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1. Introduction

Gauge theories play a fundamental role in our present understanding of particle physics. Originally
invoked to describe electromagnetic interactions, the notion of a gauge field has been extended and
used in successful models of weak interactions and strong interactions. Attempts to unify all these forces
are also based on gauge theories and, if the connection in general relativity is recognized as a gauge
potential, it appears that all particle interactions may be accountable in terms of gauge fields.

Many of the predictions of gauge theories have compared extremely well with experimental results.
This has occurred whenever the presence of an effectively weak coupling constant allows for the use of
the standard techniques of perturbation theory. Yet, there are classes of phenomena which are
inextricably associated with a strong coupling. To reduce these problems to theoretical analysis, a very
interesting alternative to the ordinary perturbative expansion has been proposed: it consists in defining
the theory on a lattice rather than in continuous space-time. This provides, first, a regularization of the
ultraviolet divergences and, second, the possibility of a simple strong coupling expansion.

Every field theory can be defined on a lattice; all that is required is the replacement of the partial
derivatives occurring in the Lagrangian with finite difference operators. However, the lattice for-
mulation of a gauge theory is particularly elegant and natural [1,2]. Indeed, let us remember that the
geometric role of the gauge potential is to specify the rotation of the frame of reference in some internal
symmetry space as one moves between nearby points in space-time. If the continuum of points is
replaced by the vertices of some lattice, the elementary displacements become those between neighbor-
ing vertices, i.e., along the links of the lattice itself. Thus, to specify the kinematical state of the system
one must associate one definite element of the gauge group with each of the oriented links of the lattice
(with the understanding that the inverse element is associated with the link in the opposite orientation).
This collection of group elements, which we shall sometimes also call the “spins” of the system, takes
the role of the gauge potentials of the continuum theory. Notice that finite group elements are
associated with the links of the lattice, whereas infinitesimal generators (the gauge potentials) appear in
the continuum theory. In particular, and this will be quite important, on a lattice one can define theories
also with finite gauge groups, an option not allowed in the continuum.

As in the conventional theory, the dynamics of the lattice gauge system is formulated through the
specification of the action. This function of the spins must be invariant, i.e., must not change under local
gauge rotations at the individual vertices and under the transformation correspondingly induced on the
spins. Although a variety of gauge invariant quantities exist, most commonly the action is defined as
follows. One considers the product of the group elements along the closed oriented paths of smallest
extension, or plaquettes (these would be the elementary squares of the lattice, if, as usual, a
hypercubical lattice configuration is chosen), takes the trace to obtain a gauge invariant quantity, and
sums over all plaquettes. It can be shown that in an appropriate definition of the continuum limit this
lattice action reduces to the integral over space-time of the square of the field strength. If, proceeding
further, the quantum mechanical averages are defined via a sum over all possible configurations
weighted (after a Wick rotation to imaginary time) by the exponential of —1/# times the action, a
striking analogy between the lattice gauge theory and a statistical spin system emerges, exp(—(1/#)S)
playing the role of the Boltzmann factor. Considerations that will be expanded in the next section show
that the square of the gauge coupling constant (times #, to be exact, but we shall henceforth set # = 1)
plays the role of the temperature in the statistical theory; thus, strong coupling and high temperature or,
respectively, weak coupling and low temperature become identified. Of course, the fact that the system
is four-dimensional remains as a reminder that we are considering a quantum field rather than an
ordinary thermodynamical system.
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When one speaks of coupling constant, one should remember that the parameter which governs the
strength of the interaction on the lattice is a bare coupling constant, rather than the physical one.
However interesting the lattice model may be per se, the ultimate goal of the field theorist is to
understand the properties of the continuum system. Thus, one must proceed to a limit in which the
lattice spacing vanishes. This demands a careful readjustment of the coupling constant (renormalization)
lest the whole physics collapse together with the lattice itself. Indeed, to keep the physical correlation
lengths (and other observables) finite as the lattice spacing is set to zero, one must make them extend
over larger and larger numbers of lattice points through a judicious change of the bare coupling
constant. In the limit the correlations will extend over an infinite number of lattice points, but this is the
very definition of a continuous critical point of the system. We see then, that the continuum limit can be
recovered from the lattice only if the coupling constant is renormalized to one of its critical values (zero
included). It is, therefore, of paramount importance to understand the structure of the lattice gauge
system, its critical points, and their nature.

For many years, physicists studying analogous problems in ordinary statistical mechanical systems
have been able to obtain invaluable information by means of Monte Carlo simulations [3]. The basic
idea of these numerical computations is to represent in the memory of a high speed computer a definite
state of the statistical variables of the system under consideration and to set up a Markovian process in
which the state is iteratively replaced by new configurations. The algorithm is defined in such a way that
the process approaches statistical equilibrium in the sense that the probability of encountering any
definite state becomes proportional to the Boltzmann factor. When this regime of equilibrium is
reached, statistical averages may be approximated by averages over a number of the configurations
encountered in the process.

Application of this method, which has been extremely successful in the study of two- and three-
dimensional models, to the four-dimensional systems met in lattice field theories may seem highly
problematic because of the large number of statistical variables which must be considered for any but
the minimal size of the lattice. During the past few years, however, it has become apparent that these
systems are also amenable to Monte Carlo simulations. Even if the extent of the lattice is necessarily
small (the largest lattices so far considered measure 16 sites in each of the four dimensions), a
remarkable amount of information can be derived on the dynamical structure of the underlying models.
Thus, Abelian and non-Abelian pure gauge systems and systems with matter fields of bosonic and
fermionic nature all have been studied, with a degree of detail dependent on the techniques and
computer resources available.

In this way, Abelian lattice systems, based on the U(1) gauge group, have been shown to possess two
phases: a strong coupling phase where the charges of the group are confined and a spin-wave
Coulombic phase, which contains the quantized photon field in the continuum limit. This two-phase
structure is in welcome agreement with theoretical expectations and indeed essential if lattice theory is
to be relevant to particle physics. At strong coupling, all quantized gauge systems exhibit confining
properties; consequently a critical point at some finite value of the bare coupling constant must
intervene if a non-confining continuum limit representing electrodynamics is to exist. The Abelian
models constructed with finite subgroups of U(1) also exhibit interesting properties. There, beyond the
two phases described above, a further weak coupling phase, arising from the discrete nature of the
group, also occurs. Duality arguments have been used to relate this phase to the strong coupling one.

The situation with non-Abelian pure gauge systems is quite different. Monte Carlo computations
have produced substantial evidence that the strong coupling phase persists to the limit of vanishing bare
coupling constant. Moreover, the behavior of the observables as the coupling constant becomes smaller
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is in agreement with a perturbative analysis via the renormalization group. Thus for the first time one
has a demonstration, albeit of numerical nature, that non-Abelian gauge theories do indeed confine
isolated charges at large separation while behaving in an asymptotically free fashion at short distances.
Beyond giving evidence for confinement, Monte Carlo simulations permit the computation of the actual
value of several observables beyond the reach of perturbative analysis. By now a variety of relevant
physical parameters, including the string tension, the deconfining temperature, and the masses of low
lying hadrons have been estimated.

Matter fields can also be incorporated in the simulation. With scalar fields the generalization is
straightforward. The simulation of systems with fermionic degrees of freedom is more difficult. Various
computational schemes have been devised to deal with this situation and it appears that fermions can
also be subject to the analyzing power of the Monte Carlo procedure.

The goal of this article is to describe the Monte Carlo method in the context of lattice gauge theories
and to review the major results which have been obtained. We address our work both to the readers
who themselves intend to apply this powerful technique to specific investigations as well as to those who
only wish to be sufficiently informed about the method so as to appraise the reliability of the
computations. The plan of the review is as follows. In section 2 we present a brief general review of the
lattice formulation of gauge theories. In section 3 we describe the basic ideas behind the Monte Carlo
technique. Sections 4, 5 and 6 illustrate various results which have been achieved, respectively, on the
phase structure of pure gauge theories, on the determination observables, and on combined Higgs—
gauge systems. Section 7 is devoted to an analysis of the various techniques to extend Monte Carlo
simulations to systems with fermions together with the consequent results. The exposition in section 7
will be rather brief because substantial research is still in progress on Monte Carlo computations for
fermionic systems and this topic may well soon be the subject of a separate review. Finally, very short
concluding remarks are offered in section 8.

2. Gauge theories on a lattice
2.1. Basic definitions

To formulate a gauge theory on a lattice it is useful to recall the geometrical role of the potentials
A®,(x) in the continuum theory. These specify the rotation U of the frame in some intrinsic internal
symmetry space upon transport between neighboring space-time points x* and x* + dx*:

U = expfigA®, (x)A.dx*}, 2.1

where g is the coupling constant and A, are the infinitesimal generators of the gauge group.

Let us denote by indices i, J, . .. the sites of the lattice and assume that every site has a well-defined
set of neighboring sites. Then, in analogy with the continuum case, the dynamical state of the system
will be specified upon assigning an element Uj; of the gauge group G to every link between neighboring
sites i and j. Uj; should satisfy

U= U™ 22)

The rotation of the frame in the transport along a path y proceeding through the neighboring sites iy, i,
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is, ..., is given by
Uy = Uiny -+ U Uiy 2.3)

which plays the role of the path ordered operator
U,=P exp{ig [ A (DA, dx“} 2.4)

of the continuum theory.

Gauge transformations are defined assigning to each site a group element g; € G. The dynamical
variables Uj; transform as follows

Ui» Ui’ = gUg ™" . 2.5)
This induces the transformation
U-U/ =gUg . 2.6)

A priori there is no restriction on the geometry of the lattice. Most frequently, however, this is taken
to be hypercubical and, unless otherwise specified, this is the discretization of space-time we shall
assume. We shall denote the lattice spacing by a. In some applications it is convenient to introduce
different lattice spacings a, and a, in the space-like and time-like dimensions.

An interesting possibility consists in not taking a regular lattice, but rather considering a random
distribution of points in space-time. By appropriately defining the measure of the distribution one can
maintain Poincaré covariance in spite of the discrete structure of space-time. This approach has recently
been pursued in ref. [4].

As a final remark, we would like to stress that in lattice gauge theories the dynamical variables U
always represent finite (not infinitesimal) group transformations, because they correspond to the
transport along a path of finite length. Thus in the lattice formulation there is no restriction that the
gauge group should be a Lie group and indeed it is sometimes convenient to consider models where the
gauge group is some discrete, finite group.

2.2. The action

In analogy with the continuum theory the dynamical properties of the lattice gauge system are
formulated by introducing an action S. In the continuum case S is the functional

S= % J' dx F,,* F,* @7

where

F. = 0,A - 3,A,” +igf**"APA)
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is the field strength associated with the potential A,* and f**” are the structure constants for the group.
The action is originally defined in Minkowski space-time. As we shall see in the next subsection; to
formulate the quantum theory it is useful to perform a Wick rotation to imaginary time, which renders
space-time Euclidean. There is then no distinction between upper and lower indices and the integrand
in eq. (2.7) is positive definite. The following formulae are presented for Euclidean space-time; they
may be immediately extended to Minkowski space-time upon the introduction of suitable negative
signs.

The field strength F,,* specifies the rotation of a frame in the transport around an infinitesimal
rectangular closed path of sides dx* and dx”. This rotation is represented by the operator

Us = expligF,..” A, dx* dx”} 2.8)

(no sum over p and »).

In a lattice there will be some elementary closed paths which play the role of the infinitesimal rectangles
(dx*, dx”). If the hypercubical form is assumed, these paths are naturally taken along the sides of the
smallest squares of the lattice, commonly referred to as “plaquettes”. The transporter around a
plaquette of vertices i,i5isis according to eq. (2.3) will be

Ur= U, Ui Us Upiy (2-9)

In the continuum theory F*, F,*” (sum over a only) vanishes when the transport around the
infinitesimal rectangle (dx*, dx”) gives the identity. The same quantity then takes increasing positive
values the more the transport deviates from I In analogy, we shall associate an action with the
plaquette

Sp= ﬂf(UP) s (2-10)

where f(Up) is a function with the following properties:
(i) it is a class function

f(gUpg™) = f(Us) @2.11)

(which guarantees invariance of S under gauge transformations, see eq. (2.6));

(i) it vanishes when Up = I and takes positive values otherwise;

(iii) S behaves as (a*/2)F*.F,*” (sum over index « only) if the link variables U; take the
infinitesimal form of eq. (2.1) and the displacements dx*, dx” are identified with the lattice spacing a.
(This last requirement is imposed so that one may, at least formally, recover the continuum form of the
action in a suitable limit.)

The total action S will be obtained summing S over all plaquettes.

The parameter B in eq. (2.10) is a constant which is convenient to factor out of the function f. It will
be useful to call f(Us) the (internal) energy of the plaquette. 8 is a coupling parameter, which governs
the strength of the dynamical gauge field self-interaction. To illustrate this point let us assume that for
definiteness the gauge group G is SU(2). We shall then represent the group elements in the form

U=cos@+io-nsind, 2.12)
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where o represents the Pauli matrices and n is a unit vector. Following the standard convention,
A = 0,/2. If we introduce the obvious notation

U = cos 6; +i0 - n; sin 6 (2.13)
and
Up=cos Op+i0 - npsin 0p, (2.14)

simple algebra shows that in the limit where Uj; assumes the infinitesimal form of eq. (2.1) and up to
terms of higher order

Hii = %g'A#ala ’ niia = Ana/lAﬂal (215)
and
0P= azg—le“va , nPa = Fy,ya/lF“,ya (2.16)

(the modulus refers to vectors in the space of SU(2) generators, the components of which are labelled
by the index a). The choice

f(Up)=1-3Tr Up=1-cos b, (2.17)
together with the identification
B=4/¢g°, (2.18)

will guarantee

4

Se==3(1=cos 6) =5 E. F*  (sum over a only) (2.19)

for 68— 0. If we now construct the full action as a sum over all plaquettes, we find that in the formal
limit a >0

4
$=S8—T —‘-2— F..* F** — | d*x 3F,.= F.*, (2.20)
P 8p—0 ny

a—0

i.e. S reduces to the form of the continuum action. (In deriving eq. (2.20) remember that the sum over
indices u, v counts every plaquette twice.)

The specific choice for the plaquette energy given by eq. (2.17) (with its obvious generalization
f(Up)=1- N"'Re Tr Up for an SU(N) gauge group) corresponds to what is commonly called Wilson’s
form of the lattice action. But the formal passage to the continuum limit requires only f(8)~ 6°/2 for
0-0. We will later discuss some other forms of the lattice action which have been studied in the
literature.
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2.3. The observables and the continuum limit

A convenient way to define a quantum field theory consists in the following. A Wick rotation to
imaginary time is performed first, to allow for a more rigorous definition of functional averages [S]. The
observables, which will thus be defined in a Euclidean four-dimensional space, can be later continued, if
necessary, back to Minkowski space-time. The quantum expectation value of an observable functional
of the fields O(A) is then obtained by averaging its value over all field configurations with a measure
proportional to exp{—S(A)}:

(0y=2" f dA O(A) e~ @.21)
where the vacuum to vacuum persistence amplitude or partition function Z is given by
Z= f dAeS® 2.22)

Of course one must give a meaning to the functional integrals introduced in egs. (2.21), (2.22) by a
suitable regularization procedure, but this need not worry us because it is precisely what we shall
achieve by replacing the continuum of points of space-time with a discrete lattice.

In analogy with the continuum formulation, the expectation values for the observables of the lattice
quantum theory are defined by averages

(0y= 2, O(Uy)exp{-S(Up)}/ Z, (2.23)
{Uji}
Z= 3 exp{-S(U)} (2.24)
{Uji}

where the sums are ordinary sums if the dynamical variables Uj; belong to a discrete gauge group or
multiple invariant integrals over the group manifold if we have a Lie gauge group. It is useful to initially
consider a lattice of finite extent, containing a definite number N of sites. Then the averages in egs.
(2.23) and (2.24) are well defined definite sums or multiple integrals over a finite number of variables.
After the finite volume averages are evaluated one proceeds to the thermodynamic limit N — o,

Although in the lattice formulation of the quantum theory all quantities have precise mathematical
meaning, one must not forget the goal is to define a quantum system in continuous space-time. For this
one must proceed to a continuum limit, letting the lattice spacing a go to zero. A simple rescaling of a
to zero, however, is not sufficient to define a continuum quantum theory. The divergences of quantum
field theory force us to renormalize the couplings. Any observable with non-vanishing physical
dimension, a correlation length / for instance, will be given by an expression of the form

I=aA(g), (2.25)

where the lattice spacing enters trivially. The non-trivial aspects of the theory are embodied in the
dimensionless function A of the coupling constant g (or, equivalently, of the coupling parameter B).



210 M. Creutz et al., Monte Carlo computations in lattice gauge theories

Clearly, it will be possible to define a non-trivial continuum limit only if as a approaches zero g can be
readjusted so as to keep the product ! = a A(g) constant. This demands that there exist a critical value
g such that

lim A(g)=co. (2.26)

8> 8cr
Requiring that / remains constant establishes then a functional relation
g=g(a): l=aA(g(a))=const. (2.27)

Thus g appears as a non-renormalized or bare coupling constant, which must be readjusted as the
cut-off is removed. ‘

A further requirement must be satisfied for the lattice theory to define a continuum quantum field
theory. The critical point g = g, must have scaling properties; once the functional relation between g
and a is determined by demanding constancy of a definite observable, the same relation must make all
other observables also tend to well defined values as a - 0.

In general, to establish the existence of a scaling critical point constitutes quite a non-trivial problem.
In non-Abelian gauge theories, however, perturbative arguments tell us that g =0 is such a point [6].
Precisely, it can be shown that perturbation theory is consistent with the bare coupling constant tending
to zero as the cut-off is removed and for small g the relation between g and a must be governed by the
equation

dg(a
288 _ 1 (5)= yog’ + 1g*+O(E). 2.28)
The coefficients y, and y, assume the values [6, 7]

e (). e () (49

in a pure SU(N) theory. Eq. (2.28) is solved by

a=110),  f8)= (g " e (14 0(g), 230

where a dimensional integration constant A has been introduced to set the scale.

The observation that g =0 is a possible scaling critical point in non-Abelian gauge theories does not
solve the problem of defining a continuum quantum theory or even whether such can be defined. For
this purpose one needs to show that as the cut-off is removed the coupling constant does indeed
approach g =0, without other intervening critical points, and moreover that the observables scale in a
way consistent with eq. (2.30). Namely, if the mass dimension of the observable q is d, g will be given by
a formula

q=a""K(g), 2.31)
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where the dimensionless function K(g) expresses the value of g in lattice units. Then as g0, K(g)
should behave as

K(g)=c[f(g))" 2.32)

to make g approach its physical value. To establish that the non-Abelian lattice gauge theory defines a
continuum quantum theory for g—0, the behavior of eq. (2.32) must be verified. If this is found to
occur, the actual value of the observable (in the continuum theory) can be expressed in terms of A as

g=cA?. (2.33)

Although perturbative arguments can be used to establish the functional form of the scaling behavior
where g., = 0, the determination of dimensional observables cannot be done perturbatively. Indeed the
scaling relation itself, eq. (2.30), demonstrates that observables with non-trivial physical dimension must
be given by expressions which are non-analytic at g = 0. Non-perturbative techniques are called for, and
indeed this whole review is dedicated to an exposition of a particular non-perturbative method of
computation. The observation that g = 0 is a possible scaling critical point in non-Abelian gauge theories
has been, however, of fundamental importance. In particular, it has provided an explanation for the
experimental observation that, although the constituents which form hadrons appear permanently bound,
they exhibit almost free behavior when probed at very high energy and short distances. Indeed, the gauge
theory of the strong interactions has led to several quantitative predictions for short distance phenomena.

