On invariant integration over SU(N)?
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We give a graphical algorithm for evaluation of invariant integrals of polynomials in SU(N) group
elements. Such integrals occur in strongly coupled lattice gauge theory. The results are expressed in terms

of totally antisymmetric tensors and Kronecker delta symbols.

For the strong coupling expansion of lattice gauge
theory one requires invariant integrals over polynomials
in elements of the fundamental gauge group. "> To ex-
plicitly exhibit the invariant measure of a group is in
principle straightforward but often in practice a rather
tedious task. Beginning with some parametrization,
i.e., a generalization of the Euler angles for the rota-
tion group, one studies the group transformation prop-
erites of a small volume element in this parameter
space. Fortunately, symmetry arguments can deter-
mine many integrals, thus sidestepping the explicit
construction of the invariant measure. We will show how
the symmetry properties of the groups SU(N) give rise
to a set of rules for evaluation of the integrals arising
in strongly coupled gauge theory. This generalizes to
arbitrary N the rules of Ref. 2 for SU(3).

Given any compact Lie group, it is well known that
there exists a unique normalized integration measure
with the properties

[def(9) = [ def(gy8g) = [ def(g™), [dg=1, (1)

where g is the group element being integrated over,
f(g) is an arbitrary function of g, and g, and g, are
arbitrary fixed group elements. In this paper we are
interested in the group SU(N); so, g represents an N
by N unitary matrix of determinant one. We wish to
evaluate integrals of the form

I= | dggiljl"'gi,,jng;ill" T (2)

m'm

where matrix indices for the g’s and g‘l’s are explicitly
indicated. We introduce a generating function for such
integrals

W(W,K) = [ dgexp[TrWJg+Kg™)], (3

where J and K are arbitrary N by N matrices. Integrals
of the form of Eq. (2) are obtained from W(J, K) by
differentiating

=( 2 L wuk

J1iq annin aKllkl aKlnkn

JeK=0
(4)

We wish to express W(J, K) in a convenient form that
will permit a graphical evaluation of these
derivatives.

We first eliminate the K dependence of W by ex-
pressing g™ in terms of the cofactor of £. The cofactors
of a matrix are easily extracted using the totally anti-
symmetric tensor €y reeniy which satisfies
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€ 4. =1 (8)

Since g is of determinant one we obtain the simple
expression

g5 = (cotg);;

1

= (Ar\v_ 1)! €j,i1,..-,iN_1 Ei,jl,...,jN_lgilfl L "giN-l YR

(6)
Using this, multiple derivatives with respect to J can
replace derivatives with respect to K; thus, we write

W(J,K)_exp{Tr [K <cof 6%)] } w(J), (7
where
W(J) = f dg exp(TrJg). (8)

To evaluate W(J) we make use of the invariance of the
integration measure, which immediately implies

W) = W(gwe), (9)

where gy and g; are arbitrary matrices in SU(N). In an
appendix of Ref. 2 it is proven that any analytic function
of J satisfying Eq. (9) is expressible as a power series
in the determinant of J. Thus we write

INGE

W) = 25 a, (det])} . (10)

i
>

i
The fact that the integration measure is normalized
implies

a;=1. (11)

We now derive a recursion relation to determine further
a,. Since elements of SU(N) have determinant one, W(J)
must satisfy the differential equation

2
(det -87> W) = W) | (12)

A combinatoric exercise in the Appendix shows

2 ; G+N-)

From Egs. (10), (12), and (13) we obtain
(i -1

(det)i-t, (13)

L EN Y LS (14)
With Eq. (11) this is solved by
2131 (N =1)!
UG GAN- DI (15)
giving the expression
2l (N1 i
W(J) _i=20 WN—_].)' (detJ) . (16)
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FIG, 1. Graphical represen-
i tation of ¢ and g,

FIG, 2, The generic integral
under consideration,
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FIG, 3. (a) Representation of the Kronecker symbol;

(h) Representation of the antisymmetric tensor.
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TIG, 4, Some combinatoric identities.

— FIG, 5, Replacing g1 with
the cofactors of 7.
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FIG. 6. Evaluation of the integral, There are (NP)!/[p!(N!)"]
distinct permutations to be summed,

Note that the determinant of a matrix is simply ex-
pressed in terms of the antisymmetric tensor €

1

det] = N1 Siperecriy Sjeeniiy Jiiperordigiy (17)

A graphical notation is useful for carrying out the
derivatives Eq. (4). Directed vertical line segments
correspond to group elements. Upward directed lines
represent factors of g while downward directed lines
represented factors of g'l, as illustrated in Fig. 1. The
ends of these line segments are labeled with the matrix
indices of the respective group elements. The line

direction runs from the first to the second index, as
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FIG, 7, () Invariance of the
Kronecker symbol; (b) Invari-
ance of the antisymmetric
tensor,

TIG, 8. Evaluation of the
integral fdgg;; .
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FIG, 10. Evaluation of the coefficients @ and h. The closed
circles represent X;0,; =N,

shown in the figure. Figure 2 shows how the integral
of Eq. (2) appears in this notation.

We represent the Kronecker delta symbol 6;; with an
undirected line segment connecting the indices ¢ and j,
as shown in Fig, 3a. The antisymmetric symbol
€5l reeeriy is represented by a vertex joining N lines from
the indices 7y, ..., ¢y. These N lines are labeled with an
arrow representing the order of the associated indices
in the € symbol, as shown in Fig. 3(b). Finally, when
two line segments are connected, a matrix product is
understood; i.e., the indices associated with the con-
nected ends are summed over. In the evaluation of group
integrals, products of € symbols will often occur. Some
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useful identities involving such products are:

€ N:N‘.,

€ ety Cigoennnd

€ =N~ 6, (18)

Brigieeninag € 0p,0niy gy

€, vigeee a,iN_zﬁk,t Vigeeeeriy g = N =2)1(5;0;; — 8,8}
These have the simple graphical representation shown
in Fig. 4.

