustrate the point assumingthat 6U = U’ — U is small, althoughthe
argumentcan be mademoregeneral.For small SUwe expand

6Tr ln{D(U)+ m} = Tr{(D(U)+ m)~
16D(U)}. (7.14)

D(U) is a local operator,andtherefore6D(U) will havevery few non-vanishingelements,only those,
indeed, correspondingto the matter field variables i/~ and ~ which are coupled by the U

1, being
upgraded.Thus, if (D(U)+ m)

1 is known, the evaluationof AS~~can proceedvery rapidly. As a
matterof fact, knowledgeis requiredonly of thoseelementsof (D( U)+ m)_1 which arecontractedwith
non-vanishingelementsof &D( U) in eq. (7.14).Notice that a very simple physicalinterpretationcan be
given to eq. (7.14). Its r.h.s. will always be of the form ~,

1J11&U,,, where J0 is a suitable operator
constructedout of (D( U) + m)~1 andof factors, such as y matrices,appearingin &D/8 Li11. Then the
variation of the effective action, for small changesof the gauge field, can be thought of as the
contraction6U with the fermionic “current” J,, inducedby the backgroundgaugefield itself.

Threedifferent methodsto obtainapproximatevaluesfor the requiredmatrix elementsof (D( U)+

m)_1 havebeenproposed.In ref. [103]it hasbeensuggestedthat the fermioniccurrent.i,~be in turn
evaluatedby aMonte Carlo procedure,carriedover a set of “pseudofermionic”variables4, and 4,,
which are coupledto the gaugefield exactly as the fermions i/i and i/i, but are c-numbersratherthan
elementsof a Grassmannalgebra. The methodbecomesefficient if all required.J,~elementscan be
computedbeforeproceedingto the upgradeof all U4, variables.This can be justified if the variation of
the gaugefield configurationin the upgradingis small. The methodof ref. [103]hasbeensuccessfully
usedfor asimulationof theSchwingermodel [106]andits applicationto realisticfour-dimensionalsystems
is in progress.

In ref. [107]it was suggestedthat all matrix elementsof (D(U)+ m)~becalculated(for instanceby a
relaxationprocedure),at the beginningof the algorithmandthatthey beupgradedtogetherwith the U,,
variablesusingthe linearizedformula

3(D+ m)~= —(D+ m)
16D(U) (D + m)1. (7.15)

The locality of D(U) againmakesthe computationof the r.h.s. of this equationstraightforward.The
methodrequiressmall & U

1, and periodic computationsof the exact elementsof the inverse Dirac
operatorto eliminate the build up of errors. This algorithm requiresthe calculationand storagein
memoryof all elementsof (D( U) + m)~‘.

In ref. [108] the proposalwas made to evaluate the required elementsof (D(U)+ m)’ by a
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stochasticprocedure,originally dueto von Neumannand Ulam. Finally, it should alsobe mentioned
that, with Wilson’sfermions,anapproximationbasedon an expansionin powerseriesof the parameter
K (seeeq. (7.4)), the so-calledhopping parameterexpansion,hasalso beenused in connectionwith
MonteCarlo simulations[109].

Leaving asideall attemptsto includethe effectsof Det(D(U) + m) into the measure,it wasnoticed
by the authorsof ref. [106],by HamberandParisi [110],andby Weingarten[lii], that many relevant
dynamicaleffects could be incorporatedin an approximationwhere only the pure gauge measure
exp{—S0(U)} is used in the calculationof quantumaverages.In this approximationthe expectation
valueof a productof fermionoperators

G(x) = ((i/i
t1~i/’~2~)(x)(~(2)4,(1))(~)) (7.16)

(fields of different flavors, 4I~” and~ havebeenintroducedto removeannihilationprocesses)would
for instancebe given by