2.4. Inclusion of matter fields

While the gauge dynamical variables are associated with the links of the lattice, matter fields are
more naturally assigned to the sites. The matter field part of the action will in general contain terms
coupling different sites. The gauge variables must then be used to transport the matter fields between
neighboring sites and to construct gauge invariant quantities. For instance, if we denote by i and j
neighboring sites, by ¢; and ¢; the values that some matter field takes there, and by a the lattice
spacing, the covariant derivative of the continuum theory

D.¢ =0d,.¢ +igA,*A.d (2.34)

will find its transcription in the covariant finite difference (no sum over j)

Ag): = g@,a_—i : (2.35)

It is assumed here that ¢ transforms under a definite representation of the gauge group: A, and Uj; are
then matrices which express the infinitesimal generators and, respectively, a finite transformation within
that representation. Uj; serves the purpose of transporting the matter field from site j to site i In a
gauge transformation represented by matrices g;, ¢; and ¢; transform as follows:

di>di=gdi, di—>bi=gd. (2.36)
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Then (A¢); transforms as (t;i itself:
(A¢)i—>(Ad): = gi(Ad): (2.37)

(remember Uy - U’ = g;U,g; ). If we denote by ¢¢ a scalar product, invariant under transformations
of the group G, the quantity (A¢); (A¢);, would be invariant under gauge transformations and could
serve to form the matter field action.

A variety of matter fields are possible in a lattice theory. They may be of bosonic or fermionic
nature. It would serve little purpose here to try to classify the different possibilities. Specific models
incorporating matter fields will be discussed in later sections of this review. Let us only mention that in
a lattice theory the manifold of possible values for the matter field need not necessarily be continuous.
In the same way as one can consider models where the gauge group is discrete, so the matter field can
be restricted to a discrete set of values, provided this is consistent with the action of the gauge group.

The considerations about necessary requirements for the existence of a continuum limit apply also to
models with matter fields. As we shall discuss in section 6, constraints on the matter fields of the
o-model variety, which for instance restrict the moduli to a definite value, do not necessarily prevent
the definition of a continuum limit (whereas these constraints generally spoil renormalizability if
imposed directly in the continuum quantum theory). The renormalized continuum field would emerge
as averages over several lattice sites and would thus not necessarily be subject to the same constraints.

2.5. Analogy with statistical mechanics

The averages which are used to define expectation values of observables in the Euclidean quantum
theory bear a noticeable resemblance to the expressions for thermal averages of observables in
statistical systems. These are also given by sums over all possible configurations, as in egs.
(2.23) and (2.24), with a weight factor (the Boltzmann factor) equal to

exp(-BE),  where B=(kT)™"

(T being the temperature, k the Boltzmann constant) where E is the internal energy of the system. If the
action of the gauge theory is expressed, following eq. (2.10), as

S=B3 f(U) (2.38)

the analogy is complete, the coupling parameter of the quantum field theory playing the role of the
inverse temperature, the sum over the “internal energies” of the plaquettes playing the role of internal
energy of the system. We see that a regime of weak coupling (remember B8 x 1/g%) corresponds to low
temperature, whereas strong coupling becomes equivalent to high temperature.

Of course, one must not forget that the analogy is only formal. The fact that the lattice gauge system
is four-dimensional is a reminder that one is dealing with a quantized field rather than with a real
thermal medium. The true physical temperature of the quantized field is zero. It is actually possible to
extend the formalism so as to incorporate finite temperature effects also in the quantized field system
(the coupling parameter B8 « 1/g* then must not be confused with 1/kT). This will be discussed in
section 5.
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In a statistical system the fact that the correlation length becomes infinite signals the onset of a phase
transition (of order higher than first). The all important critical points of the lattice gauge theory which
are needed to recover a continuum limit may thus also be seen as boundaries in the phase diagram of
the system. Given a lattice gauge theory, then, one of the first questions we would like to answer is what
is its phase structure.

For the study of statistical systems a variety of techniques have been developed. Some are of an
analytical nature. They are based on expansions for either small or large values of the parameter 8.
Some studies use Hamiltonian formulations where the continuous nature of the time axis is kept and
only space is in lattice form [8]. Other methods of investigation rely instead on numerical sums over
configurations of the system. These sums can never be exhaustive, because even for the smallest systems
of physical interest, the number of terms would be prohibitively large. Rather, they are based on
importance sampling. Some algorithm is used to generate a stochastic sequence of configurations in such
a way that the probability of encountering any definite configuration in the sequence is proportional to
the weight factor exp(—BE). Then the averages over all configurations are approximated by averages
over the configurations occurring in the sequence. The procedure is known as Monte Carlo simulation.

Monte Carlo simulations have produced invaluable results for the investigations of statistical systems.
During the last few years they have been successfully applied to the analysis of quantum field theories
as well, and the purpose of this article is to review work done on this subject. Other techniques
available for the study of statistical systems can also be extended to lattice field theories. They will be
very briefly discussed in the next subsections.

2.6. Weak coupling

Perturbation theory forms one of the mainstays in the development of modern theoretical particle
physics. As our space-time lattice merely represents a regulator for ultraviolet divergences, in principle
all perturbative results could be reproduced in this formalism. The basic expansion parameter g°
represents the temperature in the analogue statistical system. At low temperatures the important
degrees of freedom are low energy excitations involving gentle long wavelength variations of the fields.
In magnetic systems the analogous excitations are referred to as spin waves and perturbation theory is a
spin wave expansion.

Perturbative analysis did not motivate the original formulation of lattice gauge theory. Highly
developed methods for calculation already exist for other cutoff schemes such as that of Pauli and
Villars or dimensional regularization. Because of this, perturbation theory on a lattice has received
rather little attention and remains quite awkward. It is somewhat ironic that this weak coupling regime
has played such a minor role in lattice gauge theory and yet it is exactly this region to which we must go
for a continuum limit, as discussed above.

As the inverse coupling 8 becomes large, the path integral is increasingly dominated by Up near the
identity. Perturbation theory begins with a saddle point approximation taken at this maximum of the
exponentiated action. We parametrize the plaquette operators

Up = exp(iA®wp) (2.39)

where the matrices A® generate the group and are normalized such that to leading order we have

1 1
1- ]_V‘ ReTr Up = m w"‘pw"‘p + O(wps) . (240)
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Thus we have
z= f dU exp(—z% w0+ O(Bor)) . (2.41)

For large B the exponential is highly suppressed unless
wp=0(87")= O(go). (2.42)

The wy’ terms in eq. (2.41) are then of order the coupling constant.

To proceed we would like to evaluate the leading behavior of the integral in eq. (2.41) in the
Gaussian approximation. Here we encounter a technical difficulty in that the integrand is not damped
in all directions when considered as a function of the link variables Uj. Indeed, a gauge transformation
can arbitrarily alter any given link and yet leave the action unchanged. Gauge fixing is an essential first
step in the perturbative analysis. Our integrand receives a Gaussian damping only for those directions
which do not represent gauge degrees of freedom.

The details of the gauge choice will be unimportant to the discussion here. We merely note that after
the gauge fixing, one quarter of the degrees of freedom are no longer variables [9]. The remaining
dynamical variables are driven to the identity, about which we can expand

Uy = 1+ i1 + O(w?) 2.43)
(x)ap = Z (l)aji + O((l)z) . (244)
jiep

The integration measure in the vicinity of the identity takes the simple form
dU; = (J + O(w3)) dw (2.45)

where the weight J will ultimately be absorbed as an irrelevant constant. Now the partition function
assumes the form

Z=K f dw exp(—3BeD o) (2.46)

where K is an overall constant factor and D™ is a matrix operating in the space of the variables w;. The
operator D is the propagator for the gauge gluons and enters into the Feynman diagrams of the theory.

For actual calculations these lattice propagators are quite cumbersome. However we can obtain some
information on the average plaquette with very little effort. As our integral is now Gaussian, its value is
a determinant

Z=K'|DIB|(1+0B™)). (2.47)

The matrix D has the dimensionality of the parameter space after gauge fixing; consequently, it is a
square matrix of 3n,N rows. Here n, is the number of generators of the group, 3 is the number of
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non-fixed links per site, and N is the number of lattice sites. Removing a factor of 8 from each row of
the matrix, we find

Z=K'|D|7"N(1+0(87)). (2.48)
For the average plaquette or internal energy this implies

__1 4 - -2
E=—¢N3gl08Z=25+067). | (2.49)

This result has a simple interpretation in statistical mechanics. We have 3n,N physical variables
distributed over 6N plaquettes. If we give each degree of freedom 3k T = 1/(28) average energy, then
we obtain exactly eq. (2.49). This simple counting of variables receives corrections at higher tem-
peratures where nonlinear interactions come into play.

2.7. Strong coupling

In the statistical analogue, the strong coupling regime is the high temperature limit. High tem-
perature expansions are an old subject in solid state physics, but before Wilson’s work they were
relatively unknown to particle theorists. Indeed, in the continuum theory the strong coupling limit is
rather unnatural and difficult to treat. In contrast, on the lattice strong coupling is by far the simplest
limit. One merely expands the Boltzmann factor in powers of the inverse temperature and evaluates the
terms in the resulting series. In the gauge theory each power of B is associated with a plaquette
somewhere in the lattice. This gives a simple diagrammatic intepretation in terms of graphs built up
from such plaquettes {1, 10].

Consider the internal energy for the SU(N) theory

E= <1—I—EJ-Tr Up>=% f dU e 25O (1—%% Up), 2.50)

where we have explicitly extracted the factor of B from the action. We now observe that because
[avui=0 2.51)

E must go to unity as B8 goes to zero. Indeed, for each link in Up we must bring down at least one
corresponding link from an expansion of the exponential of the action to avoid the zeros from eq.
(2.51). Correspondingly, every link from the action must have a partner, either from the action itself or
the inserted loop. The first non-trivial contribution in the strong coupling series comes from covering
our plaquette with another from the exponential. The simple integral needed to evaluate this
contribution is {11]

f dUU, Uzt = N 8 6. 2.52)
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Combining the § functions and multiplying with B/(2N) for the plaquette brought down from the
exponential of the action, we obtain the result

B 2
_51—\1_5+0(B ), N>2
E= (2.53)

1-2r06).  sue).
Strong coupling expansions have been carried out for SU(3) to order B** for the coefficient of the
linear interquark potential and to order B® for the mass gap [12]. Various attempts to match these

expansions onto the weak coupling behavior in eq. (2.32) have provided interesting predictions on the
‘numerical values of these parameters in the continuum limit.

3. Monte Carlo simulations
3.1. General discussion

The sums over configurations which define quantum averages (egs. (2.23) and (2.24)) contain so many
terms that even if the system has been restricted to a limited volume and the dynamical variables to
finite set, a straightforward numerical computation is impossible. On the other hand, it is well known,
especially in the context of the analogous formulation of statistical mechanics, that effectively only a small
subset of all possible configurations contributes to the averages. The basic idea of Monte Carlo (MC)
simulations [3] is to sample this set with a stochastic sequence of configurations C; such that the
probability of encountering any definite configuration C is proportional to the measure factor
exp{—S(C)}. The average of an observable O can then be approximated by the mean value taken by the
observable over several states in this sequence

(0)=%3 0(C). 3.1)

The passage from one configuration C; to the next one C;., is determined by a transition matrix
P(C- (), satisfying the constraints of stochastic matrices:

P(C~>C)=0 (3.2)

and
> P(C->C)=1. 3.3)

In the customary implementation of the MC algorithm, the transition involves the change of just one of
the dynamical variables at a time: U; » U;'. The variable undergoing the change could be picked up at
random, but it is computationally more convenient to proceed through the lattice in an orderly fashion,
modifying one of the dynamical variables (which constitutes a Monte Carlo step), then another one and
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so on, until all the variables have been sampled and thus one Monte Carlo iteration or sweep of the
lattice is completed. Properly speaking, therefore, one does not define a single transition matrix
P(C~C), but a whole collection P,(C— C), P; coinciding with the transition probability P(U; - U})
for the variable Uj, the other dynamical variables being kept fixed. A Markovian chain is still defined
by the matrix Py = ... Ppl(C' > C")P;(C' = C")P;(C - C'), where the product extends over all
individual transition probabilities in the order in which the variables are sampled. P,.(C—C') deter-
mines the change at the end of one full Monte Carlo iteration. In the following we shall leave the index
Ji in P;(C— C') implicit. Also let us mention that one can define, and in some applications this may be
necessary, Monte Carlo steps where two or more variables are modified simultaneously.

The goal is to define a stochastic sequence with the property that, after statistical equilibrium is
reached, the probability of finding any configuration C in the sequence becomes proportional to
exp{—S(C)}. In other words exp{—S(C)} must be an eigenvector of the stochastic process and the
probability vector state of the system must converge to it. A sufficient condition is that each step of the
transition matrix obeys a requirement of detailed balance:

eSO P(C>C)=e S P(C~C). | (34)
(In the case where P, is a product it is sufficient that each piece satisfy this condition and not

necessarily the entire transition probability.) If eq. (3.4) is satisfied it is immediate to show that
exp{—S(C)} is an eigenvector. Indeed one has

> eSOPIC->C)=2e S P(IC->C) (byeq. (34)
C (o]
= 5@ (by eq. 3.3)). (3.5)
To study the convergence to this eigenvector we need a concept of distance between ensembles E

and E', each containing many configurations. Suppose that the probability density of configuration C in
E or E' is P(C) or P'(C), respectively. Then define the distance between E and E’ as

IE-E|= % |P(C)- P(C). (3.6)

Now it is possible to prove on general grounds that if E., represents an equilibrium distribution,
associated with the eigenvector P.,(C) of P(C— C'), the algorithm never increases the distance from
equilibrium. Indeed if E’ is obtained from E by the Monte Carlo algorithm defined by P(C— C') then

P'(C)=3 P(C -» C)P(C). 3.7
<
We can now compare the distance of E’ from E., with the distance of E from equilibrium

IE — Eedl = 2 ; P(C > CY(P(C)~ P4(C))

C

= 2 P(C'->CO)P(C)~ Peo(C)| = |E — Eedl » 3.8)

C->C
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where the properties in eqs. (3.2) and (3.3) have been used. This shows that the distance from
equilibrium never increases. Replacing the weak inequality in eq. (3.8) with a strict inequality is less
straightforward and depends on the details of the algorithm (it is possible to define pathological cases
where ||E' — E|| = [|E — Ec4ll # 0). Moreover, one is not really interested in a theoretical convergence to
equilibrium, but in a rate of convergence rapid enough to make application of the method practical. In most
instances such convergence is indeed observed.

The detailed balance condition eq. (3.4) does not specify completely the transition probabilities
P(U; = Uy'). There are variations of the MC algorithm which use different forms for P(U;; = U;;"). We
describe here the three implementations of the technique normally followed.

(i) The method of Metropolis et al. [13]. The transition from U to U/’ is a two step process. First a
new candidate value Uj is selected with an arbitrary probability distribution P, obeying:

Py(Ui~> Up) = Pu(Us > Up). (3.9)
Then the change in action AS induced by the replacement U; —» U, is computed:
AS = S(U;) - S(U;) (all other variables kept fixed) . (3.10)

If AS <0 the change is accepted and U;' = U,-,-; otherwise a pseudorandom number r, selected in the
interval between 0 and 1 with uniform probability distribution, is generated and:

~if
r=<e S the change is accepted U, = Uj ;
—if
r>e S the change is rejected and U’ = U;.
Eq. (3.4) is clearly satisfied because, assuming for instance S( lAJj,-) = S(U),

P(U;> Uy) _ Po(U> Uy) €75 _ exp{=S(Up)}
PWU;»U) P(Ui»U)) 1  exp{-S(Up}

3.11)

The goal of the Metropolis method is to maximize the rate of change from one configuration to the
next, which is achieved by making as large as possible (indeed unity) the probability of the transition in
the direction which lowers the action. Its efficiency is however hampered by the fact that, especially in a
regime of weak coupling where configurations of low action are favored, most of the proposed changes
may lead to a drastic increase in action and thus to a rejection of the move.

(i) The heat bath method [14]. The new value U’ is selected among all possible values for the
dynamical variable with a probability distribution proportional to exp{-S(U;)} (the other U’s being
kept fixed), irrespective of the previous value Uj. Eq. (3.4) is then satisfied in an obvious way. The
advantage of this method is that, all new candidate values of Uj; being considered simultaneously, there
is no possibility that the Monte Carlo step rejects a change only because a “poor” new candidate was
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selected. On the other hand choosing a new value of the dynamical variable on the basis of a definite
probability distribution is in general computationally rather demanding. For instance, if the U’ belong
to a finite set, all possible values of exp{—S(U;")} must be calculated, up to a common factor. There are
systems, though, where the selection of the new value can be done with a simple and elegant procedure
for which the heat bath method becomes very convenient. These are discussed in subsection 3.3.

(iti) The modified Metropolis method.

The algorithm is basically the same as in the Metropolis method, except that after the move from Uj;
to U;' has been completed, the whole procedure is repeated one or more times on the same link before
proceeding to the next MC step (i.e., the next dynamical variable). We shall say that, rather than
upgrading the value of Uj; once, one performs n ungradings per step. Of course, the net result is that
the probability of considering an acceptable new candidate for Uj is increased. The advantage of
performing several upgradings per step, rather than simply doing more steps, is that a sizeable fraction
of the computation leading to AS involves only the values of the neighboring dynamical variables, kept
fixed in the move, and this does not have to be repeated. This is considerably more beneficial in gauge
theories than spin models because of the complexity of the interaction. It will be noticed that as the
number n of upgradings per step tends to infinity, the modified Metropolis method reduces to the heat
bath. This algorithm, therefore, interpolates between the other two and usually a value of n which
insures optimal efficiency can be found empirically.

We conclude this subsection with two considerations, which may appear straightforward now, but
will be of relevance when we consider extensions to systems with fermions.

(i) The MC algorithm is possible because e™* or, more precisely, e™*5 is a well-defined positive
number. Of course, this looks like a trivial remark; but the measure would not be positive definite if, for
instance, we were trying to calculate the quantum averages directly in Minkowski space. Then the
expectation values would be the result of drastic cancellations between generally complex terms, and
the summation based on importance sampling, as described in this section, could not be applied.
Unfortunately, cancellations among positive and negative terms occur also when the sums over
configurations are extended to include fermionic variables, and this makes the application of the MC
method to fermions more problematic.

(i) It is clear that a successful application of the technique requires averages over a very large
number of configurations. Several MC steps for each dynamical variable must be performed. The
number of times that the variation in action AS must be calculated is thus extremely high, and even with
a powerful computer the simulation becomes possible only if the number of arithmetic operations
required to determine the variation of the action is not too large. Luckily this is the case because of the
locality properties of the action. Even in the lattice formulation the action is local, in the sense that it is
built from terms which involve only couplings between a few neighboring dynamical variables.
Performing an efficient MC simulation becomes much more difficult when, maybe as the result of partial
summations over some of the variables, the dynamics is governed by a non-local effective action.