Evaluation of a group integral consists of a replace-
ment of the directed lines in Fig. 2 with vertices and
undirected lines, thus expressing the result in terms
of antisymmetric € and Kronecker 6 symbols. The first
step in this procedure is to convert all directed lines
into a set of lines directed upward. This is accom-
plished using Eq. (8) which is shown graphically in
Fig. 5. (If initially there are more downward lines than
upward ones it would be equivalent and simpler to con-
vert all lines to downward ones.) Once all lines have
the same orientation, we can use Egs. (16) and (17) to
reduce these lines to a sum of terms involving € sym-
bols. Noting that the integral vanishes unless the num-
ber of group lines is a multiple of N, Eq. (16) becomes
graphically Fig. 6. The indicated sum over permuta-
tions is over topologically distinct ways of connecting
the group indices to pairs of € vertices and does not
include mere permutations of group indices coupled to
the same vertex pair or permutations of the vertex
pairs. The resulting sum for Np lines has (Np)! /[p!(N1)]
terms.

Certain identities on the group elements have a sim-
ple graphical representation. For example invariance
of the Kronecker & symbol

8130 8 = 04y, (19)
is shown in Fig. 7(a). Invariance of the € symbol

Bigiy Bighy®** Bigin€ippee iy = €y penasiy s (20)
is shown in Fig. 7(b). Both of these identities must be

true regardless of other lines present in the diagram,

We conclude this paper with some examples of simple
integrals to illustrate the rules., First consider p=1 in
Fig. 6. This immediately gives

1
ﬁggiljl o 8igiy T N € e rinCigumeaiy (21)
Now consider the integral
Ly = [ degy ait (22)

shown graphically in Fig. 8. In this figure we use

Fig. 5 to make all lines direct upwards, then we use
Fig. 6 for p =1 to eliminate these lines, and we finally
use an identity of Fig. 4 to reduce the result to

1

Iijhl :N

;041 . (23)

As a final example consider the integral
I={ dg(giljlg;;llgizizg;;zz)- (29)

In Fig. 9 we use Fig. 5 to express I in terms of 2N up-
ward lines. Use of Fig. 6 at this point would give an
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expression with (2N)! /(21 N1) terms; however, this
evaluation can be simplified with some tricks. First
note that the resulting terms will all have four, an
even number, € vertices both at the top and at the bot-
tom of the diagram. These can be eliminated using iden-
tities similar to Eq. (18) to reduce the terms to sets

of Kronecker 6 symbols connecting separately indices
at the top and at the bottom of the diagram. Further-
more note that a Kronecker & cannot connect the indices
i; and 7, because they can be initially coupled only
through an odd number of € verticles. Using a similar
conclusion on the indices j; and j;, we see that the

final answer for the integral must take the form

I=ad, 6. ,5,, +6 )

i1l Vigly Y igky illgéizllbjlkzé.igkl

+ b(6¢11151212511k2512k1 0, 1.0000,0518,050) > (25)
where only two independent coefficients are needed
because of the k[ k,l, — k,l,k ], symmetry of the inte-
grand. The coefficients a and b can now be determined
by multiplying by 0;, and using Fig. 7(a) to reduce the
integral to that in Fig. 8. This sequence of steps is
illustrated in Fig. 10 and leads to the conclusion

1 -1

a= LVT— 1 b= N(Nz — 1) . (26)
Inserting this in Eq. (25) gives the desired integral.
APPENDIX

Here we prove Eq. (13). Defining
)= <det a%') (detd)?, (A1)

we first note that properties of the determinant imply

AN =fgodgn), (A2)

for arbitrary gy and g; in SU(N). By the theorem men-
tioned below Eq. (9), f{J) must be a function only of
detJ. By homogeneity we conclude

AJ) =C(N, i)(det)i ", (A3)

where C(N, 7) will now be determined by a recursion
relation. Setting J;; = 6,;, we have

Y (A4)

C(N, i) = (det _a_> (det)?

Jij =6ij

Writing det(2/3J) in terms of € symbols and isolating
the sum over minors of the last row gives

CW, = - (ei B )
P aJN'j Leeansiy 1, aJl'{1 aJN'l'iN-l
X (det)* |4, ., - (A5)

When j=N in this sum we obtain i times C{(N - 1, 1),
while by symmetry all (N - 1) terms for j#N are equal.
Separating the sum over the next to the last row gives

C(N, 1)
0 y Gl
0y w1 ja R

=iC(N=1,i)+ (N =1)
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> (detJ)’

X ~—a -———-—a
(il,.-.,iN_Q,j,N-l 3J1,i1 S

aJN—Z,iN_2 Jij =6ij

(AB)

In this sum, when j =N we obtain i times C(N - 2, 7),
when j=N -1 we get no contribution, and when
j<=N-2 we have N - 2 equal terms. Repeating this
process on further rows gives

CIN, ) =i{C(N-1, )+ (N~ 1)C(N=-2, /)

+(N-DWN=-2)CN=3,i)+-- (N=1IC(1, )},

(A7)

Combining (A7) for N and for N— 1, we see
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CN,))=(G+N~1)C(N~1,14). (A8)
Using the initial condition C(1,4) =i, we conclude

] - 1)
e, GEN=DL 9

which gives Eq. (13),

'K, Wilson, Phys. Rev, D 10, 2445 (1974); L. P. Kadanoff,
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M. Creutz, “Feynman Rules for Lattice Gauge Theory”
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