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Using Monte Carlo techniques on a four-dimensional space-time lattice, we study SU(N)/Z
gauge theories for N=3, 4, 5 and 6. We find first-order phase transitions at critical inverse
temperatures of 8, = 6.40, 12.0, 19.5 and 32.0 for SU(3)/Z,, SU(4)/Z,, SU(5)/Zs and SU(6)/Z,,
respectively.

It was long felt that non-abelian lattice gauge theories in four space-time dimen-
sions would exhibit no phase transitions separating the high- and low-temperature
domains. However, first-order phase transitions have been found in SU(4) [1,2],
SU(5) [1, 3], SU(6) [4] and O(3) = SU(2)/Z, [5]. We wish to continue this search for
phase transitions to SU(N) in the adjoint representation with N = 3, 4, 5 and 6. As
the center of the group is removed with adjoint representations, we refer to these
models as SU(N)/Z, theories. The center of a gauge group is often invoked as
crucial to the confinement mechanism [5, 6]. Thus, it is interesting to study the effect
of its removal. We shall see that these gauge groups also exhibit first-order phase
transitions. This suggests that phase transitions for non-abelian gauge groups, using
Wilson’s form of the action, are the rule rather than the exception. In fact, phase
transitions are only absent for the gauge groups SU(2) [7] and SU(3) [8].

We study Wilson’s formulation [9] of gauge theory. We form a hypercubical
euclidean lattice in four space-time dimensions and join nearest neighbor sites i and j
by the link {7, j). With each link we associate a matrix U; which is an element of the
gauge group SU(N). The partition function is given by

2(8)= (T v Jexo(~s{UY).

The normalized invariant Haar measure for the group is the measure in the above
integral. In Wilson’s formulation, the action S is a function of ordered products of
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link matrices U, around the plaquettes O in the lattice giving
s[u] =ZSD=Z(1 - %ReTrUD).
a a

Here the inverse temperature 8 is related to the bare coupling constant g, by
B=2N/g;.
We wish to modify this action by replacing the trace in this equation with the
trace in the adjoint representation. Thus we take
1

Sqg=1—-—r—-Tr, U,
O (Nz_l) A¥DO

where Tr, denotes the trace of the corresponding adjoint matrix. The normalization
is chosen so that the expectation value of S

|
<E> —<1 —W{——]_)—TIAUD>

runs between one and zero as B increases from 0 to infinity. With the modified
action, the connection between bare coupling and 8 becomes

N
Ngg

B

We establish [9] the relationship between the characters of the adjoint and the
fundamental representations of SU(N) as follows. The character x,(g) = Tr D'(g)
of a representation i satisfies the following composition laws: If i is reducible and
i=j @k then

x:(8) =x,(8) +x:(g)-
If i is a Kronecker product i = ® k then

xi(g)=x,(8) x:.g),
which is merely the multiplication of complex numbers. The relation

TrD*(g) =Tr D¥(g)|* - 1, (1)
then follows from this because

FeF=Aw®l,

for SU(N). Here F represents the fundamental representation, F represents its
complex conjugate, 1 represents the trivial 1-dimensional representation and A
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represents the adjoint representation. The adjoint trace for any SU(N) is found
using the identity of eq. (1).

We equilibrated our lattice by the method of Metropolis et al. [11], described for
lattice gauge theory in ref. [1]. Periodic boundary conditions were used throughout
our calculation.

The leading-order high-temperature expansion is given by

B o
(B) =1~ + O A). (2)

while the leading-order low-temperature expansion is the same as in the Wilson
model

(Ey="2 4+ 0(B72). (3)

Figs. la—d show the average action per plaquette for SU(3)/Z;, SU4)/Z,,
SU(5)/Zs and SU(6)/Z, respectively, on a 4* lattice as a function of the inverse
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Fig. 1. The average action per plaquette (E) for (a) SU(3)/Z;, (b) SU(4)/Z,, (c) SU(5)/Z; and (d)
SU(6)/Z¢ on a 4* lattice as a function of the inverse temperature 8. The full circles represent the unique
value to which ordered and disordered starts converge, the crosses and open circles represent the average
over the last 20 of 100 iterations through the lattice for ordered and disordered starts, respectively. The
curves represent the leading-order high- and low-temperature expansions of egs. (2) and (3), respectively.
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Fig. 1 (continued)

temperature 8. All the data points result from 100 Monte Carlo iterations through
the lattice with the last 20 iterations averaged over. As we pass through the lattice,
each iteration consists of 20 Monte Carlo upgrades per link. In the high-temperature
region, the disordered and ordered starting lattice runs converged to one another in
less than 100 iterations. In the low-temperature region, the disordered and ordered
starting lattice runs did not converge to one another, probably because the Monte
Carlo algorithm has not been adequately optimized. Hysteresis loops clearly develop
in each diagram. However, it is quite impossible to accurately estimate the critical
inverse temperatures from these diagrams.