3.2. Practical considerations

While it is possible to formulate the general principles on which MC simulations are based, no fixed
set of rules can be prescribed when it comes to doing an explicit computation. MC simulations are an
art very much akin to experiments: the specifics of the execution will depend on the objectives, means
and capabilities of the performer. There are, however, a few considerations which will enter into any
MC simulation. They concern the choices of
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(i) observables to measure,

(i) lattice size,

(iii) boundary conditions,

(iv) initial configuration and length of the simulation.

We shall comment briefly on these points.

(i) Observables. There is of course a large variety of quantities whose averages can be measured by a
MC simulation. The limitations are in the amount of computation which may be required and in the
magnitude of the statistical fluctuations, which may make the measurement meaningless if the average
value to be determined is too small relative to the background. In general, bulk quantities such as the
expectation value of the internal energy (i.e., the average plaquette action) will be easier to evaluate
than quantities which depend on correlations between dynamical variables at different points or on
correlations among different MC iterations (such as the fluctuation in the average internal energy). On
the other hand, bulk quantities are normally less directly related to the renormalized observables of the
continuum limit. Although measurements may be easier to perform, they are of more relevance for the
properties of the lattice theory per se. More refined analysis of correlation-dependent observables will be
needed to extract information on the continuum limit.

(i1) The size of the lattice should of course be large enough to accommodate the physical dimensions
involved in the measurement without marked finite size effects. Experience with four-dimensional
lattice gauge theories has shown, however, that even lattices of rather small linear size can be useful to
evaluate some quantities (especially of bulk nature). This is probably due to mean field effects from the
large number of neighbors in high dimension. Fig. 1 illustrates measurements of the internal energies in
the two phases which coexist at the first-order critical point in the Abelian Z,-model [15]. One notices
that lattices of 4* and even 3* sites are large enough to separate clearly the two phases and provide an
estimate of the energies.
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Fig. 1. Monte Carlo measurements of the internal energy on various size lattices with the gauge group Z,. The runs were made at the temperature of
the phase transition in the four-dimensional model. The error bars represent root mean square fluctuations. On each size lattice results from both
random and ordered initial configurations are shown.
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Beyond the advantage of reducing finite size effects, large lattices give better statistical accuracy if
measurements are made over all positions that an observable can occupy in the lattice. This is a true
advantage, however, only if for some technical reasons a sweep of a large lattice can be done at a faster
rate (in terms of the time it takes to upgrade one dynamical variable) than the corresponding number of
sweeps of a smaller lattice. Otherwise, one can make up for the loss of statistical accuracy in a smaller
lattice by performing a larger number of Monte Carlo iterations. Finally, working with large lattices
may require longer simulations to achieve statistical equilibrium in the proximity of a higher order
critical point. This will be the case if the correlation length which governs approach to equilibrium
becomes comparable to the lattice size.

(iii) The importance of choosing appropriate boundary conditions is clearly demonstrated by the fact
that an 8* lattice has 8*— 6*= 2800 points on its boundary and only 1296 points in its interior. Periodic
boundary conditions are normally assumed in order to avoid finite size effects directly due to the
boundary.

Periodicity may also be imposed modulo some transformation on the dynamical variables. Doing so,
one can force excitations of topological nature into the system. One speaks then of twisted boundary
conditions [16]. In a one-dimensional array of Ising spins, which can be oriented only up or down,
twisted boundary conditions consist in assuming that the neighbor of the last spin in the array is the first
spin with orientation reversed. Then the total number of spin reversals in the chain becomes necessarily
odd and cannot be less than one.

Another variation of the periodic boundary conditions, of technical nature rather than bearing
physical content (indeed, it should not affect the physics), consists in assuming periodicity up to a shift
of one site in one of the orthogonal directions [17]. We use a two-dimensional system of N? sites to
exemplify this choice of boundary conditions. The idea is that, proceeding columnwise, the neighbor of
a spin s;» will not be s;; but rather s;,,;. Thus all the spins can be ordered into a single
one-dimensional array si1812. .. SinS2 . . - S28831 . - -, N such a way that neighbors in the array are also
neighbors in the lattice. The procedure corresponds to assuming that the lattice winds in a helical
fashion around the toroidal manifold induced by periodicity.

(iv) Initial configuration. With the possible exception of investigations focussing on the dynamical
behavior of the Markovian chain itself, MC simulations effectively make use only of the configurations
obtained after statistical equilibrium is reached. The specific choice of the initial configuration is
therefore in principle irrelevant. One would like however to reduce the length of the transient needed
to reach equilibrium; and, also, a simple test for equilibrium lies in the independence of results obtained
from different initial configurations. Thus the selection of an appropriate set of initial values for the
dynamical variables becomes of practical importance.

An obvious possibility for the initial data consists in setting all U; variables equal to the identity of
the group. The action is then minimal and one speaks of a cold or ordered start. At the opposite
extreme, one can let the Uj take entirely random values within the group manifold. This is the infinite
temperature configuration and one speaks of a hot, or disordered, start. Fig. 2 illustrates the behavior of
the internal energy as function of the number of iterations in the simulation of a Zs-model, very near
the value of B where the system is known to undergo a second-order phase transition [15]. One notices
that, in spite of the critical slowing down one may expect, both with ordered (upper line) and disordered
starts (lower line) the simulation converges reasonably rapidly to statistical equilibrium. However, an
analogous simulation for a system which undergoes a first-order phase transition, even slightly away
from the critical point, may fail to converge to equilibrium because of metastability effects. Fig. 3
illustrates the results of ordered and disordered starts for the Z,-model at the first-order critical point 8.
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Fig. 3. The evolution of the internal energy from random and ordered
configurations at the first-order transition of the Z, system.

[15]. The occurrence of two distinct, stable phases is what one indeed expects at 8 = B.. The problem is
that the computation produces similar results even if 8 is moved away from 8. by as much as ~5 to
10%, whereas only one of the phases should remain stable.

A useful procedure to overcome metastability effects consists in assuming an initial configuration
which is half-ordered and half-disordered [15]. For example, we could take a random configuration and
then set to the identity all links with time coordinate less than or equal to half the total time dimension
in the periodic crystal. One speaks then of mixed-phase MC simulations. Fig. 4 illustrates the results of
the procedure for the Z,-model at several values of B8 in the neighborhood of B. [15]. As soon as B is
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made different from B., the stable phase overtakes the metastable one. The almost linear drift of the
internal energy to be final value, in the proximity of a first-order transition, is rather characteristic and
can be related to the expansion of the boundary of the stable phase.

Finally, let us mention that it is often useful to perform simulations where the coupling parameter 3
is varied slightly after every iteration or every few iterations. One speaks then, especially if B is moved
from some initial value B, to B; and then back to B,, of a simulated thermal cycle. The gradual change
of B induces a nearly adiabatic transformation on the system, which will never be strictly in statistical
equilibrium, but in general will remain very close to it. In the vicinity of critical points, however,
because of the increase in the relaxation time, the departure from equilibrium will become more
marked and the simulation of the thermal cycle will exhibit characteristic hysteresis loops. Fig. 5
illustrates the results of such a simulation for the Zg-model [15]. The two very marked hysteresis loops
signal the occurrence of two phase transitions in the system.

3.3. Technical details

In this subsection we discuss a few points which may be of interest to the researcher planning to write
an explicit MC program. Readers who are interested only in the general features of the method and in
the results may want to skip this subsection.

The computation leading to the upgrade of one of the dynamical variables consists of three basic
parts:

(i) A retrieval from memory of the required U; and its neighbors. The indices which specify the
location in memory of these numbers must be determined taking into account the boundary conditions.

(i) A computation, according to the algebra of the gauge group, of quantities which remain fixed
during the upgrade. For instance, if the internal energy of a single plaquette is expressed as

—TI'( lJiu’a Ui Uiy Uizil) 3. 12)
and if Uy, is the variable to be upgraded, it will be convenient to evaluate the matrix product
VO = U, Ui Uy (3.13)

first. If the total action is the sum of the individual plaquette energies multiplied by 8, U,; will
intervene into six terms of the action. It will be useful to compute the products V®, i=1,...6, as in eq.
(3.13), for these six plaquettes and add them up

6
V=3 v®, (3.14)
i=1
The change in action induced when UL, is varied will then be given by

88 = —BTr(V 8U,;) (3.15)

and only the relatively simple arithmetic operation of taking the trace will have to be repeated if U, is
upgraded several times before proceeding to the next variable. This is particularly important for
continuous gauge groups, in which case a major portion of the computer time is devoted to calculating V.
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(ili) The decision, based on the extraction of a pseudorandom number, on whether to accept or
reject the change.

A useful observation relative to point (i) is that periodic boundary conditions may be enforced in a
very efficient way if the size of the lattice is a power of 2 and the compiler allows simple bit
manipulations. One can take advantage of the binary structure of the representation of numbers inside
the computer. For details see ref. [18]. Otherwise, it is covenient to impose periodicity by defining
arrays of next and previous indices, following the obvious definitions (for periodicity modulo N)

next (iy=i+1, I<N,
next (N)=1, (3.16)
previous (i)=i—1, i>1,

previous (1)= N. (3.17)

Use of modulus operations or conditional statements is more tedious.

About point (ii) - a general observation is that, if the gauge group is a finite group of reasonably low
order, it is much more convenient to record the result of the group operation into a multiplication table,
which will be stored in memory, and to combine Uj; variables according to this table, rather than
performing the explicit matrix algebra. A general program for the simulation of a system with finite
gauge groups is published in ref. [18]. Also, as long as the group elements may be labelled by an integer
ranging over a limited set of values, it becomes possible to record several Uj; variables in the same
memory word, allocating bits of different position to the different variables.

One can thus reduce the memory requirements and sometimes this procedure also allows a parallel
processing of several U; by a single computer instruction. For details see [19]. This kind of parallel
processing should not be confused with the capability of executing simultaneously several operations
that some of the most modern and largest computers offer and which can be fruitfully applied to MC
simulations, with no restriction on the group involved [20].

If the group is continuous, there is little that can be said of general nature, although variations in the
way the program is written may imply substantial savings in computer time. For instance, with the
algebra of the SU(3) group, it is more efficient to obtain the first two rows of the product of two
matrices and determine the third one using orthogonality relations, than to proceed with the full matrix
multiplication (a saving of about 10% in CP, central processor, time is achieved).

On the upgrading, a useful consideration is that if the gauge group is finite it is more efficient to store
the possible values of exp{—AS} in a memory array and retrieve them at the moment they are required,
than calling the rather time consuming exponential function. If the group is continuous, again, not much
of general nature can be said. The gauge groups U(1) and SU(2), however, are simple enough to allow
efficient and elegant implementation of the heat bath algorithm, which we now briefly describe.

We first discuss the case of SU(2) [21]. When working on a particular link, we need to consider only the
contribution to the action coming from the six plaquettes containing that link. Consider the matrix V
from eq. (3.14), the sum of the six products of neighboring link variables that interact with the link in
question. The heat bath method requires that we replace U; with a new group element selected
randomly from SU(2) with probability distribution

dP(U) x dU exp{8 Tr(UV)} . (3.18)
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The manifold of the group SU(2) is the surface of a four-dimensional sphere. This follows from the
parametrization

U=aytia- o, aj+a’*=1, (3.19)

where o represents the Pauli matrices. In terms of this parametrization, the invariant group measure
takes the simple form

dU = # 8(a®~1)da. (3.20)

A useful property of SU(2) elements is that any sum of them is proportional to another SU(2) element.
In particular, it follows from the representation in eq. (3.19) that

V=kU, ' (3.21)
where U is an SU(2) element and k is given by the determinant

k=|V|"2. (3.22)
The utility of this observation appears when we use the invariance of the group measure to absorb U,

dP(UU™") « dU exp{3Bk Tr U}. (3.23)
Using eq. (3.20) gives

dP(UUY) « d*a 8(a®— 1) exp(Bkay) . (3.24)
Thus the problem reduces to generating points on the surface of a four-dimensional hypersphere with
exponential weighting along the g, direction. Generating an element U in this manner, the link in
question is replaced with the product

U/=U0". (3.25)

To generate the appropriate weighting on the hypersphere, first do the |a] integral with the delta
function to obtain

8(a®— 1) d*a exp(Bkao) ~ 3da, A2 (1 — a?)"? exp(Bka,) (3.26)

where d{2 is the differential solid angle of a. Thus we must generate a, in the inteval [—1, +1] with
weighting

dP(ao) = (1— a3)"? exp(Bkao) dao . (3.27)

Changing variables to z = e#** gives
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dP(z) xdz (1- B2k log? 2)¥?, e P <z=e**. (3.28)

This change removes the strong peaking for low temperatures from eq. (3.27). Now z can be generated
by selecting a random number uniformly in the allowed interval and rejecting it with probability

(1- k™2 B 2log? 2)"2. (3.29)

This is repeated until a z is accepted. Then the direction for a is selected randomly and the group
element can be reconstructed.

The group U(1) is isomorphic to SO(2), which in turn is just the set of SU(2) matrices which are real.
Thus the above discussion through eq. (3.25) repeats itself except for eq. (3.24) which becomes

dP(UU™") « d?a 8(a® - 1) exp(Bkao) , (3.30)

where the SO(2) elements are parametrized as

_ dg a;\ _ .
U= (_a1 ao) = do+ia10s . (3.31)

The hypersphere is replaced now by the unit circle and we need to generate

dP(ao) « (1 - a3)~"? exp(Bkao) dao ,

(3.32)
a;=+(1—-ad)"?.
Here the sign of a, is chosen randomly.
The generation of a, is somewhat more complicated than for SU(2) because the weighting in eq.
(3.32) is an unbounded (but integrable) function. The scheme we use is to change variables to

z= exp{—gg—]i arcos ao} , (3.33)
e P <<, (3.34)
dP(z) « exp(ﬂk cos(z‘%k log z) - log z) dz. (3.35)

This weighting is bounded and is reasonably smooth for moderate 3. We select z uniformly in the range
(3.34) and then reject it with probability proportional to the weighting in (3.35). As in the SU(2) case,
this is repeated until a z is accepted, and the group element is reconstructed.

4. Phase structure of pure gauge systems

As we have discussed in section 2.3, the existence and nature of the critical points of a particular
lattice model are issues of prime importance to the model’s possible relevance to physics in the
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continuum limit. Thus, one of the first things one would like to learn about a lattice gauge theory is its
phase structure. The Monte Carlo methods described in section 3 are particularly well suited for the
study of the non-perturbative effects responsible for the critical behavior of a statistical system.

4.1. Abelian models

The simplest lattice gauge theories are those in which the spin variables take on a finite set of N
values uniformly distributed on the unit circle. They span the discrete Abelian group Z(N) of planar
rotations by integer multiples of 2#/N. For N =2 the model corresponds to a gauge-invariant
generalization of the Ising model, and as N approaches infinity, the Z(N) models approach the U(1)
theory. Therefore, although these theories do not necessarily lead to sensible gauge field theories in the
continuum limit, they provide a tool for studying the U(1) theory indirectly. Furthermore, as we shall
argue below, most of the relevant properties of the U(1) gauge theory can be analyzed using the discrete
models, which, being amenable to treatment using the parallel processing techniques mentioned in
section 3.3, allow a much more precise determination of these properties than is possible using the
continuous group directly.

Since the work of Kramers and Wannier [22] on the two-dimensional Ising model, the concept of
duality has played a crucial role in the study of spin systems. Generalization of the duality
transformation to more complicated systems has been achieved and excellent reviews exist in the
literature [23]. In broad terms, this transformation can be understood as a geometric map of a given
model into another defined in the same number of dimensions, but with a (generally) different action, in
such a way that the couplings of the transformed theory become monotonically decreasing functions of
the original couplings. The dual theory is one in which the original ‘“‘order” variables have been
replaced by a new set of “disorder” variables, whose fluctuations are small at strong coupling, where the
fluctuations in the original variables were large. In this way, the strong-coupling regime of the original
theory is mapped into the weak coupling regime of the dual theory, and vice versa. Of particular
interest is the situation where the action of the dual system coincides with that of the original system.
When a model has this property it is said to be self-dual. In this case, a number of very important results
follow. In particular, if a self-dual system undergoes a single phase transition, the critical coupling must
be the point at which the original and dual couplings coincide. When more than one transition occurs,
the critical points on one side of the self-dual point are related to those on the other. Furthermore,
when a system is self-dual, expectation values of order and disorder operators are also related by
duality. In many cases of interest, this fact leads to important conclusions concerning the nature of a
given phase of the model.

With the Wilson form of the action, the Z(N) models are self-dual for N = 2, 3 and 4; the self-dual
points being given by [10, 24]

SP=1In(1+V2)=044... (4.1)
$=3In(1+V3)=067... (4.2)
$P=In(1+V2)=088.... : 4.3)

For N >4 these models are approximately self-dual in that the dual theory is again a four-dimensional
Z(N) gauge theory but with a somewhat different action.
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Fig. 6. Thermal cycles on the (a) Z;, (b) Zs, (c) Zs, (d) Zs and (e) Z¢ models.

A rough overview of the phase structure of the Z(N) models can be obtained from the simulation of
thermal cycles as discussed in section 3.2. One example of such a simulation was shown in fig. 5 and
more are shown in fig. 6. In figs. 6a-c pronounced hysteresis-like loops are present in the region of the
self-dual points for the Z(2), Z(3) and Z(4) models. Accordingly, we expect the existence of a single
phase transition in those theories. Figures 6d-e are noticeably different. A hint of further
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structure is apparent in the Z(5) model, and the probable existence of two separate transitions becomes
more evident for the larger groups. That the N >4 models undergo two transitions is confirmed through
further analysis. Since these models are close to being self-dual, the two critical points are approximately
related by duality. As discussed in section 3.2, the nature of the phase transitions can be elucidated by
studying the evolution of special initial configurations in the vicinity of the critical points. Recall that
systems undergoing first-order transitions possess two different stable states at the critical point which
become metastable as the coupling is varied slightly away from this value. Higher-order transitions, on
the other hand, do not have this property. In fig. 2 we plotted the evolution of the average plaquette in
the Z(6) model at the strong-coupling critical point as function of the number of iterations. The two
sets of points, corresponding to a hot start (upper set) and a cold start (lower set) are seen to converge
to a common value after a relatively short time of about 700 iterations, indicating the existence of a
single stable state at this value of the coupling and, hence, a continuous transition. Based on further
analysis described later in this section, it has been found that this transition is indeed a second-order
one. Because of duality, this implies that the weak-coupling transition is second-order as well. The same
type of simulation, when carried out with the N <5 models produces very different results as shown in
figs. 3 and 7. In this case, the Z(4) model appears to have two stable states when simulated at its
self-dual point and thus seems to undergo a first-order transition. However, because of the existence of
metastable states, these simulations do not determine the value of the transition point with
any precision. This difficulty is easily overcome with the use of mixed-phase configurations of the type
discussed in section 3.2. The results of applying this technique in the case of the Z(2), Z(3) and Z(4)
models are displayed in figs. 4 and 8. To within an accuracy of +0.005 in B, these simulations lend strong
evidence supporting the existence of first-order phase transitions for the N <5 models at their self-dual
points. Several techniques exist for determining the critical coupling of continuous transitions. A simple
but crude technique consists in simulating a configuration and repeatedly adjusting the inverse coupling
after several iterations in such a way that the value of the average plaquette remains in the middle of
the hysteresis cycle. Other methods, which are more accurate but require a considerably larger amount
of computer time, rely on the measurement of average fluctuations as a means of finding the maximum
value of the derivatives of the free energy with respect to the inverse coupling. The pattern which
emerges from this analysis is shown in fig. 9. The Z(2), Z(3) and Z(4) models possess two phases
separated by a first-order transition; the models for N >4 have three phases which are separated by
continuous, second-order transitions. General arguments [25] which identify the physical mechanism
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Fig. 7. Evolution of the Z, system from random and ordered configurations at the transition temperature.
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responsible for these continuous transitions, based on an analysis of topological excitations present in
the middle phase, imply that, for large enough N, the strong-coupling critical point in these models
should converge to a value which is essentially independent of N. This is consistent with the MC
analysis presented above. Since the point of approximate self-duality of these models occurs at an
inverse coupling which grows linearly with N, the fact that one transition is essentially fixed at 8~ 1
leads one to expect that the second critical point should occur at a coupling g* which vanishes like 1/N?
as N goes to infinity. Indeed, since the energy difference (per plaquette) between the ground state and
the first excited state vanishes with N as 1—cos(2#/N)=~O(N™?), it is natural to expect the second
critical point to scale similarly. Agreement between the numerical results and the above theoretical
expectations is clearly seen in fig. 9. Determination of the scaling coefficient & =0.78 from theoretical
considerations remains a very difficult task.