G(x) = Z1 fI1 dU
3, (i~~~(x)i//’~(0))~(i/~

t2~(x)~(2)(0))u exp{—SG(U)}, (7.17)

where

Z =J[T dU
1,exp{—SG(U)},

and

(~(1)(x)lfr(1)(o))u (~(2)(x) i/,(2)(o))u

representthe expectationvaluesof the correspondingoperatorsin the presenceof afixed background
field U. The interpretation of eq. (7.17) is that the Green’s function G(x) for the creation and
subsequentannihilation of a fermion—antifermionpair is evaluatedin a two-stageprocess:first, the
propagationof the individual fermionsin a fixed backgroundfield is calculatedand the propagators
combined together; then the result is averagedover all gauge field configurationswith measure
exp{—S0(U)}. In aperturbativeexpansion,the net resultof thesetwo stepswould be to sum all graphs
with two fermioniclines propagatingfrom 0 to x andanynumberof interactinggaugefield lines.What
would still be missingarethe diagramswith internalclosedfermion loops (thesewould be introduced
with the correctmeasureexp{—S~~}ratherthan simply exp{—SG}). Yet severalarguments(relying on
duality, on phenomenologicalrules,on largeN expansions,etc.) suggestthat manyobservablesin the
theoryof stronginteractionsshouldbeonlyweaklyaffectedby internalfermionicloops.Theapproximation
of replacingexp{— S~~}with exp{— SG} (which,of course,bypassesall computationalproblemsintroducedby
thenon-localityof Sett) appearsthenparticularlysuitedfor aMonteCarlostudyof thedynamicsof quarks
andgluons.(Thenames“quenchedapproximation”[106]and “valenceapproximation”[111]havebeen
usedto characterizethis neglectof Det(D(U)+ m) in the measure.)

The quenched,or valence,approximationhasbeenappliedin refs. [lii, 112 and1131 to the studyof
the spectrumof mesonsin a simplified modelusingSU(2) as gaugegroup,andin refs. [110,114—117]to
the morerealistictheorywith the SU(3) gaugegroup.Both Wilson’s and Susskind’sformulationsof the
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lattice fermionshavebeeninvestigated.Massesof the lowest lying statesin the spectrumareestimated
usingthe sameproceduredescribedin connectionwith the studyof the glueball spectrum(seesection
5.3), i.e., from the rate of decay in Euclideantime of suitablecorrelationfunctions. However, the
methodby which thesecorrelationfunctionsarecalculatedis different. As outlined above,one finds
first the propagatorof thefermionsin a fixed backgroundgaugefield configuration.Usuallythisis done
by relaxationmethods.The resultsaremuchmoreaccuratethanin MonteCarlo determinationsof the
samequantities,andthe decayof propagatorsandGreenfunctionscan be followed over severalorders
of magnitude.However,the computationsarealso very time consuming.Thus generallyonly a limited
numberof configurationsis usedin thefinal averagingstep.Besidesmasses,otherinterestingquantities,
suchas the fermioncondensate(i/n/i), can be evaluated.

The calculationsdescribedabovemaybe affectedby various sourcesof errors: the averagingover
only few configurationsmay underestimatethe importanceof statistical fluctuations; computational
constraintslimit the calculationsto lattices of rathersmall extent(severalresultshavebeen obtained
with latticesspanning5 or 6 sitesin eachspatial direction),barelylargeenoughto containthe hadrons,
andfinite sizeeffectsmaybe important.The convergenceof the relaxationprocedurebecomesslower
as rn (bare fermion mass)approacheszero (in Susskind’sformulation) or as K—~Kcr (in Wilson’s
formulation), so substantialextrapolationsin m or K are required.Keepingin mind all thesepossible
sourcesof uncertainty,neverthelessthe resultsof the calculationshavebeenquite satisfactory.One
finds that as m—*0, or as K approachesa suitablecritical value, the massof the lowest pseudoscalar
excitation(m.,~)approacheszeroas well, accordingto a relation

m,,.
2=constX in (7.18)

rn,,.2 constX (Kcr — K)/K~.,.. (7.19)

This agreeswith the notion of dynamicalbreakingof chiral symmetry.Eq. (7.18)or (7.19)is thenused
to fix the barequark mass(assumingacommonmassfor the lightestquarks,m~= md = m), which is an
externalparameterof the theory.The valuesso determinedtranslateinto current algebramassesof
about 6 or 7MeV. Also, the numericalevidenceis that the expectationvalue(i4v4i) remainsfinite as
m—p0, again in agreementwith theoreticalexpectations.The pion decayconstantf,,. can be then
estimatedby currentalgebra(from (44’), rn and m,,.) and valuesranging from —~90to -~150MeV are
found (expf,. 93 MeV).