From fig. 1 we can see that the high-temperature expansion of eq. (1) nicely
approaches the Monte Carlo data at small 8. We can also see that the ordered
starting lattice data converges on the leading-order low-temperature expansion
relatively well. With more optimization of our Monte Carlo algorithm, the dis-
ordered starting lattice data should also agree with the low-temperature expansion.

We show in figs. 2a—d the average action per plaquette as a function of the Monte
Carlo iterations for the SU(3)/Z,, SU@4)/Z,, SU(5)/Z, and SU(6)/Z, gauge
groups, respectively, on 4* lattices for both disordered and ordered starts. Figs. 2a—c
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Fig. 2. The evolution of the disordered and ordered configurations for the average action per plaquette
for (a) SU(3)/Z,, (b) SU@)/Z,, SU(5)/Z and (d) SU(6) /Z, for a 4* lattice near the appropriate critical
inverse temperature.
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Fig. 3. The evolution of the disordered and ordered configurations for the average action per plaquette
for SU(3)/Z, for a 4* lattice at various values of the inverse temperature for 8 = (a) 5.60, (b) 5.90, (c)
6.65 and (d) 6.80.
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correspond to 500 iterations while fig. 2d corresponds to 300 iterations through the
lattice in the hysteresis loop for the appropriate gauge group. The temperatures were
chosen near the transition as estimated below. In the vicinity of the critical inverse
temperature the relaxation time for the lattice is very long.

Fig. 3 shows the average action per plaquette as a function of the Monte Carlo
iterations for the SU(3)/Z, gauge theory on a 4* lattice for both disordered and
ordered starts for various values of the inverse temperature on either side of the
critical inverse temperature. For 8 = 5.60 (fig. 3a), the disordered and ordered starts
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Fig. 4. The evolution of the mixed phase configurations for the average action per plaquette for (a)
SUB)/Z;, (b) SU@) /Z,, (c) SU(5)/Zs and (d) SU(6)/Z, for a 4* lattice at various values of the inverse
temperature.
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Fig. 4. (continued)
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converge to a unique value after approximately 230 iterations. Fig. 3 shows how
difficult it is to calculate the critical inverse temperature solely from observing the
evolution of disordered and ordered starts at fixed values of the inverse temperature
B. Similar convergence properties are found for SU@4)/Z,, SU(5)/Z;, and SU(6) /Z,.
Note, however, the strong evidence for superheating and supercooling in figs. 3b and
3c, respectively.

To determine the critical temperatures more precisely we studied mixed initial
conditions as described in ref. [12]. All links were first randomized, and then those
with time coordinates less than half the total lattice length were refrozen to the
identity. Thus either above or below the transition temperature we always have a
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seed for the growth of the stable phase. In figs. 4a—d we show the evolution of the
mixed phase starting lattice runs for various values of the inverse temperature 8 in
the region of the hysteresis loops for SU(3)/Z,, SU4)/Z,, SU(5)/Z, and SU(6) /Z,
respectively. On either side of the critical inverse temperature, there is a rapid initial
relaxation of the system to a definite value of the average action per plaquette, while
at the critical inverse temperature there are two phases which can coexist and there is
only a meandering drift in the average action per plaquette. Using these diagrams,
we estimate the critical inverse temperatures to be 8, = 6.40 £ 0.10, 12.00 £ 0.35,
19.5 + 1.1 and 32.0 + 1.0 for SU(3)/Z,, SU@4)/Z,, SU(5)/Zs and SU(6)/Z,, re-
spectively. Cvitanovic et al. [13] used mean field theory to predict that the critical
inverse temperatures for SU(3)/Z,, SU4)/Z,, SU(5)/Zs and SU(6)/Z¢ would be
B.=6.78, 12.40, 20.3 and 29.6, respectively. These results are in reasonable agree-
ment with our values.

From the present calculations we see that SU(N)/Z,, N =3, 4, 5 and 6, all have
first-order phase transitions. Previously, it was shown [5] that SU(2)/Z, also has a
first-order phase transition. Thus, it appears that the adjoint representations of
SU(N) and U(N) exhibit first-order phase transitions for all N larger than unity.
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