Using a periodic Gaussian approximation to the Wilson action for the Z(N) models, the phase
structure described above was being conjectured by several groups [25] at the time this numerical
analysis was being carried out. Success for theoretical analysis and the numerical simulation is clear
from the welcome agreement between these two approaches.

The nature of the three phases in the Z(/N) models is well understood. The strong coupling phase is
characterized by an area-law decay for the Wilson loops and leads to the confinement of elementary
excitations. In both the intermediate as well as the weak coupling phases, correlations have a slower
fall-off. However, unlike the weak coupling phase, the intermediate phase is dominated by massless,
spin-wave excitations which correspond to the physical photon field in the continuum limit of the N -«
model. In fig. 10 the average plaquette for the Z(20) model is compared with the spin-wave ap-
proximation value of 1/(48). The rather good agreement between the numerical results and the
spin-wave prediction in the intermediate phase is apparent.
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Fig. 10. The internal energy of the Zz model as a function of inverse temperature. The solid line is the lowest order spin wave prediction for the
U(1) model.
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The phase structure of the U(1) model, as obtained from a direct simulation of the continuous group,
is shown in fig. 11. The single transition point seen at 8 ~1 separates the confining phase from a
QED-like phase containing the quantized photon field in the continuum limit. The existence of a
continuous phase transition in the lattice formulation of the U(1) theory, as indicated by the above
results as well as by the subsequent rigorous work of Guth [26], gives very strong support to the belief
that the Wilson-Polyakov lattice formulation of gauge theory provides a correct regularization tech-
nique for defining a quantum field theory. Indeed, had this formulation led to unphysical results for this
prototype gauge theory, its use in the analysis of the less well understood non-Abelian models would
clearly be suspect.

Using finite-size scaling techniques, a detailed analysis of the U(1) transition has been carried out by
Lautrup and Nauenberg [27]. Later, various renormalization group techniques were applied to this
model by Bhanot [28] and by Hamber [29]. The results of these analyses provide strong evidence for a
second-order critical point. In this connection, it is worth mentioning that the possible existence of an
essential singularity in the correlation length was part of the current lore when this transition was
discovered. The main reason for this belief was that the U(1) theory, being intimately related to the
planar (X-Y) spin model in two dimensions through the Migdal-Kadanoff recursion relations, might
share this property with the spin system [30]. Although we now have good evidence that the transition is not
of infinite order, the work of Bhanot indicates that the weak-coupling phase of the O(2) model does share
with the spin system the property of being a line of renormalization-group fixed points.

Before passing on to discuss the non-Abelian groups, we will anticipate the analysis described in
greater detail in section 5 concerning topological excitations in these theories. As is the case with the
planar model and other spin systems, a possible description of the Abelian gauge models is in terms of
variables which represent their topological excitations. In an interesting analysis, DeGrand and
Toussaint [17,31] identified a physical mechanism responsible for the U(1) transition as being the
condensation of such topological excitations (monopoles in this case) at the critical point, in a manner
analogous to the way in which the condensation of vortices is responsible for the phase transition in the
planar model.

A consequence of the study of these theories in terms of such topological variables (which
correspond to the elementary variables in the dual theory) is that, away from the freezing transition
observed for finite N, the Z(N) models in the intermediate phase are essentially indistinguishable from
the U(1) model. The computational advantages of this fact are obvious. Although the arguments leading
to the above assertions cannot be simply applied to the non-Abelian models, it is believed that, at least
with the Wilson action, models corresponding to discrete subgroups of a non-Abelian group can also
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Fig. 11. A thermal cycle on the U(1) model.
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mimic the continuous group for some range of values of the coupling. As we discuss in the following
subsection, for the extensively studied case of SU(2) and its discrete subgroups, the evidence in favor of
this belief is rather good.

The critical properties of spin systems depend crucially upon the dimensionality of the lattice
where the model is defined. In view of the deep statistical analogies which exist between gauge models
and spin systems, one expects the existence of critical dimensions for gauge theories. In particular, we
have presented evidence that the U(l) model in four dimensions has a continuum limit
describing free massless photons, in accordance with physical expectations. The question is whether
d = 4 is the critical dimension for gauge theories in the same way that d =2 is for spin systems. This
has been investigated for both the Abelian as well as the non-Abelian cases. The expectation is
that the d =3 U(1) model cannot avoid the confinement of photons, whereas the expected confining
property of non-Abelian models should be lost when d > 4. This picture is now known to be rigorously
true in the Abelian case, as we briefly discuss here. The situation with the non-Abelian models will be
analyzed in the next subsection.

An analysis of the d = 3 Z(N) models, entirely analogous to the one presented above for d = 4, has
been carried out [32]. The main finding is that these models undergo a single continuous transition for
all N, with a critical coupling which scales with the action gap and therefore vanishes like N7 in the U(1)
limit. In accordance with these results, renormalization-group analyses [29, 33] indicate that the d =3
U(1) model is disordered for all finite couplings. A direct simulation of the U(1) model in d =3 and
d =15 gives further evidence of the critical nature of d =4. It is observed that, while the three-
dimensional model does not seem to undergo any transitions, the second-order critical point of the
four-dimensional model hardens into a clear first-order transition [32] when d=35. Finally, in a
very recent investigation, a rigorous proof confirming these numerical findings has been achieved by
Gopfert and Mack [34].

4.2. Non-Abelian models

In this subsection we will describe the phase structure of the physically relevant non-Abelian systems
corresponding to the SU(2) and SU(3) gauge groups. The methods used in this analysis are entirely
analogous to those used in the study of the Abelian groups, so the discussion will be brief.

Most of the advantages and limitations encountered in the Monte Carlo analysis of the U(1) model
using its discrete Z(N) subgroups apply in this case as well [35, 36]. In particular, from a computational
point of view, the ability to store several spin variables in a single computer word allows for the
simulation of larger lattices [37]. Although this is not a major advantage in the study of the phase
structure of the models, it will be crucial in the analysis of nonlocal observables, as will be discussed in
section 5. As we have discussed in section 3, the fact that the group operation is more complicated here
than in the Abelian case makes the parallel processing of several spins through a logical implementation
of the group algebra generally impractical. However, as long as the group is not too large, the product
of two group elements can be performed by retrieving the result from a multiplication table stored in
memory, a procedure which takes much less time than carrying out the matrix multiplications explicitly.
If the order of the group is very large, the group operation can be reproduced by first factoring the
group elements into products of the elements of a subgroup H times a representative of the cosets of H.
A few tables which specify how these elements are commuted and multiplied can then be stored in
memory.
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An obvious difficulty with non-Abelian groups, which is absent in the U(1) case, stems from the
fact that, whereas the sequence of Z(N) subgroups of U(1) is infinite and its limit is dense in U(1),
non-Abelian groups have only a finite number of truly non-Abelian discrete subgroups, if we exclude
trivial generalizations of their Abelian subgroups. Thus, for example, the dihedral groups D(N),
obtained by combining rotations of 2#/N around a fixed axis with rotations of 7 around axes
orthogonal to it, reveal little of the non-Abelian nature of the three-dimensional rotation group. As
was the case with the Z(N) groups, it is clear that at sufficiently weak couplings the physics of the
discrete non-Abelian subgroups will differ from that of the Lie group under study. Therefore, in order
to profit from the use of discrete subgroups, it is crucial that the Lie group in question should have a
sufficiently dense subgroup so that the interesting physical region one wishes to probe occurs at
couplings where the continuous group is still well approximated by the discrete group. Indeed, whereas
the approximation to the SU(2) model by discrete subgroups is excellent, the interesting physical region
where the crossover between strong and weak coupling takes place for the SU(3) theory is outside the
range of couplings for which the approximation obtained from the largest discrete subgroup is still good
(at least with the Wilson form of the action) [38]. Recent work [39] has shown that it may be possible to
overcome this limitation by considering sets of group elements which do not themselves form a subgroup.
Using the exact action, derived from tables as noted above, for the product of elements around the
plaquettes, one obtains a useful scheme for rapid computation with such an approximation to SU(3).

The relevant subgroups G of SU(2) can be reduced to subgroups G of O(3) by factoring out the
center Z(2). The subgroups of O(3) are the symmetry groups of the polyhedra. Excluding Abelian and
dihedral cases, the finite subgroups of O(3) are:

(i) the 12 element symmetry group of the tetrahedron, denoted by T

(i) the 24 element symmetry group of the cube and the octahedron, denoted by O;

(iii) the 60 element symmetry group of the icosahedron and the dodecahedron, denoted by Y;
together with their subgroups. Corresponding to these, SU(2) has the following subgroups:

(i) T (24 elements),

(i) O (48 elements),

(iii) Y (120 elements),
where G/Z(2)=G.

For the above subgroups, any two different neighbors of the identity, that is, any two elements of the
form g = cos 8 +isin 6 & + n corresponding to the smallest non-vanishing value of 6, call it 8, and such
that they are not mutual inverses, generate the whole group. Moreover, any such g generates a
maximal cyclic group. If this group is Z(N), then 6., = 2#/N and the action gap of the model is the same
as in the Abelian system with gauge group Z(N). Thus, T has 8 neighbors of the identity and its
maximal Abelian subgroup is Z(6), O has 6 neighbors of the identity with maximal Abelian subgroup
Z(8) and Y has 12 neighbors of the identity with maximal Abelian subgroup Z(10).

In figs. 12-14 we display [35] the results of thermal cycles for the models with gauge groups Q (the
eight element quaternion subgroup of O with maximal Abelian subgroup Z(4)), T and O. A clean
hysteresis loop, indicating the existence of a single order—disorder transition, is clear in all cases. The
critical coupling is seen to move toward g = 0 as the order of the group increases with no sign of other
critical points. This situation, pointedly different from the observed behavior of the Z(N) systems,
supports the notion that the SU(2) model should have no transitions for finite coupling. A particularly
striking difference between Abelian and non-Abelian cases can be seen between the thermal cycle of
the O model in fig. 14 and that of the Z(8) model in fig. 5. The action gap of these models is the same,
but, whereas the Z(8) model shows the appearance of a spin-wave phase behind the transition which
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Fig. 12. A thermal cycle with the quaternian group Q = {=1, *ig}.

scales with the gap, no such phase is seen in the O system. A comparison of the average plaquette in the
O model with the corresponding quantity obtained from a direct simulation of the SU(2) system is also
shown in fig. 14. An excellent agreement is seen almost up to the phase transition.

Using mixed-phase simulations, the transitions in these three models have been determined to be
first-order and the critical points are estimated to be '

B.=123+0.02, G=Q 4.4)

B.=2175+0.025, G=T (4.5)
B.=321+0.01, G=0. (4.6)

The results of these simulations are shown in fig. 15.
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Fig. 13. A thermal cycle with the group T.
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Fig. 14. A thermal cycle with the group O. The crosses represent cooling, plusses, heating and the circles are the internal energy for the SU(2)
model.

The largest subgroup, Y, shows [36,37] a single, first-order phase transition at 8. =~ 5.9. The simulation of
this model was done on a very large lattice of 16 sites in each direction [37]. As noted before, the
advantages of being able to simulate systems on larger lattices becomes apparent when the measure-
ment of extended, non-local operators is needed. In the next section, where we discuss the observables,
the high statistics results for SU(2) were obtained on this system. A more subtle advantage of using this
large lattice, also discussed in further detail in the next section, comes from the fact that the high
(physical) temperature deconfining transition observed in the SU(2) model occurs at a value of 8 which
increases with the size of the lattice according to the relation a(B8.)= (1/T.)d, where a is the lattice
spacing, T. is the physical deconfining temperature and d is the lattice size.

A precise determination of the average plaquette for the group Y is shown in fig. 16 as a function of
the inverse coupling. The statistical errors are smaller than the size of the points in the graph. The solid
lines shown correspond to various Padé approximants to a strong-coupling series, evaluated to order J*°
by Wilson [40], where J is given by

J(B)= Bdﬁ log( f dUe?™ U/Z) . @)

A very good agreement between data and series results is seen to occur up to 8 =2, after which the
series results depart sharply from the MC data.

Direct simulation of the SU(2) model shows no signs of a phase transition at finite coupling. For
further support of confinement at all couplings, in the next section we will show that the behavior of
observables is consistent with renormalization-group predictions assuming a vanishing critical bare
coupling. Here we shall end our discussion of the numerical analysis of the phase structure of the SU(2)
model by mentioning that, because of the same motivation which led us to study the U(1) model in
three and five dimensions, a study of the SU(2) model in five dimensions has been carried out [41]. In
striking contrast with the four-dimensional system, the results of this analysis reveal the existence of a
first-order phase transition at an inverse coupling 8. = 1.642 +0.015, thus giving further evidence to the
critical nature of four dimensions for gauge theories.
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Fig. 16. The average plaquette for the group ¥ as a function of inverse coupling. The solid lines correspond to various Padé approximants to the
strong coupling series.

We close this subsection with a discussion of the phase structure of the SU(3) model, the relevant
gauge group for the strong interactions. There is little reason to suspect that SU(3) would have a
deconfining transition if such effect is absent in the SU(2) model, and indeed, a direct simulation of this
system [42] shows no sign of a phase transition in the explored range of couplings.

A simulation of the SU(3) system through a study of its discrete subgroups would be extremely useful
given the complexity of the group operations involved in a simulation of the continuous group.
Unfortunately, the interesting physical region for this model occurs at an inverse coupling 8 = 6, as will
be discussed in section 5, whereas the largest discrete subgroup of SU(3) has [38] a (first-order)
transition at B.= 3.6. Therefore, the continuum limit of the SU(3) theory cannot be usefully ap-
proximated with any of its discrete subgroups, at least with the Wilson form for the action. We briefly
present the results of the analysis of these models not only for completeness, but also because it is
known that the region of couplings for which the strong coupling region turns into the asymptotic
freedom region, the so-called crossover point, depends strongly on the specific form of the action
employed. Therefore, it is possible that an action other than the Wilson form may still permit the use of
discrete subgroups in this case as well.

Apart from its dihedral subgroups, SU(3) with the center Z(3) factored out has crystal-like subgroups
which can be thought of as the generalizations of the polyhedral subgroups of O(3) to the eight-
dimensional sphere [43]. We describe here an analysis of the groups containing 108, 216, 648 and 1080
elements, which we shall denote by S(N), N being the number of elements. In fig. 17 we show the results
of a thermal cycle for the S(1080) model together with a strong-coupling series up through order 8°.
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Fig. 17. A thermal cycle with the S(1080) subgroup of SU(3) as the gauge group.

Mixed-phase simulations for this model indicate a first-order transition at B.=3.58+0.02. Both
kinds of simulations have been performed with the other models as well, with the results that a
first-order transition is present at B.(108) =2.5+0.2, B.(216)=3.2+0.1 and B.(648)=3.43+0.02. The
reason B, remains relatively small despite the large number of elements is that the action gap, which
sets the scale for the critical coupling, is never small and the increase in entropy which would tend to
increase B. is never sufficient to offset this effect.

We close this subsection by mentioning that great progress has been made through very recent work
of Tomboulis [44] in the attempt at finding an analytic proof of the absence of a deconfining transition in
these models. Hopefully, this proof can be completed in all rigor in the near future.

4.3. Phase structure of models with generalized actions

The imposition of a cut-off on a field theory is a highly non-unique procedure. Even in the
framework of a lattice theory, variations are interesting to study with Monte Carlo simulation. Such
analyses provide important consistency tests on the extraction of continuum numbers and indeed bear
directly on the question of uniqueness of the continuum limit.

A simple alternative to the Wilson model is to place a vector field A, on the lattice sites and define
an action by replacing derivatives in the continuum Yang-Mills Lagrangian with nearest neighbor
differences. This formulation differs from conventional lattice gauge theory in two fundamental
respects; first, exact local gauge symmetry is broken, and, second, the integral over gauges is no longer
compact. The latter feature forces the imposition of gauge fixing at the outset. Patrasciou, Seiler and
Stametescu [45] have performed preliminary simulations with this model. They have as yet not seen the
area law in large loops, but this is probably due to a renormalization of the bare charge making the
linear potential observable only at extremely strong coupling.
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Remaining closer in spirit to the Wilson formulation, Edgar [46] considered replacing the plaquette
with the 2 X 1 Wilson loop as the fundamental term in the action. Simulations with this “fenétre’ action
show a clear first-order transition. One important conclusion is that the mere presence or absence of a
phase transition is not a universal property of the gauge group. Indeed, when the lattice spacing is not
small, variations of the action can introduce new physics as lattice artifacts.

Drawing still closer to the Wilson theory, one can keep the action as a sum over class functions of the
group elements associated with the plaquettes, but change the form of that function. Manton [47]
presented a particularly simple alternative, taking for the action on a plaquette

Se(U)=Bd*(U, I), 4.8)

where d is the minimal distance in the group manifold between the element U and the identity. This
takes advantage of the fact that there exists a unique (up to an overall normalization) invariant metric in
a Lie group manifold. In the case of SU(2) the distance is simply

d(U,, Uy) x arccos(z Tr(U, U3Y)). 4.9)

The Manton action is convenient for analytic work in the weak coupling limit but is singular for those
elements with maximum distance from the identity (—1 for SU(2)). This singularity results in a transfer
matrix which is not positive definite [48].

Another generalization, similar in spirit but different in detail from that of Manton, is the ‘“heat
kernel” or generalized Villain action [49]. The Boltzmann weight or exponentiated action

expl~ Se(U)} (4.10)

should peak strongly near the identity for weak coupling but should become uniform over the group for
a simple strong coupling limit. This is reminiscent of the expectation of the evolution of the temperature
distribution in a piece of material shaped like the group manifold and initially possessing a delta
function temperature spike at the identity. As time evolves towards infinity, the hot peak will spread
and eventually become uniform over the group. This can be made mathematically precise using a group
theoretical generalization of the Laplacian to formulate a heat equation. The exponentiated action is
then identified with the solution of this equation, where the coupling constant corresponds to the time
after the initial singular distribution of heat. This action has the technical advantage over the Manton
form of being smooth over the entire group manifold and of giving rise to a positive definite transfer matrix.
Both the Manton and heat kernel action have been subjected to Monte Carlo analysis [50] and show no
phase transition at finite 8.