The massesof the otherquarkmodel statesappearmorestableas m is variedandapproachfinite
limits as m —~0.Theindependentlycomputedstring tensioncanthenbe usedto setthe scale(sometimes
insteada definitemass,suchas m

11, is usedfor the purpose,in which casethe string tensionis an output
of the computation)andtypical resultsgive

rn,, =800±100MeV (exp776)

ma = 950 ±150MeV (exp981)

mA1= 1100±150MeV (exp—1100)

mp = 1000±150MeV (exp938)

rn4 = 1300±150MeV (exp 1236)

for massesof particlessuch as the p, 8 andA1 mesons,of the proton and~l baryonicresonance.These
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numbersarenot takenfrom anyspecific work amongthe quotedreferences,but, keepingin line with
the rathergeneralpresentationoffered in this section, representacondensation,done freely by the
authors,of thevariousresults.In anycase,substantialwork is still in progressandan exhaustivereview
of currentresultscould haveatbestonly temporaryvalidity.

To concludethis section,let us report that the quenchedapproximationhasalso beenused for a
successfulcalculationof baryonicmagneticmomentsin refs. [118, 119] andof afew otherparametersof
spectroscopicrelevance.An investigationof finite temperatureeffects [120],moreover,hashintedthat
the chiral symmetryof the vacuumstatesbecomesrestored((44i) vanishes)at a temperatureslightly
abovethe deconfinementtemperature.

8. Concludingremarks

The successesof the MonteCarlomethodas appliedto gaugetheorieshavebeentruly remarkable.
Not only havewe gained insight into the quark confinementproblem,but we are now beginning to
calculateobservablestotally inaccessibleto traditionalperturbativeapproaches.Theseresultsareall the
more satisfying in the light of the severelimitations of availablelatticesizes.For believablephysical
resultsthelatticespacingmustbe smallerthanrelevanthadronicscales,andyet theoverall latticemust
be largerthan the scaleof physicsunderconsideration.A lattice with only of order ten sitesin any
direction leaveslittle leewayin such ananalysis.Furthermorethe exponentialdependenceof the lattice
spacingon inversecoupling, as predictedby asymptoticfreedom,implies that at bestonly a narrow
rangeof couplingcan be usefulfor the extractionof realisticnumbers.

The fact that interestingresultshavebeenobtaineddespitetheselimitations is undoubtedlyrelated
to the experimentalobservationof precociousscalingin inelasticscatteringexperimentswith momen-
tum transfersof order 2GeV. Thus a i0~ site latticemaypotentiallygive useful informationon physics
at energyscalesas low as a few hundredMeV, exactlywherestrongconfinementforcescomeinto play.
In this context we should also remark on the successesof the theorywhen internal quark loopsare
neglected,as in the pure gauge theory calculationsand the fermion work with the quenchedap-
proximation.That we can get away with suchapproximationsis probablyfor the samereasonthat the
simplequark modelhashadsuch alongandillustrious history. Hadvirtual loopsbeenamajoreffect, it is
unlikely that the multiplet structureof the eightfold way could havebeensoclear.

The future problemremainsin the full systemwith interactingfermionic fields. Current techniques
areextremelyintensivein their consumptionof computercycles.Developmentson both the theoretical
andtechnologicalfrontsareoccurringat an astoundingpace.We mayoptimistically hopethat in afew
yearsreliablecalculationsof hadronicpropertieswill be commonplace.
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