An interesting change in the phase structure of the SU(2) theory results from simply replacing the
trace of a plaquette with the corresponding trace in the adjoint representation [51]. This amounts to
working with the group SO(3). In fig. 18 we show a thermal cycle on this model with a 5* lattice [51].
Fig. 19 shows the evolution of this system from random and ordered starts at our estimate of the
transition temperature. As far as the classical limit is concerned, SO(3) and SU(2) theories are identical.
They only differ in their global properties which come into play when quantum fluctuations bring
plaquette operators far from the identity. As with the fenétre action, the new transition occurs when the
lattice spacing is large and lattice artifacts should be expected.

One possible explanation of this SO(3) transition is in terms of Z, monopole excitations [53]. These
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arise because the adjoint representation of SU(2) does not see the Z, center of the latter group. A
plaquette variable near —1 has the same energy as one near +1. This can be used to define a Dirac
string as a sequence of plaquettes near —1. Several closely related schemes for making this precise have
been presented [54,55]. We will present that of Halliday and Schwimmer, which entails a slight
modification of the theory. To make the action insensitive to the group center, introduce a new set of
variables {op}, each from the group Z, = {=1}, located on the lattice plaquettes. We study the partition
function

Z=>|dU exp{,B > o Tr Up} ) 4.11)

{op}

As the action is linear in op, that sum can be done to give

Z= f dU exp{B g SP(UP)} , 4.12)
where
Sp(Up) = In(2 cosh(B Tr Up)) . 4.13)

This is an even function of Tr Up and thus does not see the group center. Halliday and Schwimmer
studied this variation of the SO(3) theory and found that it also has a first-order phase transition.

The quantity oy is essentially a Dirac string variable: o» = +1 weights Up towards the identity and
op = —1 weights towards —1. A natural definition of a monopole is to count the number of negative
strong variables entering any given three-dimensional cube and to say that a monopole is in that cube if
this number is odd. In four dimensions these monopoles trace out world lines and the strings sweep out
world sheets. Halliday and Schwimmer measured the density of these monopole world lines and found a
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sharp increase at the transition temperature. Note that the path of a Dirac string can be changed by
absorbing factors of —1 in the link variables. The string is not physically observable but its endpoints
are.

The monopoles are easily suppressed with the addition of a mass term. Thus we can consider the
partition function

z=S dUexp(B SoTrU+a S a,,), (4.14)

{op} c Pec

where the new sum in the exponent is over all three-dimensional cubes in the lattice. The presence of a
monopole in any of these cubes is now penalized by a factor e >*. As A becomes large, the product of
the string variables over the surface of any cube must go to unity. When this is the case, an elementary
exercise shows that there exists a set of Z, variables on the links such that any op is the product of these
around the given plaquette. In this event, all Z, factors can be absorbed in the SU(2) measure and the
theory goes over into the usual SU(2) model which has no phase transition. Another interesting limit is
B =0. In eq. (4.14) this gives a rather complicated looking Z, system. However, a duality transformation
turns it into the usual four-dimensional Ising model which has a single second order phase transition.
Halliday and Schwimmer provided Monte Carlo evidence that as A is increased the SO(3) transition
moves to smaller B8 and eventually becomes the Ising transition. The value of A at which the transition
changes from first to second order is unknown.

An alternative method for continuing between SU(2) and SO(3) begins with both representations in
the action. Thus for the plaquette action to be inserted in eq. (4.12) we take

Sp(U) = %B Tr(U)+ %BA Tra(U). (4.15)

Here Tr, denotes the trace of U in the adjoint or spin one representation and the factors are inserted
for normalization convenience. For B4 = 0 this becomes the oridinary SU(2) model; on the other hand,
B =0 gives the SO(3) theory. A third interesting limit is reached as 84 goes to infinity, in which case all
plaquettes are forced to lie in the center of the gauge group. Up to a gauge transformation, all links are
themselves driven to the center. Thus for SU(2) the model becomes a Z, gauge theory with coupling S.
At the outset, therefore, we know this model has at least two first-order transition lines entering its
phase diagram.

Monte Carlo simulations have explored the evolution of these transitions into the two-coupling plane
[52]. The resulting phase diagram is shown in fig. 20. Note that the Z(2) and SO(3) transitions are stable
and meet at a triple point located at

(8, Ba) = (1.57=0.05,0.78 £ 0.05) . (4.16)

From this triple point extends a first-order line which points towards the Wilson axis but terminates at a
critical point before reaching it. This line points directly at the position of the peak in the specific heat
of the ordinary SU(2) model. Thus the peak may be thought of as a remnant of this transition, a shadow
of its critical endpoint.

As the parameter B, increases relative to 8, the extremum of the action at U = —I changes from a
maximum to a minimum. This occurs along the line

Ba=3p/8. 4.17)
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Fig. 20. The phase diagram for SU(2) lattice gauge theory with both fundamental and adjoint couplings.

Finally, along the B4 axis the two minima are degenerate. Note that the critical endpoint lies slightly
above the line in eq. (4.17). Bhanot has studied a similar two coupling SU(3) theory and finds a critical
endpoint again near the appearance of new minima of the plaquette action at group elements in the
group center [56]. As the N of SU(N) increases beyond four, those elements of the group center near the
identity become minima of the action even for the ordinary Wilson action. This observation correlates
well with the Monte Carlo results that the Wilson SU(4), SU(5) and SU(6) theories all display first order
phase transitions [57]. Presumably a negative 8, will permit continuation around these transitions,
which would therefore not be deconfining.

5. Observables of a pure quantum gauge theory

The Monte Carlo method, beyond allowing one to obtain information on the phase structure of a
lattice quantum gauge theory, permits the actual determination of several observables of physical
interest. The quantum expectation value of an observable O, which would be given exactly by eq. (2.23),
is approximated by the average value of O taken over several configurations in the MC sequence, after
a certain number of initial configurations have been discarded to allow for the onset of statistical
equilibrium (see eq. (3.1)). Of course, in the applications to quantum gauge field theories, one must
remember that the lattice version of the model constitutes a regularization. So, whatever observable one
determines, one must make sure that the number can be legitimately extrapolated to the continuum
limit.

Although any field theory can in principle be formulated on the lattice and simulated by the Monte
Carlo algorithm, the major interest of the method lies in its application to quantum chromodynamics, the
gauge theory of strong interactions, because of the many features of this theory which are not accessible
to ordinary perturbative analysis. Thus, the most valuable MC results on physical observables have
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been obtained precisely for the theory of strong interactions, where the gauge group is SU(3), the group
of color transformations. As a matter of fact, whereas several MC computations have been done with
the full SU(3) gauge system, very frequently SU(2) has been taken as an approximation to the color
group. The hope is that the non-Abelian nature of SU(2) already accounts for most of the properties of
the correct theory and that the passage between the SU(2) and the SU(3) gauge groups involves only
minor extrapolations. Of course from the technical point of view, using SU(2) rather than SU(3) as a
gauge group implies a great reduction in the computer time needed for a simulation, a saving which can
be made even greater if SU(2) is approximated by its discrete subgroup Y (for the values of 8 which are
of practical interest, the SU(2)-model and the Y-model are essentially indistinguishable).

Particularly relevant quantities which have been determined by MC simulations are the string tension
o, i.e., the value of the constant attractive force felt by two static sources carrying fundamental color
(quarks) at large separation; the deconfining temperature T, i.e. the temperature above which, because
of thermal fluctuations, the excitations of the gauge field (in the adjoint representation) can effectively
screen sources in the fundamental representation; the mass gap, m,, or mass of the glueball, i.e. the
mass of the lowest lying state in the spectrum of the pure quantized gauge theory. Moreover, properties
of the potential at short separation have been determined by MC computations, finding agreement with
the analysis of perturbative QCD, and some interesting observables with topological significance have
been evaluated. We shall consider the MC determination of these various quantities in separate
subsections. For reasons of space we will not describe in this review computations of observables, such
as the string tension in the confining phase of QED, which do not have an immediate bearing for the
gauge theory of strong interactions.

5.1. The string tension

The measurement of the string tension is achieved by considering the expectation value of transport
operators defined along suitable closed paths. Let y be a closed path and U, the corresponding
transport operator (see section 2.1). We form a gauge invariant quantity W,, called the Wilson loop
factor, by considering a suitable class function of U, : typically U, will be represented by matrices in the
fundamental representation and W, will be given by

W, = —I%Tr U, (5.1)

if the group is SU(N); the expectation value of W, will then furnish information on the propagation of
sources in the fundamental representation.

With the normalization given by eq. (5.1), W, will take value 1 if the gauge variables Uj; along the
path equal the identity or a pure gauge form U; = gigi”". A completely random averaging over even a
single link variable in U, will instead produce (W,)= 0. We expect therefore (W, ) to take smaller and
smaller values as the correlation between gauge variables along the path decreases. In particular, (W})
will decrease toward zero when the size of the loop y becomes larger, because more link variables will
enter in the averaging and because those farther away will become less and less correlated. Crucial
information is contained in the specifics of the rate of decay of (W,). To appreciate this it is useful to
develop a more physical picture for the meaning of the Wilson loop factor.

The insertion of W, in the integral over configurations of exp{—Sc} corresponds to adding to the
action of the system a perturbation due to the propagation of a source along the path y. This is
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particularly evident in the formal continuum limit: W, reduces then to the trace of a (path ordered)
exponential where A, is coupled to a current loop. It is convenient to take for y a rectangle extending
for m and n lattice sites along two directions, which, for definiteness, we shall take to be the x and ¢
directions. We shall denote by W,,, the corresponding W,. The physical dimensions of the rectangle
are given by x=ma, {=na, a being the lattice spacing. Introducing a complete set of energy
eigenstates ¢, defined in presence of the sources, (W,,.) (which equals the ratio of the partition
functions in presence and absence of the current loop) can be expressed as follows

(W) = 2, KO exp{~E,t}, (52)
3

where (¢|0) represents the amplitude for the transition between the ordinary vacuum state and a state
with two static sources at separation x, induced by the part of the transport operator defined along the x
side of the rectangle, and where exp{—E,t} represents the correct factor for the propagation of a state
with energy E, along a duration ¢ of Euclidean time. The energy of the state will of course be a
function of the separation of the sources: E, = E,(x). For sufficiently large time ¢ the term with lowest
E, will dominate and we conclude

(Wm,n>—) c e_E(X)‘ »

t—>00

(5.3)

where now E(x) stands for the ground state energy in presence of static sources with separation x. Thus,
on general grounds, we expect that a measurement of (W,, ,) on the lattice will produce a result

(Wn)—ce s@&mn (5.4)

n—o

€ being a dimensionless function of the bare coupling constant g, and the separation in lattice units.
Comparison with eq. (5.3) gives

E(x)=a"e(g x/a). (5.5)

E(x) cannot however be immediately extrapolated to the continuum limit because the self-energy of the
sources is still included in the expression.

A quantity of particular interest is the possible linear term in the asymptotic behavior of E for large
X

E(x)— ox. (5.6)

The coefficient o of this linear term is called the string tension and represents a constant attractive force

between the sources at large separation. In the lattice measurements such a linear term is revealed by a
behavior

e(g, m);: K(@g)m. 5.7
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We then have
o=K(g)a®. (5.8)

Contrary to E(x), which requires a subtraction, ¢ is a renormalization group invariant, i.e., one expects
the continuum limit for o to be obtained simply by letting g approach the scaling critical value g,
(8- =0, in the case of a non-Abelian system) and simultaneously taking the lattice spacing a to zero
according to the functional dependence expressed by eqs. (2.27 and 2.30).

Clearly, for rectangular paths of increasing size, and in general for any loop of increasing size, a
non-vanishing string tension manifests itself with an area law decay of (W,),

(W,) x e X®4, (5.9)

where A is the area, in lattice units, of the minimal surface enclosed by the loop. For the above
rectangular path A = mn. Given the implication of a non-vanishing string tension for the problem of
quark confinement, a MC determination of ¢ is of obvious importance. This was done first in ref. [21]
for an SU(2) theory, through the consideration of square loops of increasing size. A fit to the measured
values for (W,,,) in the form

(W,,..) =exp(—Km?— bm — ¢) (5.10)

allowed extraction of K(g). The analysis, beyond showing that K(g) was not vanishing, also revealed
that when B =4/g” became of the order of 2, the functional form of K underwent a rather rapid
crossover from a behavior (for 8 <2) well fit in terms of a strong coupling expansion, to a behavior (for
B > 2) consistent with the scaling form

o (24'rr2

102/121
K@)=0a’e) =73 (Trz) et~ 11g) (5.11)

predicted by the renormalization group.

The determination of K from a study of square loops only is beset by ambiguities: factors other than
those included in eq. (5.10) may appear in the size dependence; finite size effects may distort the results
(as the square loop comes close to the size of the periodic lattice, correlations between the variables
along the loop and those on the images induced by periodicity tend to make (W,,,) grow again and
mask the fall-off). It was suggested in ref. [35] and ref. [42] that a better determination of K might be
achieved considering ratios of Wilson factors for loops which are similar in shape and differ only by one
unit of area. The expression

(Wm,m> <Wm—1,m—1>
<Wm,m—l>2

Kea(g, m)=—In (5.12)

appears to be particularly convenient, as one can show that various dependences on the size (perimeter
terms, logarithmic terms) cancel out of the ratio, at least in a perturbative analysis [58]. K has been
dubbed K. in eq. (5.12), because in principle one would want to proceed to the limit m -, but
statistical fluctuations inherent in the MC method limit the maximum size of the loop one can consider



M. Creutz et al., Monte Carlo computations in lattice gauge theories 247

to 5 or 6 lattice spacings ((W,..) becomes too small for larger sizes to be distinguished from the
fluctuations). Thus one measures an effective, m-dependent, string tension and tries to obtain in-
formation on the asymptotic limit [35, 37, 42, 59]. Such measurements are displayed in fig. 21 for SU(2)
[42] and fig. 22 for SU(3) [60]. One notices in fig. 21 that, for fixed m, K. as a function of 8 = 4/g”
follows first quite closely the strong coupling prediction, then departs from it at 8 ~2 and appears to
follow for a while the scaling behavior of eq. (5.11). The larger m is, the longer the domain becomes for
which the scaling behavior is followed. This is of course to be expected, as well as the eventual
departure from the scaling curve: when B becomes large enough that the physical size of the loop
becomes smaller than the confinement scale, then perturbative behavior K.q(8, m) « const X 8~* should
set in.

Still, in the envelope of the curves K.q4(B, m) one recognizes a curve K(B) with the expected scaling
behavior. Fitting the functional dependence of eq. (5.11) to the envelope, one obtains

c=(59x18)x10°4> SUQ)

(5.13)
o=028+09)x10°A*> SUQ).

In ref. [37] the Y subgroup of SU(2) was used as an approximation to the continuous group in the
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The quantity X (I, I) refers to Kea(g, 1) of the text. Fig. 22. Extracting the string tension for SU(3) lattice gauge theory.
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definition of the lattice gauge model. The approximation is well justified by the fact that the crossover
to the scaling region occurs at B8 =2, whereas the transition to the ordered phase, due to the
discreteness of the group, does not occur until 8 =6. Thus the SU(2)}-model and the Y-model give
practically indistinguishable results for the observables up to values of 8 which place the system well
inside the scaling domain. The computational advantages of dealing with a finite group are remarkable.
In ref. [37] for instance, it was relatively easy to simulate a system extending for 16 sites in each
dimension, thus containing 262144 link variables. A fast program for simulating the Y model has been
published in ref. [18].

The result of eq. (5.13) does not really constitute a determination of the string tension, rather,
assuming the string tension as basic observable to set the scale of all physical quantities, it fixes the
value of the lattice scale parameter A. The computation of any subsequent observable will now give a
result expressible entirely in terms of ¢, with no reference to the bare coupling constant. No freedom of
adjusting parameters is thus left in the theory and all observables are uniquely determined. The
trade-off between the coupling parameter of the regularized lattice theory and the only, rather trivial,
freedom of selecting one observable in the continuum limit to set the standard for dimensional
quantities has been given the marvellous name of dimensional transmutation [61].

The values of physical observables may be expressed straightforwardly in terms of o if they are
computed within the same scheme of regularization (namely, the lattice gauge theory with Wilson’s
action). Otherwise the scales introduced in the definition of the various renormalization procedures
must be related. In computations of perturbative QCD theorists use different methods of renor-
malization (the lattice regularization would indeed be a quite awkward one) and the results may for
instance be expressed in terms of a convenient parameter called Anom [62]. With an elaborate
computation the scales A and A ,om (in the Feynman gauge) have been related, ref. [63], and one finds

A=00174 Ao for SU(Q2),

(5.14)
A =0.0120 A om for SU(3).
The values
Amom = (0.75£0.12) ' SU@?),
(5.15)

Amom = (0.5£0.1) 02 SU®)

that one would infer from eq. (5.13) are not in disagreement with values estimated in various
applications of perturbative QCD (for instance, to scaling violations in deep inelastic scattering,
Drell-Yan process, etc.). A direct comparison, however, requires some caution because the perturbative
analysis itself is not free of ambiguities and also the calculation above neglects light quark loops.

It is nevertheless possible to compare results obtained with different renormalization prescriptions
entirely within the framework of MC simulations. This has been done in ref. [S0] where the string
tension was measured using alternative actions to Wilson’s in the definition of the lattice gauge system.
This possibility was mentioned in the previous section. Precisely, expressing always the action as

S=2f(¢r B), (5.16)
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where ¢p is defined by
Up =cos ¢p+i0 - nsin ¢p (5.17)
(SU(2) gauge theory), Wilson’s action corresponds to

f=fw(de, B)=B(1—cos ¢p), (5.18)

whereas the form of the plaquette action fy, proposed by Manton [47]

fulde, B)=3Bd3, -~mw<¢p=m (5.19)

and the so-called heat-kernel action [49]

expl—fudn D) = ( Z L2 expi-3p(se+ 2 S (1- 4P expl-2n*n)
n=TE S (5.20)

have been considered in ref. [S0]. Manton’s action is a simple quadratic expression in ¢p, assuming that
¢p is defined so as to lie in the range —7 < ¢p < 7. It is singular near U = —I. The heat-kernel action is
defined so as to make the measure factor itself equal to the matrix element of the operator e, where
4 is the Laplacian defined over the SU(2) group manifold. The heat-kernel action generalizes to an
arbitrary group the measure proposed by Villain [64] for the U(1) system or x—y model, ie., a
periodic sum of Gaussians.

Use of a different action in the lattice theory corresponds to a different renormalization prescription
and we shall denote by Ay (formerly simple A), Ay and Ayg the scales for the systems defined with
Wilson’s, Manton’s and the heat-kernel action respectively. The MC computations done in ref. [50]
have shown that the string tension scales, after the crossover region, in Manton’s and in the heat-kernel
systems as well (see fig. 23). Indeed the pattern of the K.q(m, B) curves is quite similar to the one
already found with Wilson’s action. For the ratios between string tension and scales one obtains however

= (0.0616 = 0.0020)V o , (5.21)
Apx = (0.0206 0,001V . (5.22)

This must be compared with Aw = (0.013+0.002)V o obtained in ref. [42]. The ratios between these
various scales may be computed theoretically and one finds [50]

Am/Awlnm =3.07, , (5.23)
Aux/Awlm=125. (5.24)
From the numerical computations one finds instead

A/ Awlme = 4.74, (5.25)
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Fig. 23. Extracting the string tension for (a) Manton's action and (b) the heat-kernel action for SU(2). The variable K refers to Keq in the text.

The discrepancy may be explained remembering that the theoretical ratios are calculated with a one
loop perturbative computation, at the end of which the limit g— 0 is taken (and the results are exact, no
truncation of an expansion is involved); the numerical estimates instead are made at finite values of the
bare coupling constant. The scaling result is

K

2
G (24" (5.27)

102/121 2452
= X? Tl—g—z) exp{—ﬁ}i}(l + Ci(l)g2+ C:z)g4 .

where i refers to the scheme of regularization. The higher-order terms could in principle be computed,
or estimated numerically, but in practice are neglected. As we work with g of order unity, these terms
could easily account for the discrepancy. Thus one should regard with some caution MC results
estimated soon after the onset of scaling. The power corrections to scaling, however, are universal,ind = 4
as is the case here, within a definite scheme of regularization and therefore the direct comparison of
observables evaluated within the same lattice model should be less sensitive to finite coupling effects.
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5.2. Deconfinement temperature

The Monte Carlo technique may be used to study properties of quantized fields at finite temperature
T. The investigation proceeds through a reformulation of the formula for the partition function,

Z=Tre HT (5.28)

(we use units with the Boltzmann’s constant k equal to 1) in terms of a functional integral

uyT

zZ= f dé exp{——;: f dr f d3x$[d>]}. (5.29)

d(x, 1/T)=¢(x,0) 0

The r.h.s. of eq. (5.29) is of course only a formal expression, to which a precise mathematical definition
must be given; but once again, this is precisely what is achieved by the lattice regularization. From eq.
(5.29) we infer that finite temperature effects are taken into account by considering a lattice which
extends to infinity in the three space-like directions, but only for a finite number n, of lattice sites in the
temporal direction. Periodic boundary conditions in time must be imposed on the dynamical variables
and the temperature is related to n, and lattice spacing a by

T=—. (5.30)

We are ultimately interested in the limit of a going to zero and n, increasing so as to keep T constant.
In actual Monte Carlo simulations one works with a lattice which is finite also in the space-like
directions, extending for n, lattice spacings, and typically with periodic boundary conditions. In
principle n, should be much larger than n,, although in practice this ideal condition is never realized and
one must be careful about finite space effects. In this subsection we shall assume that the system and all
pertinent mathematical expressions are defined on an n2 X n, lattice.
The free energy F, of the discretized system is given by

Fo=-Th Z,, (5.31)
where
Zo= 3 expl=SqU) (5.32)

{Uji}

(the summation symbol stands for a multiple integration over the group manifold if the group is
continuous). One of the most interesting quantities to consider is the shift in free energy AF induced by
a static source. The propagation of a static source in time is represented in the continuum formulation
by the insertion of

yT

Tr P exp{ig f A dt}
4]
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in eq. (5.32) with the factor exp(—S). This term is the trace of the transport operator along a path in the
time-like direction, closed by virtue of the periodic boundary conditions. We shall denote the
corresponding transport operator on the lattice by U,:

Ux = lJiu',.l ot Uz:;tz Uizi1 s (533)

where iy, iy, ... i, indicate a sequence of lattice sites in the temporal direction at fixed space lattice
coordinate x. A corresponding Wilson loop factor is defined

1
W.=5Tr U (5.34)

(the normalization is for the group SU(N) and a source in the fundamental representation, but the
normalization of W, is irrelevant for the considerations which follow). The free energy in presence of
the static source is then given by

F=-ThZ, (5.35)
where
Z=73 Weexp{-S{Ui})}. (5.36)

{Uii}

It follows that the variation of free energy can be expressed in terms of the average value of W,,
AF =-TIn(Z/Zy)= - T In{W,), (5.37)

a quantity particularly adapted for a Monte Carlo numerical evaluation.
Before presenting results on AF let us comment briefly on the physical expectations. If confinement
occurs, the free energy of a single source should be infinite and therefore one ought to find

(Wy=eFT=0. (5.38)

Notice that an infinite AF cannot result from an ultraviolet divergence (which should be subtracted) in
the regularized lattice version of the theory: if AF comes out infinite, it is an infrared effect and a
genuine signal of confinement. It is interesting that SU(N) and also U(1) systems possess a symmetry
which would insure (W, ) = 0 for a source in the fundamental representation, if realized at the level of
expectation values. The symmetry operation consists in multiplying all the link variables Uj; associated
with links in the temporal direction and a fixed time coordinate by a constant element C, = e*"""~
from the center of the group. Since any plaquette contains either none or a pair of these links with
opposite orientations, and because C, commutes with all elements of the group, the plaquette transport
operators U and the action are not affected by the transformation. This is therefore a symmetry of the
system. (As a matter of fact the value of any transport operator for a closed loop entirely contained
within =0 and ¢ = 1/T will also be unchanged.) But the paths along which U, is defined are closed by
virtue of the periodic boundary conditions, which give to the system the topology of a torus, and contain
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a single one of the links affected by the transformation. The values of all U, therefore change
U, -»e*> "N, (5.39)
and so change the loop factors
W, >N W, | (5.40)
If the symmetry is realized at the level of quantum averages, then
(W) =e>""N(W,) (5.41)

and (W,) = 0 follows.

The symmetry expressed by egs. (5.39-41) may however be dynamically broken, resulting in finite
expectation values for (W,) and AF. The meaning of this symmetry violation is that the excitations of
the gauge field induced by thermal fluctuations, although in the adjoint representation, effectively
screen the quantum numbers of the source in the fundamental representation (Debye screening); the
infrared effects are suppressed and the source becomes deconfined.

In ref. [65] theoretical arguments were given for a deconfinement of quarks, due to Debye screening,
when the temperature becomes sufficiently high. Finite temperature effects in an SU(2) gauge system
were first considered by means of Monte Carlo simulations in the work of refs. [66, 67]. The numerical
results clearly showed that at low temperature (W,)=0, but that (W,) became nonzero when T
exceeded some critical temperature 7.. Notice that the temperature of the lattice system may be
increased either by lowering n, (remember T = 1/n.a) or by making the lattice spacing a smaller. The
latter, by virtue of the functional relation between coupling parameter 8 and a needed to achieve a
continuum limit, corresponds to increasing B. If deconfinement is a physical effect, it must occur at fixed
T., at least for sufficiently small lattice spacing. It was confirmed in ref. [67] that, when n, was made
larger, the value of B8 at which (W,) became non-vanishing also increased. Moreover the relation

n. a(B(n.,)) = const | (5.42)

with a(B) given by the renormalization group formula eq. (2.30), appeared beautifully verified. The
deconfinement temperature was thus estimated as

T.~(0.35+0.35)x Vo, (5.43)

o being the string tension. A computation of T in the SU(3) system was done in ref. [68] with the
result, T, = A™™ =200 MeV.

Considering the expectation value of the product of several loop factors W,,, W,,, ... at different
space locations one can evaluate the free energy of a system of several sources. This was done in refs.
[66, 67] for two SU(2) sources in the fundamental representation separated along a lattice axis, and, also
in the SU(2) theory, for arbitrary separation in ref. [69]. The Monte Carlo results clearly show that the
potential between the sources is confining for T < T, with a string tension which becomes progressively
smaller as the temperature increases, and Debye-screened for T > T.. A graph illustrating the behavior
of the force between the sources as a function of separation and temperature is displayed in fig. 24.
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Fig. 24. The force between fundamental SU(2) sources as a function of separation and temperature.

Beyond considering the thermal properties of a system of static sources, Monte Carlo computations
can be used also to investigate directly the properties of the finite temperature, quantized gauge field
(gluon gas). These could be derived from a knowledge of Z,, the partition function of the system itself.
But Z, always appears as normalizing factor in the quantum averages and cannot be computed directly
in MC simulations. Rather, one must consider suitable derivatives of Z, with respect to the physical
parameters: on the one hand, these derivatives can be related to statistical averages, such as the
average of the plaquette action, on the other hand they have an interpretation in terms of physical
quantities, such as pressure and internal energy. These ideas have been pursued in a series of
investigations by Engels et al. [70], and several interesting properties of the gluon gas have been
determined. In particular, the occurrence of the deconfining phase transitions has been observed in the
thermodynamic quantities. These finite temperature effects also provide information on the glueball
spectrum [70, 71].

5.3. The mass gap

A pure gauge theory, like any quantum mechanical system, will be characterized by a spectrum of
eigenvalues for the energy operator. With Lorentz covariance, this translates into a mass spectrum. On
the lattice rather than energy eigenvalues, one should properly speak of eigenvalues of the transfer
matrix 7, i.e., the operator which generates translations by one lattice spacing. In the continuum limit,
however, one may identify T with e ¥ (where H is the Hamiltonian and the exponential is real
decreasing because of the rotation to imaginary time) and reconstruct the eigenvalues of energy from
those of T.

In a confined theory where no long range forces are present one expects the absence of zero mass
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states. The mass spectrum should therefore begin with the first state above the vacuum having a positive
definite mass eigenvalue m,: this is called the mass gap of the theory. It represents the mass of a well
defined particle-like excitation of the pure gauge system. In the application to quantum chromody-
namics, this state is often referred to as a glueball, a term which is applied also to similar states of
higher mass. In the absence of quarks, at least the lowest lying glueball must be stable. The coupling to
quarks complicates the picture and glueballs may be experimentally detected only as resonant states
outside of the main quark model sequence.

In any event, given a non-Abelian system, it is of obvious importance to determine the value of the
mass gap. Monte Carlo computations of m, have been done for SU(2) and SU(3) systems.

The numerical analysis proceeds through a study of the time dependence of the connected
correlation function

G(t)=(O(1) O(0) -(OY*, (5.44)

where O is some suitable operator and 0, ¢ represent time coordinates on the lattice (i.e., ¢ is some
multiple of a). O must have a non-vanishing matrix element between the vacuum and the sought after
state. In the lattice theory the simplest choice for O is the trace of the transporter around the plaquette,
the same quantity which appears in the definition of the action. Such a choice makes O dependent on a
lattice spatial coordinate and on the orientation of the plaquette P which we denote by the subscript or:

O, 1) = % Tt Up. (5.45)

The plaquette—plaquette correlation function
Goror(x, 1; X', 0) = (Ou(x, 1) Ooe(x', 0)) = (OY (5.46)
can be expanded into a series by insertion of a complete set of eigenstates |n) of energy and momentum

Goror(%, £;x',0)= D (0|Oufn) (n|Oue{0) exp(— Et —iP, - (x — x")). (5.47)

n#0

Early MC studies considered precisely this quantity with x = x” = 0 and or = or’ corresponding to parallel
plaquettes facing each other. The sum takes the form

> Kn|Ojo)? &5 .

n=0

For ¢ sufficiently large the rate of decrease is dominated by the term with lowest E,, which in principle
allows a determination of m,. In practice, the correlation length turns -out to be rather small, of the
order of one lattice unit, throughout the B domains where the MC simulation is possible. G(¢) falls off
very fast and for ¢ = 3 or 4 lattice spacings it becomes at most of the order of the statistical fluctuations.
At such short separations the behavior of G is still strongly influenced by power-like terms, induced by
the summation over momenta, and these mask the exponential fall-off. For all these reasons a direct
study of plaquette-plaquette correlations can produce only rather rough upper estimates on the value of
my.
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A more refined analysis, suggested in the strong coupling analysis of Miinster [12], proceeds through
a summation over all space positions x and orientations of the plaquettes. This removes from the sum
states with nonzero momentum or higher spins, and leaves only states for which E, = m,. We therefore
define

O()=3 Oul, ) (5.48)

Xx,0r

and
G'(t) ={(O'(t) O(0)) - (0y*. (5.49)

One expects

G()= S KnlO)P exp(-mat) (5.50)
and
G'(1) < exp(—mgt) (5.51)

for ¢ sufficiently large.
In a Monte Carlo simulation G'(t) is measured for ¢ of the order of a few lattice spacings at most. Let
t = na and define effective masses in lattice units

pen(n )= 1n %‘f—o‘;) (5.52)

(the alternative definition
, __ G'(na)
,u/eﬁ(ns B) ln G/((n _ 1)(1)

may also be used: 1’ converges faster to the asymptotic value but is affected by larger errors). The true
mass gap at finite 8 is given by

mg=lim peq(n, B)a'. (5.53)
As one approaches the continuum limit 8 -, a(8)— 0, one expects to observe a scaling behavior

Men(, B);_:) Ca(B) > (554)

which allows in turn a determination of the physical m,:
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my=CA. (559)

The discussion already presented for the measurement of the string tension can now be repeated to
argue that the numerical computation will give an indication of the scaling behavior as an envelope for
the curves ues(n, B). As a matter of fact, the situation is somewhat worse than for the string tension
because the perturbative, large B behavior is u.a(n, B)—>const (rather than O(1/8) as for the string
tension). These constants, which can be evaluated in a spin-wave expansion, are rather large for small n
and approach zero only slowly for n — «. The behavior of u.q in the SU(2) theory, as determined from a
MC study done on a 4°x 16 lattice [72] is illustrated in fig. 25. The dashed curve represents the leading
term in the strong coupling expansion. The solid lines illustrate the scaling behavior corresponding to

my=24+0.6Vo. (5.56)

A further refinement of the numerical study is achieved considering for O a linear combination of
operators corresponding to Wilson factors around different shapes of loops:

0M)=3 T aWulx 1). (5.57)

The idea is that, if it were possible to define an operator O"(f) which has matrix elements only between
the vacuum and the lowest quantum mechanical excitation, then the behavior

T 1 T

1

) | | |
1.625 1.875 2125 2.375 2.625
Fig. 25. The SU(2) mass gap in lattice units as obtained from the plaquette-plaquette correlation at separation of 1, 2 and 3 lattice sites.
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G"(t)=(0"(r) O"(0)) — (O"Y* = [(1]O|0)* exp(— m,1) (5.58)
would be true at all separations, not only asymptotically, and one might express m, as

1, G
a G"(0)’

While it is impossible to find such an operator exactly, one may change the parameters a; so as to come
as close to it as possible. In other words, in analogy with a variational determination of the eigenstates
of the Hamiltonian, one obtains better upper bounds to m, by considering variationally improved
effective masses

wea(m, )= min (—% In %%;2) . (5.59)

This procedure has been followed in refs. [72-76]. One finds that the variational technique indeed gives
much better lower bounds on m, at a definite separation in time. The inclusion of more operators in the
analysis, however, especially if they are coupled mainly to higher excitations, increases the amount of
statistical fluctuations and it becomes more difficult to increase the separation. From fig. 26, taken again
from the work of ref. {72], one sees that the variational computation with ¢ limited to 2a gives
comparable results to the analysis based on the single plaquette operator, where G could be measured
at separation f = 3a.

T J I T
M=(170£30) At

m(t)

i | 1

1.625 1.875 2128 2375 2625

Fig. 26. The SU(2) mass gap as obtained from the variational techniques.
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Together with the estimate m, = (24 + 0.6)Vo of ref. [72] the following results have been obtained
for the SU(2) theory: m, = (2.9 +0.4)V 7, ref. [73], and m, = (2.5+0.3)V o, ref. [74]. In refs. [75 and 76]
computations for the SU(3) system were presented, with the estimates m, = (2.6+0.3)Vo and mg=
(1.8=x 0.1)\/;, respectively.

By adding suitable weights in the sum over orientations one can project out states transforming
according to a non-trivial representation of the lattice rotation groups. These representations can in turn
be expanded into sums of representations of the O(3) rotation group, which will typically start with
angular momentum greater than zero. Following this procedure a few authors have attempted a MC
evaluation of the masses of higher spin glueballs. The results tend to.be rather large with respect to the
estimate of the mass of the 0** state, which may be due to substantial contributions from higher
excited states. We refer to the original literature [76] for a detailed account of the results.

Further information on the glueball spectrum can be obtained from finite size effects [71] or from
consideration of alternative boundary conditions {77]. The internal energy on a finite lattice differs from
that on an infinite lattice by corrections exponential in the masses of all possible glueballs. These
effects are very sensitive to the number of states, and detailed measurements indicate a rich low energy
spectrum [71].

5.4. Potential and recovery of rotational symmetry

Monte Carlo computations can be used to measure the behavior of the potential V(r) between two
static sources at small separation. Although this is a domain where, because of asymptotic freedom, the
perturbative analysis is applicable, the Monte Carlo results can be used to confirm the validity of the
method.

In ref. [37] the potential (or, more properly, the free energy) between two SU(2) sources in the
fundamental representation was determined from the correlation function (W, W,) (see subsection 5.2)
at the rather high value 8 = 4.5. This corresponds to a lattice spacing a = 0.002(\/;)'1. The analysis was
made approximating SU(2) with its icosahedral subgroup and working on a 16* lattice. The results for
V(r) are shown in fig. 27: the Coulombic behavior is apparent. (Notice that even if one may argue that
the values for a and n, place the system in the deconfined region, although n,> n, would be required
for a clear-cut interpretation, the range of distances over which Debye screening should become
manifest exceeds by far the maximum separation considered in the measurement.)

The results illustrated in fig. 27 do little more than confirm the compatibility of the MC simulation
with a perturbative spin-wave analysis for sufficiently large 8. Working at smaller values of 8 one can
achieve more. Indeed, as the separation between sources grows larger (reducing 8 increases the lattice
spacing), one expects the potential to be for a while still of the Coulombic form, but with a running
coupling constant

V(r) < g%(r)/r. (5.60)

A measurement of V(r) will then give information on the scale A, present.

A rather detailed study of the potential V(r) between two SU(2) fundamental sources has been
presented in ref. [78]. V(r) (or rather, once again, the corresponding free energy) was obtained from the
measurement of the correlation (W, W) for all possible on-axis and off-axis separations x leading to a
statistically significant result. Lattices extending for 8° X n,, n, =4, 6 and 8, and 16’ X 6 sites, at values of
B spanning the whole crossover region were considered. An accurate determination of the potential from
the analysis of Wilson loops in the SU(2) theory has also been recently presented in ref. [79].
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Fig. 27. The SU(2) interquark potential as a function of separation in lattice units.

An interesting study of the rotational properties of the potential in the U(1) model was presented in
ref. [31]. The main goal of the analysis of ref. [78] was to study these properties of the SU(2) lattice
potential, but, as a by-product, information of the thermal properties of the system and on the short
distance behavior of the potential was obtained. In the confining region the curves obtained for the
force between sources (see fig. 24) appear consistent with a fit

F(r)=?2% [{rz ln(l+ﬁ)}_l —Amﬁ]+ a(T) (5.61)

coul

with A cou = 0.3V o. This formula incorporates a constant, but temperature dependent, string tension at
large separation and a Coulombic behavior with running coupling constant at small distances [80]. The
value found for the scale is compatible with previous MC and perturbative results [81-82].

Returning to the rotational properties of the potential, the results obtained for V(r), which is defined
of course only at the lattice sites, were interpolated throughout the lattice in the following way. Several
lines of nearby, aligned lattice sites were considered (the lines did not have to pass through the origin)
and the values assumed there by V(r) were fit according to a formula

V(ir)=a+bir+C(r).

Equating this expression to a fixed value V, allows then to determine the point (in between lattice sites)
where the interpolated potential would assume a fixed constant value. The equipotential points thus
found for several different values of V, and for 8 =2 (on a 8° X 4 lattice) and 8 =2.25 (on a 16>°x6
lattice) are reproduced in figs. 28 and 29 respectively. The lines joining the points are fits to the
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Fig. 28. Equipotential surfaces for fundamental sources in SU(2) lattice gauge theory at 8 = 2.0, just before the crossover.

equipotential surfaces of the form r= r(¢)=r,(1+Acos4¢). Notice that, with Wilson’s action, the
crossover from the strong coupling regime to the scaling regime occurs rather abruptly between 8 ~2.0
and B =~2.25. The results of ref. [78] show that the crossover is also accompanied by a restoration of
rotational symmetry, as one would expect on physical grounds.

Fig. 29. Equipotential surfaces at 8 = 2.25, just after the crossover.



262 M. Creutz et al., Monte Carlo computations in lattice gauge theories
5.5. Observables with topological significance

It has long been recognized in the study of spin systems that excitations of a topological nature play a
crucial role in determining the critical properties of such theories. These are local excitations of the
lattice fields with properties determined by global constraints alone.

There are two basically different kinds of topological excitations of interest in the study of gauge
theories on a lattice. The first kind concerns excitations which are involved in the critical and crossover
properties of the lattice model itself and are not present in the continuum limit, whereas the second
kind concerns excitations which are relevant for the continuum properties of the theory. Thus, as
mentioned in section 4.3, in an SU(2) lattice gauge theory the condensation of Z, monopoles and strings
can be invoked as the underlying dynamical mechanism responsible for the rapid crossover from strong
to weak coupling observed in this model [53-55]. Such objects, though, are not present in the
continuum theory because m;(SU(2))=0. Likewise, confinement in the strong-coupling phase of the
four-dimensional U(1) model can be understood [83] as arising from the condensation of magnetic
monopoles, which can only exist for finite lattice spacing. On the other hand, the continuum SU(2) pure
gauge model does have instantons as topological excitations and it has been argued [84] that their
presence may lead to a solution of the U,(1) problem in QCD.

The existence and properties of both types of topological objects can be studied by Monte Carlo
methods. In this subsection we review some of the results which have emerged from these analyses.

The first Monte Carlo analysis of the topology of gauge fields was done for the U(1) model by
DeGrand and Toussaint [17]. Dirac monopoles inside a volume V can be detected by counting the net
number of Dirac strings which cross the closed surface S bounding V. The effect of a string crossing a
plaquette is to contribute an integer multiple of 27 to the plaquette angle. By -defining the physical
fluctuations in 6p to lie between — and m, this provides an algorithm for deciding whether a given
plaquette has a string passing through it. If one looks at unit three-dimensional cubes one can thus
decide whether a given cube contains a monopole. In four dimensions the topological excitations
correspond to continuous strings of monopole current, i.e. monopole world lines. Two observables were
measured to test the effect of these strings on the critical properties of the theory. By measuring the
total length of the monopole world lines appearing per configuration one can determine the average
density of monopole loops at fixed coupling. The results [17] show a dramatic change in the behavior of
this function as the coupling is varied through the critical point [15,41,27,28] at B.~1. In the
strong-coupling phase the density of strings is large and slowly varying; it drops sharply at 8., and, as the
coupling is lowered past B, the density falls exponentially with 8 (as expected from an analysis of the
Villain version of the theory [83]). This behavior is a clear indication that the topological excitations
play a role in driving the system through its phase transition. To understand better what this role is, one
can study the magnetic susceptibility of the system. A practical way of doing this is to place the system
in an external magnetic field and observe the response of the monopoles by measuring the total field
deep inside the system. A time-independent external magnetic field which points in the z-direction can
be introduced by fixing, in each time slice, all the plaquettes in the xy face of the lattice at z =0 to
some value. However, for the flux to be anything other than an integer multiple of 27, the boundary
conditions in the z-direction must be twisted by adding to the links in the x-direction an amount such
that the sum of the angles on this face equals the flux passing through it (modulo 27). If the
susceptibility is infinite, magnetic fields are screened because of the presence of unbound monopoles. A
finite susceptibility corresponds to a finite renormalization of electric and magnetic charges.

A finite system with twisted boundary conditions can be thought of as a slice in the middle of an
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infinite system in an external field. The total flux through the system lies between —# and #. (These are
just the twisted boundary conditions introduced by ’t Hooft [16].) The results of these simulations are
striking [17]. When B < 8. =1 the average flux vanishes, implying the confinement of electric charge by
the magnetic condensate. As B is increased past 3., however, the reduced flux rapidly rises to a constant
value, implying a finite value for the magnetic susceptibility. Because this picture directly indicates that
the system can support long range magnetic fields when B > 8., the above results lend strong evidence
to the existence of a Coulomb phase and, therefore, of a massless photon in the continuum limit of
lattice QED.

A mechanism which is formally analogous to the one given above has been invoked to describe the
phase transitions predicted for the SO(N) lattice models and seen in Monte Carlo simulations [51-55].
Furthermore, Z(2) monopoles and strings can be defined for SU(2) lattice configurations, and a
mechanism of condensation of these objects has been proposed to explain the SU(2) crossover as well
[54]. These papers also discuss extension to the Z(N) monopoles and their possible role in the dynamics
of SU(N) theories. Here we only mention that the Monte Carlo procedures needed to study these
objects are of the same nature as those described above for the U(1) case. Twisted boundary conditions
are also of value in the non-Abelian models [84, 85].

As a last example of a topological observable, we will discuss the case of instantons in the SU(2)
theory. Monte Carlo results here are on a less firm footing than those discussed above. Part of the
reasons for this are technical in nature but there are also problems of principle in measuring the
topological charge of the continuum theory from a local lattice operator with the appropriate continuum
limit. All the lattice operators which have been used suffer from the problem of having perturbative
contributions which must be subtracted from the data before a comparison with a scaling law can be
made. Further, because for the lattice definitions used in Monte Carlo analyses operators of arbitrarily
high dimension contribute to the weak-coupling expansion of the charge, this subtraction is not in
general possible. Nevertheless, under certain assumptions, this procedure has been tried [86] for several
definitions of the lattice topological charge density. Self-consistent results which are not in complete
contradiction with phenomenological estimates and which provide a plausible solution to the Ux(1)
problem in QCD have been obtained.

The main problem of principle which is involved in the construction of an adequate lattice definition
of the topological charge is the fact that any lattice gauge field can be continuously deformed to the
identity. Therefore, for finite lattice spacing, the SU(N) models have no topological structure. A
possible way out of this has been recently proposed by Liischer [87], who observed that, since one is
really only interested in a region near the continuum limit where the bare coupling constant is small, it
is possible to restrict the fields over which the functional integral is defined to a set with small action
density. Imposing this constraint introduces a degree of space-time continuity on the fields and allows
one to prove that these small action fields carry an integer topological charge. An explicit form for this
charge has been given [87]. Unlike other definitions, this charge has no perturbative tail. Unfortunately,
because of its complexity, no numerical work has yet been done with this quantity.

6. Coupled spin-gauge systems
Realistic models for particle interactions would contain dynamical matter fields beyond the gauge

field themselves. The matter fields could represent fermionic degrees of freedom (such as those of the
quarks in quantum chromodynamics) or bosonic degrees of freedom (such as those of Higgs particles)
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and are naturally associated with the sites of the lattice. In this section we shall consider bosonic matter
fields.

Let us denote by ¢; the matter field associated with the lattice site with the index i. Of course, more
than one type of bosonic field could enter in the definition of the theory, but we shall not consider this
possibility here: all the arguments we present for a single matter field can be easily generalized to the
case where several are present. ¢; will transform according to some representation of the gauge group
with indices which we shall usually leave implicit. Thus the notations

¢~ = 8 ©6.1)
and

b, 6.2)
defining the gauge transformation of ¢ and the scalar product, will stand for the more explicit formulae

& - b = (8) 0" (6.3)
and

¢ i » 6.4)

where (g;)*s are the matrix elements of g; in the representation under which ¢; transforms.

Crucial ingredients of the continuum action are the derivatives d,¢:. On the lattice these will be
replaced by finite differences (¢, — ¢;)/a where i and j denote neighboring lattice sites. However, a
straightforward difference between the values of ¢ at neighboring sites has no gauge-invariant meaning.
Rather, one should form the covariant finite differences

(A¢); = (¢;— Uid)/a, (6.5)

where ¢; is transported from site i to site j by the link variable U; before the difference is taken. Under
a gauge transformation (A¢); transforms covariantly:

(Ad);—~ (g9 — Usg ' (g:r))a = gi(d; — Uidi)la = g;(Ad);. (6.6)

From the modulus squared of (A¢), i.e. the gauge invariant quantity (Ad); (Ad);, summing over all
lattice sites and all orientations of the links, one can construct a kinetic term for the matter field in the
action.

In the lattice regularization of a theory it is often convenient to impose a constraint on the modulus
of the bosonic fields ¢;. This turns the system into a o-like model. While imposing a constraint on ||
would spoil the renormalizability of the continuum theory, such a constraint is acceptable in the lattice
version and is not expected to rule out the possibility of a well-defined continuum limit. Indeed, in the
process of renormalization (a—0), the quantum field of the continuum limit ¢gren(x) should not be
identified with the fields ¢; at definite lattice points but rather with averages of ¢; over extended
domains of the lattice; thus, even though the modulus of the renormalized ¢; may be constrained, no
constraint limits the possible values of the continuum field.
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If the modulus of the matter fields ¢; is constrained, then the kinetic term in the action reduces to the
form

Sw = BM Z {$I ljji¢i + C.C.} (6.7)
)
where the sum is extended over all pairs of neighboring sites, i.e., over all links of the lattice. By is
a suitable coupling parameter for the matter field. We shall refer to the expression

E = {‘EyUndh +c.c}

as the (internal) energy of the matter field associated with the link L = ij and to S = BuE] as the action
associated with L. A rescaling of (¢;) can be absorbed into a redefinition of By and we shall therefore
assume

4;i¢i =1. _ (6-8)

Sometimes the manifold defined by eq. (6.8) coincides with the manifold of the gauge group itself: then
the dynamical variables of the theory consist of group elements associated with both links and sites of
the lattice.

This class of models possesses a rich structure. Several authors have discussed the resulting phase
diagrams [5, 10, 88]. When the site spins are in the fundamental representation of the gauge group, the
ordered spin phase describing the Higgs mechanism is analytically connected to the disordered
confinement phase of the pure gauge field. This remarkable result shows the complex nature of the
confinement mechanism when scalar fields are present. If the spins are in a higher representation of the
gauge group, the confinement and Higgs phases can be distinct.

Several Monte Carlo studies [89-94] have been made on these systems with gauge groups Zy, U(1)
and SU(2). We describe first the Zy system, which possesses gauge variables U; on the links in addition
to spin variables s; on the sites. The s; are elements of the group Z,, where we require that the quotient

1= NIM 6.9)

be an integer so that Zy, is a subgroup of Zx. The dynamics of these variables are determined by the
action

S=PBu> Eli,)+B > Ep.

G P
The first sum is over all nearest neighbor pairs of sites (i, j) and each such pair contributes

SL(i, ]) = BMEL = (1 - RC[S,'U;'SI']) (6 10)

where the power / is defined in eq. (6.9). The second sum is over all elementary squares and represents
the action used for the pure gauge theory,

Se = BEp = B(1 - Re(UyUp U Uy)) (6.11)

where i, j, k and [ circulate around the plaquette.
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The theory is defined by the path integral

Z=3 ¢S (6.12)

i, Uy

where the sum is over all configurations of the site and link variables. For the U(1) system both s; and
U; are taken from the group U(1) and the model depends on the integer / appearing in eq. (6.10). The
simplest gauge invariant correlation functions to study are the average link and average plaquette energies,
defined by

E=(Ep)=- 611\1 350 FB.Bu), 6.14)

where N is the number of lattice sites.

This system has four simple limits, By~ 0, % and 80, «. For B, = 0 the site spins randomize and
the model reduces to the pure gauge theory. For 8y — « the average link energy L must vanish. Using the
gauge invariance of the system, the spins can all be set to unity; consequently, vanishing L implies

Uji=1. (6.15)
Thus the theory reduces to pure Z; gauge theory in this limit. If /=1, i.e. if the spins are in the

fundamental representation of the gauge group, the theory becomes trivial and both L and E vanish.
When $ -0 the link variables decouple and the theory can be solved to give

LB=0,By) = ln[ S exp{-Bull - Re(U’)}] , (6.16)
E@B=0,Bm)=1-(1-L)'5,,. (6.17)

Finally we come to the limit 8 — . Here all plaquettes must go to the identity. The gauge fields are
then gauge equivalent to total order and the model reduces to a pure Z,, spin system (M state ‘““clock”
model) with nearest neighbor couplings. The Z, system is then the Ising model.

We expect these models to have transition lines entering their phase diagrams from the pure gauge
transitions at By = 0 or « as well as from any transition exhibited by the spin system at 8 = «. The latter
transition line is called the Higgs line because it arises from an ordering of the spin or “Higgs” fields.
When the parameter / is unity, no phase transitions are expected along the lines 8 = 0 or By = . These
lines connect the confinement regime of the pure gauge theory with the ordered on ‘‘Higgs” phase of
the pure spin system. In ref. [88] it was shown that this smooth continuation between the regimes can be
extended into the phase diagram. This is the result mentioned earlier that the distinction between the
Higgs mechanism and confinement is obscure when the Higgs fields are in the fundamental represen-
tation.

In figs. 30 and 31 we show Monte Carlo results from ref. [89] for contours of constant L and E in the
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Fig. 30. Contours of constant L in the coupled Z, gauge-Higgs Fig. 31. Contours of constant E in the coupled Z, system.
system,

four-dimensional system with gauge group Z, and Higgs field also in Z,. These results were obtained
using the heat bath technique on both the links and spin variables on a 5° lattice. The trajectory of the
gauge transition through the diagram is apparent as a “cliff”” in the values of E and L. The Higgs
transition appears as a steep “hill” in the value of L. This hill disappears beneath the cliff at a triple
point. Beyond this triple point a first-order line continues into the diagram until it unfolds at a critical
point. Beyond that critical point the system appears smooth, as predicted. These features of the phase
diagram for this system are shown in fig. 32. This analysis has been extended [90] to negative 8 to give
the phase diagram in fig. 33. The diagram is symmetric under By — —Bum.

Ref. [90] also presents results of a Monte Carlo study of the three-dimensional version of this model.
The phase diagram obtained is similar in structure except that the gauge and Higgs transition are both
second-order and dual to each other. Beyond the triple point the transition is first-order, similar to that seen
in four dimensions.

In figs. 34 and 35 we show phase diagrams from ref. [89] for the Z¢ gauge system coupled
respectively to Zes and Z; Higgs fields. The Z¢ Higgs case is similar to that for the Z, system except there
are now two second-order gauge transitions rather than a single first-order one. Correspondingly there are
two triple points. When the Higgs field is in Zs, the value of / is 2 and at By = = there is a residual Z,
gauge theory. The first-order transition of this theory smoothly joins the first-order line coming from the
low B triple point connecting the gauge and Higgs transitions. Thus in this model the Higgs and
confinement phases are distinct, as they must be by the arguments in ref. [88]. Recent studies [91] of the
d = 4 U(1) model essentially reproduce the Zg results with the large B gauge transition moved to 8 = .

The U(1) coupled system in three dimensions was studied in ref. [92] as an example of a system
where the pure gauge theory has only a confining phase. When / =2 the spin transition and the gauge
transition of the residual Z, theory are connected by a single critical line. When /=1 the results were
somewhat ambiguous, but, supported by small 8 series analyses, the authors of ref. [92] suggested a
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single transition line entering the diagram from the spin transition at 8 = and ending at a critical
point.

The gauge-Higgs field system based on the non-Abelian group SU(2) has been studied in refs.
[93,94]. The most interesting situations are those where the Higgs field ¢ transforms under the (a)
fundamental, (b) adjoint representation of SU(2). In case (a) the Higgs manifold, with the constraint -
&¢ = 1, is the three-dimensional sphere S*, i.e., is isomorphic to the group manifold itself. Indeed one
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may set up a one-to-one correspondence between complex field elements ¢ = ¢, (a =1, 2) and group

elements V5 (o, B = 1, 2) by defining

=5 78)

In case (b) the Higgs manifold is isomorphic to the quotient space SU(2)/U(1)=S? and the field
elements can be put in a one-to-one correspondence with the elements of any non-trivial class of SU(2).
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One can, for instance, define V(¢p) = cos u +io * ¢ sin p, where ¢ is the Higgs field and u is a fixed
angle, different from 0 or 7. These isomorphisms have been exploited in ref. [93] to approximate both
the gauge field and the Higgs field by finite sets (thus reducing the required computer time). This work
used the 120-element icosohedral subgroup Y of SU(2) to represent the group variables and the Higgs
variables in the fundamental representation, and used the 12 elements of the class Y/Z,, to represent
the Higgs variable in the adjoint representation. Monte Carlo simulations have been done to determine
the behavior of (Ep) and (E_ ) in thermal cycles at fixed B or By. The results are illustrated in figs. 36 and
37. Hysteresis loops or increased statistical fluctuations are signals of possible phase transitions. From
the Monte Carlo simulations the authors of ref. [93] inferred the phase diagrams shown in figs. 38 and
39. Both graphs exhibit a line originating at 8 = 6, which represents a spurious phase transition induced
by the discretization of the gauge manifold. The other lines are expected to approximate well the
transitions in the continuous systems. In both cases, as 8= and the systems reduce to systems of
coupled spins, these lines tend to the transition point By of the corresponding pure spin models.
With ¢ in the adjoint representation a U(l) gauge symmetry still survives in the Higgs phase.
Correspondingly the line of phase transitions persists to S = %, with B approaching the critical value of
the U(1) model. (As a matter of fact, with the discretized manifolds the gauge symmetry becomes Z,,
for B = and the two lines of phase transitions approach indeed the two critical points of the Zo
Abelian model, see section 4.1.)

Fig. 36. Hysteresis cycles for the SU(2) system coupled to Higgs fields in the fundamental representation.
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Fig. 38. The phase diagram inferred from fig. 36. Fig. 39. The phase diagram inferred from fig. 37.

M. Creutz et al., Monte Carlo computations in lattice gauge theories m
1.0 408
8
8 . ‘ 1 — - . - £, T - “ T T T
L N 7+ o
6 \ - & -
\
s} \ 4 51 4
\
4 r -l 4r T
3r_ B 3L .
2k 4
2\
N T
1L \ R |k .
1 i ] 1 ] 1 1 -4 L L . . \ L
0 1 2 3 4 3 5 7 8 0 | 2 3 4 5 6 7 8
B B



22 M. Creutz et al., Monte Carlo computations in lattice gauge theories

With the Higgs field in the fundamental representation, notwithstanding the critical lines, all pointsin the
B, Bmplane can be joined by paths without singularities, and thus the system really possesses a single phase;
this corresponds to the concept of duality between the confining and Higgs realizations of the symmetry.
Although in this model no order parameter discriminating the two realizations exists, one still wonders
whether they will still be distinguishable in some physical way. In ref. [93] the correlation between matter
fields ¢; and ¢; at the opposite vertices of the hypercubes of the lattice was studied, by measuring the scalar
products

X=N7'$(Z U, ). (6.18)

In this equation X, U, represents the sum of all possible transport operators from i to j along the sides
of the hypercube and N, the total number of such paths. The distributions of average values of X found
at 8=15.2 and B =0.6, 0.7, 0.8, 0.9 are shown in fig. 40. One sees that the orientations of ¢; and ¢; are
always correlated. When By is lower than the value B\,=0.75, at which the transition occurs, the
fluctuations and average value of X are of the same order; however, as By, increases beyond the
transition value, the average of X becomes much larger than the fluctuations. This is precisely what one
would expect to justify the semiclassical approximation around a Higgs vacuum obtained in a suitable
gauge by setting (¢) # 0.
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Fig. 40. The correlations X between Higgs fields at the oppostie corners of unit lattice hypercubes.
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7. Systems with fermionic fields

Realistic models for particle interactions include fermionic fields and it is therefore of paramount
importance to simulate systems with fermionic degrees of freedom. For reasons which we shall elucidate
shortly, these simulations are computationally very demanding and no way has yet been found to
perform Monte Carlo calculations for four-dimensional fermionic systems as efficiently as they can be
done with only bosonic fields. The topic we are considering in this section constitutes a field where
research is currently particularly active: an exhaustive review of what has been done up to now would
add too many pages to this already long report. A later time, when the results will have become more
definite, may be more appropriate for such a review. Thus, we shall give here only an outline of the
major difficulties encountered, the techniques proposed to overcome them and the most relevant
results. '

The very definition of a fermionic system on a lattice involves conceptual problems. One must define
a lattice equivalent of Dirac’s action

Sk continuum = (D + m), 7.1
where D denotes Dirac’s operator

D=vy*(3. tigA,). 7.2)
Difficulties arise in the lattice transcription of the first-order derivatives. As with bosonic matter fields,

fermionic fields are usually associated with lattice sites and a natural substitute for 4,4, which preserves
the antihermiticity properties of D, is the central difference

Y+ 4)—(x—4)
2a ’

where x represents a generic lattice site, a is the lattice spacing and 4 is the displacement vector by one
site in the u direction. This leads to what we shall call the naive lattice action

1 - - _
Sk =52 2 ¥ Usxvathara = Yarn¥* Usenathe) + m 2 iy, (1.3)
X, x

where the gauge link variables have been inserted to make the coupling among nearest neighbors
covariant. The use of the central difference effectively makes the size of the unit cell equal to 2a, twice
the lattice spacing. If one considers the free theory, with U = I, and solves for the spectrum, one finds
that the lowest energy states, those expected to dominate in the continuum limit, are obtained not only
in correspondence with the obvious modes of small lattice momenta k,, =0, but also in correspondence
to modes where any of the components of k, is shifted by #/a. In these modes a long range, smooth
variation of ¢ is modulated by factors which alternate in sign from site to site. Thus, in a D-dimensional
lattice one finds 2” modes which survive in the continuum limit: the naive theory exhibits an unwanted
2P degeneracy in the number of fermions as the cut-off is removed (a — 0). This agrees with the notion
that the unit cell is of size 2a and contains therefore 2° degrees of freedom.

The action of eq. (7.3) is of course not the only possible fermionic lattice action and one would think
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that a more sophisticated transcription of Dirac’s operator on the lattice could eliminate the problem of
unwanted multiplicities. This is correct, but with reservations. It can be indeed shown [95] on the basis
of topological arguments or of arguments relative to the Adler-Bell-Jackiw anomaly that one cannot
define a lattice action having all the formal properties of the continuum fermionic action. In particular,
one must either give up the existence of a continuous chiral symmetry transformation when m =0 or
accept a degree of multiplicity which insures a cancellation of the anomaly in the currents associated with
the surviving chiral symmetries. We shail not elaborate on this matter any further, but for future use, shall
only mention that the most widely used fermionic lattice actions are those introduced by Wilson [96]:

ng = % 2 ['ljx(')'u + 1) Ux.x+;2'//x+ﬁ - ¢_'X+;2(7# - 1) Uﬁ’ﬁﬁ‘"”f] + Z {ﬁx"b" (7'4)

and one which represents a generalization to the Euclidean lattice {97] of an action introduced by
Kogut and Susskind in a Hamiltonian context [98]:

Sls: = 2 Sx'y(lpx Ux,x+ﬁ-¢X+ﬁ - ‘I;Xﬂ“t UX+;1.x‘//x)+ m 2 l;x’«l/x , (7.5)

with
Sep=1for w=1,(-1)" for u =2, (-1)** for u =3, (-1)™"** = for u =4.

Here ¢ is a one component spinor; the four Dirac spinor components reside on different sites, as will be
discussed below.

In Wilson’s formulation additional terms, which effectively give to the 2” —1 unwanted modes
masses of the order of 1/a, are inserted in the kinetic part of the action. In eq. (7.4) the mass parameter
which would multiply the = ya¥ term has been traded off for a parameter K (the hopping parameter) in
front of the kinetic term. In the free case, it can be shown that the mass of the lowest mode behaves as

21 KooK (7.6)

where K approaches the value K., = 1/8. The departure of K from a certain “critical” value measures
the bare mass also in the interacting theory, but K., is renormalized by the interaction. In the strong
coupling limit K., takes values =1/4; for generic values of B8, K., must be determined numerically. The
extra terms in SY violate chiral invariance, and one expects that a chirally invariant system may be
recovered only in a suitably taken continuum limit. Monte Carlo simulations have shown however, that
as K— K, the mass m(K) of the lowest pseudoscalar excitation in the theory approaches zero. This is
taken as a signal that a vestige of chiral symmetry, realized dynamically through the occurrence of a
Goldstone boson, is recovered in that limit. As a matter of fact, K., is determined precisely as the value
of K for which m(K) vanishes: this is not a circular argument, because it is not a priori obvious that any
mass should go to zero as K is varied.

In the generalized Susskind formulation a single component of the wave function is assigned to each
site of the lattice (hence the absence of y matrices in eq. (7.5)). The factors with alternating signs
effectively introduce an algebra of y matrices in Fourier space. The action of eq. (7.5) reduces, but does
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not eliminate, the degeneracy problem; the theory describes, in the continuum limit, four degenerate
fermions. A chiral symmetry is however recovered for m = 0: the symmetry operation consists in global,
but separate, phase rotations of the fermionic fields at odd and even sites of the lattice [99, 100]. In
terms of the degenerate modes this is not a diagonal chiral transformation and no violation of the
theorem on the anomaly occurs. In the rest of this section we shall denote by D (or D(U)) the lattice
Dirac operators which can be inferred from eq. (7.4) or (7.5).

The vacuum expectation values of observables are given by

(0y=2" [ T14U, T1d%: TTdws O(U, §, ) expi-280(U) ~ $(D-+ m)yh, 7.7

{if} i

Z= | [1dU; [Tdd: [Td: exp{-So(U) - $(D + m)u}, (7.8)

{ij} i

where the fermionic fields ¢ and ¢ are to be considered as independent anticommuting elements of a
Grassmann algebra, integration being defined by [ d¢ =0, [ ¢ d¢ = 1. Because they anticommute, one
cannot represent the values of the fermionic fields with numbers in the computer memory as done to
encode the gauge field configurations. Only for 2-dimensional systems (1 space-1 time coordinate) it is
possible to represent the sum over configurations as a sum over fermionic occupation numbers while
maintaining a positive measure [101]. Then Monte Carlo simulations can then be performed upon
upgrading sequentially the c-number bosonic fields and the fermionic occupation numbers; applications
to this procedure to a variety of two-dimensional systems have been quite successful.

Another possibility, available whenever the action is quadratic in the fermionic fields, as in the case
of the models of practical interest, consists in performing explicitly the integration over the fermionic
variables. This leads to [102]

(0y=Z" [ [1dU; (O} exp{-Sa(U)} Det(D + m), (7.9)
{ij}

Z = | [1dU; expi—Ss(U)} Det(D + m), (7.10)
{if}

where (O)y represents the expectation value of the observable O in the background of the fixed gauge
field configuration {Uj}. For instance, if O is given by iy, then we have

(v ={DWU)+ m};*. (7.11)

In egs. (7.9) and (7.10) the quantum expectation values are expressed as averages over all configurations
of the gauge field alone but with a new measure

exp{—Sea(U)}, (7.12)

where

Sea(U) = So(U) - In De{ D(U) + m} = So(U) - Tr In{D(U) + m}. (7.13)
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In most cases of interest, symmetry properties of the Dirac equation guarantee the reality and positivity
of Det{D + m} and therefore the Monte Carlo technique can be applied to the estimate of quantum
averages, provided the variation of S.4(U) in the proposed upgrading U — U’ can be calculated in an
efficient way.

This last requirement is not straightforward to meet. Indeed, whereas the actions encountered so far
always had properties of locality, so that the change U — U’ modified S only through the variation of a
few terms involving nearby dynamical variables, the quantity Tr In{D(U)+ m} is non-local and an exact
computation of its variation at each upgrading step would make the Monte Carlo algorithm excessively
slow. A substantial part of the recent research on Monte Carlo simulation for fermionic systems has
gone precisely into finding efficient approximate methods for evaluating AS.q [103-108]. The most
promising techniques all make use of the fact that if {D(U)+ m}" is known, then the calculation of AS.q
becomes almost immediate. We illustrate the point assuming that 83U = U’ — U is small, although the
argument can be made more general. For small 3U we expand

8 Tr In{D(U) + m} = TH{(D(U) + m)™* 8D(U)} . (7.14)

D(U) is a local operator, and therefore 8D(U) will have very few non-vanishing elements, only those,
indeed, corresponding to the matter field variables ¢ and ¢ which are coupled by the Uj; being
upgraded. Thus, if (D(U)+ m)™" is known, the evaluation of AS.s can proceed very rapidly. As a
matter of fact, knowledge is required only of those elements of (D(U)+ m)~" which are contracted with
non-vanishing elements of 8D(U) in eq. (7.14). Notice that a very simple physical interpretation can be
given to eq. (7.14). Its r.h.s. will always be of the form 2;J;8U,, where J; is a suitable operator
constructed out of (D(U)+ m);' and of factors, such as y matrices, appearing in 3D/3Uj;. Then the
variation of the effective action, for small changes of the gauge field, can be thought of as the
contraction U with the fermionic “current” J; induced by the background gauge field itself.

Three different methods to obtain approximate values for the required matrix elements of (D(U)+
m)~! have been proposed. In ref. [103] it has been suggested that the fermionic current J; be in turn
evaluated by a Monte Carlo procedure, carried over a set of “pseudofermionic” variables ¢ and ¢,
which are coupled to the gauge field exactly as the fermions ¢ and ¢, but are c-numbers rather than
elements of a Grassmann algebra. The method becomes efficient if all required J; elements can be
computed before proceeding to the upgrade of all Uj; variables. This can be justified if the variation of
the gauge field configuration in the upgrading is small. The method of ref. [103] has been successfully
used for a simulation of the Schwinger model [106] and its application to realistic four-dimensional systems
is in progress.

In ref. [107] it was suggested that all matrix elements of (D(U)+ m)™" be calculated (for instance by a
relaxation procedure), at the beginning of the algorithm and that they be upgraded together with the Uj;
variables using the linearized formula

S(D+m) "' =—~(D+m) " 8D(U)(D+m)™". (7.15)

The locality of D(U) again makes the computation of the r.h.s. of this equation straightforward. The
method requires small 8U; and periodic computations of the exact elements of the inverse Dirac
operator to eliminate the build up of errors. This algorithm requires the calculation and storage in
memory of all elements of (D(U)+ m)~".

In ref. [108] the proposal was made to evaluate the required elements of (D(U)+m)™"' by a
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stochastic procedure, originally due to von Neumann and Ulam. Finally, it should also be mentioned
that, with Wilson’s fermions, an approximation based on an expansion in power series of the parameter
K (see eq. (7.4)), the so-called hopping parameter expansion, has also been used in connection with
Monte Carlo simulations [109].

Leaving aside all attempts to include the effects of Det(D(U)+ m) into the measure, it was noticed
by the authors of ref. {106}, by Hamber and Parisi [110], and by Weingarten [111], that many relevant
dynamical effects could be incorporated in an approximation where only the pure gauge measure
exp{—Sc(U)} is used in the calculation of quantum averages. In this approximation the expectation
value of a product of fermion operators

G(x) = (DY P)(x) (FPYP)0) (7.16)

(fields of different flavors, ¢ and ¢®, have been introduced to remove annihilation processes) would
for instance be given by

G(x)=Z" j [TdU;: () ¢ PO WPx) (O exp{-Sa(U)}, (7.17)

where

Z= f HdU,-i exp{-Ss(U)},
and

GOX) PO, WP PPN

represent the expectation values of the corresponding operators in the presence of a fixed background
field U. The interpretation of eq. (7.17) is that the Green’s function G(x) for the creation and
subsequent annihilation of a fermion-antifermion pair is evaluated in a two-stage process: first, the
propagation of the individual fermions in a fixed background field is calculated and the propagators
combined together; then the result is averaged over all gauge field configurations with measure
exp{—Sc(U)}. In a perturbative expansion, the net result of these two steps would be to sum all graphs
with two fermionic lines propagating from 0 to x and any number of interacting gauge field lines. What
would still be missing are the diagrams with internal closed fermion loops (these would be introduced
with the correct measure exp{—Seq} rather than simply exp{—Sc}). Yet several arguments (relying on
duality, on phenomenological rules, on large N expansions, etc.) suggest that many observables in the
theory of strong interactions should be only weakly affected by internal fermionic loops. The approximation
of replacing exp{—S.q} with exp{—Sc} (which, of course, bypasses all computational problems introduced by
the non-locality of S.q) appears then particularly suited for a Monte Carlo study of the dynamics of quarks
and gluons. (The names “quenched approximation” [106] and ‘‘valence approximation” [111] have been
used to characterize this neglect of Det(D(U)+ m) in the measure.)

The quenched, or valence, approximation has been applied in refs. [111, 112 and 113] to the study of
the spectrum of mesons in a simplified model using SU(2) as gauge group, and in refs. [110, 114-117] to
the more realistic theory with the SU(3) gauge group. Both Wilson’s and Susskind’s formulations of the



278 M. Creutz et al., Monte Carlo computations in lattice gauge theories

lattice fermions have been investigated. Masses of the lowest lying states in the spectrum are estimated
using the same procedure described in connection with the study of the glueball spectrum (see section
5.3), i.e., from the rate of decay in Euclidean time of suitable correlation functions. However, the
method by which these correlation functions are calculated is different. As outlined above, one finds
first the propagator of the fermions in a fixed background gauge field configuration. Usually this is done
by relaxation methods. The results are much more accurate than in Monte Carlo determinations of the
same quantities, and the decay of propagators and Green functions can be followed over several orders
of magnitude. However, the computations are also very time consuming. Thus generally only a limited
number of configurations is used in the final averaging step. Besides masses, other interesting quantities,
such as the fermion condensate (yay), can be evaluated.

The calculations described above may be affected by various sources of errors: the averaging over
only few configurations may underestimate the importance of statistical fluctuations; computational
constraints limit the calculations to lattices of rather small extent (several results have been obtained
with lattices spanning 5 or 6 sites in each spatial direction), barely large enough to contain the hadrons,
and finite size effects may be important. The convergence of the relaxation procedure becomes slower
as m (bare fermion mass) approaches zero (in Susskind’s formulation) or as K— K., (in Wilson’s
formulation), so substantial extrapolations in m or K are required. Keeping in mind all these possible
sources of uncertainty, nevertheless the results of the calculations have been quite satisfactory. One
finds that as m =0, or as K approaches a suitable critical value, the mass of the lowest pseudoscalar
excitation (m,,) approaches zero as well, according to a relation

m,? = const X m (7.18)
m,2 = const X (Ke; — K)/KZ . (7.19)

This agrees with the notion of dynamical breaking of chiral symmetry. Eq. (7.18) or (7.19) is then used
to fix the bare quark mass (assuming a common mass for the lightest quarks, m, = mq= m), which is an
external parameter of the theory. The values so determined translate into current algebra masses of
about 6 or 7MeV. Also, the numerical evidence is that the expectation value () remains finite as
m—0, again in agreement with theoretical expectations. The pion decay constant f, can be then
estimated by current algebra (from {ya¥), m and m.) and values ranging from ~90 to ~150 MeV are
found (exp f, =93 MeV).

The masses of the other quark model states appear more stable as m is varied and approach finite
limits as m —0. The independently computed string tension can then be used to set the scale (sometimes
instead a definite mass, such as m, is used for the purpose, in which case the string tension is an output
of the computation) and typical results give

m, = 800 = 100 MeV (exp776) -
ms = 950 = 150 MeV (exp 981)
ma, = 1100150 MeV  (exp ~1100)
mp = 1000 = 150 MeV (exp 938)
my = 1300 + 150 MeV (exp 1236)

for masses of particles such as the p, § and A, mesons, of the proton and 4 baryonic resonance. These
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numbers are not taken from any specific work among the quoted references, but, keeping in line with
the rather general presentation offered in this section, represent a condensation, done freely by the
authors, of the various results. In any case, substantial work is still in progress and an exhaustive review
of current results could have at best only temporary validity.

To conclude this section, let us report that the quenched approximation has also been used for a
successful calculation of baryonic magnetic moments in refs. (118, 119] and of a few other parameters of
spectroscopic relevance. An investigation of finite temperature effects [120], moreover, has hinted that
the chiral symmetry of the vacuum states becomes restored ({(¢a) vanishes) at a temperature slightly
above the deconfinement temperature.

8. Concluding remarks

The successes of the Monte Carlo method as applied to gauge theories have been truly remarkable.
Not only have we gained insight into the quark confinement problem, but we are now beginning to
calculate observables totally inaccessible to traditional perturbative approaches. These results are all the
more satisfying in the light of the severe limitations of available lattice sizes. For believable physical
results the lattice spacing must be smaller than relevant hadronic scales, and yet the overall lattice must
be larger than the scale of physics under consideration. A lattice with only of order ten sites in any
direction leaves little leeway in such an analysis. Furthermore the exponential dependence of the lattice
spacing on inverse coupling, as predicted by asymptotic freedom, implies that at best only a narrow
range of coupling can be useful for the extraction of realistic numbers.

The fact that interesting results have been obtained despite these limitations is undoubtedly related
to the experimental observation of precocious scaling in inelastic scattering experiments with momen-
tum transfers of order 2 GeV. Thus a 10 site lattice may potentially give useful information on physics
at energy scales as low as a few hundred MeV, exactly where strong confinement forces come into play.
In this context we should also remark on the successes of the theory when internal quark loops are
neglected, as in the pure gauge theory calculations and the fermion work with the quenched ap-
proximation. That we can get away with such approximations is probably for the same reason that the
simple quark model has had such a long and illustrious history. Had virtual loops been a major effect, it is
unlikely that the multiplet structure of the eightfold way could have been so clear.

The future problem remains in the full system with interacting fermionic fields. Current techniques
are extremely intensive in their consumption of computer cycles. Developments on both the theoretical
and technological fronts are occurring at an astounding pace. We may optimistically hope that in a few
years reliable calculations of hadronic properties will be commonplace.
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