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Working in the témporal gauge A, = 0, we study canonical quantization of the Higgs model for giving
masses to a gauge field. This gauge differs from those discussed previously in that the symmetry of the
theory is not spontaneously broken and the Higgs scalar field does not acquire a vacuum expectation value.
Rather, the vector meson acquires its mass through a restoration of symmetry of the vacuum under gauge

transformations that do not vanish at spatial infinity.

The temporal gauge A,=0 has proved to be a
particularly convenient choice for a canonical
treatment of nonperturbative tunneling processes
in non-Abelian theories'’? and for a Hamiltonian
formulation of lattice gauge theory.® This gauge
possesses unphysical degrees of freedom that are
frozen out by requiring physical states to be in-
variant under local time-independent gauge trans-
formations. In a recent paper® we studied the
transformation properties of the vacuum under
those time-independent gauge transformations
which do not vanish at spatial infinity. We argued
that in any phase possessing massless gauge par-
ticles, ’symmetry under such transformations
could be regarded as being spontaneously broken.
The gauge mesons then represent the Goldstone
bosons associated with this symmetry breaking.
In a phase without massless excitations these sym-
metries should be restored. Indeed, non-Abelian °
gauge theories with their conjectlired quark and
gluon confinement should provide an example of
this restoration. The Higgs model,* however, pro-
vides a simpler example of a gauge theory without
massless vector mesons; consequently we are led
to study this model in the temporal gauge.

The standard discussion of the Higgs mechanism
centers on a nonsinglet scalar field acquiring a
vacuum expectation value, thus spontaneously
breaking the gauge invariance of the vacuum. In
other than the temporal gauge, elimination of A,
as a dependent coordinate results in long-range
instantaneous interactions which eliminate mass-
less Goldstone bosons normally associated with
spontaneous symmetry breaking. Gauge trans-
formations then shift the theory between physically
equivalent Hilbert spaces. However, in the tem-
poral gauge, A, is already eliminated and there
are no long-range forces. Instead we will show
that the remaining gauge freedom is not spontan-
eously broken and the scalar fields do not acquire
a vacuum expectation value. In this gauge the vec-
tor mesons acquire mass through a restoration of
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vacuum symmetry under the above-mentioned
transformations that do not vanish at spatial infin-
ity. As expected, the resulting physical spectrum
is the same as that obtained in other gauges;
merely the associated language changes.

For simplicity we will discuss only the Abelian
model with the Lagrangian density

£=—3F,F,+[D,0[*- (o] -, (1)
where

Fu,,:auAv-—BuA“ (2)
and

D,p=(5, —ieA,)d. (3)

The quantities A, a, and ¢ are parameters, A, is
a Hermitian vector field, and ¢ is a complex scal-
ar field. Later we will briefly discuss the intro-
duction of fermions. In the temporal gauge the dy-
namical variables are ¢, ¢, and A;, with ¢ run-
ning from 1 to 3. The conjugate momenta are

2] .
N S
o

(4)
”*"“’ao(p:‘ﬁ;
and
- aL .
my= aAi =F0i:Ai=Eia (5)

where E; is the electric field. The resulting Ham-
iltonian density is

W=LtE2+mm+5F Fi+ |(V,+ieA)o |2
+2(|p]2 - a2 (6)

We impose canonical commutation relations at
equal times

[71(x), ()] =[1*(x), p*(»)] ==i8*(X - ), )
[E,(x),A;(9)]==-15,,8°(%X~F),

with other combinations vanishing. The equations
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of motion follow by taking commutators with the
Hamiltonian H = [ d® 50(x):

é=i[H)¢]:‘”*7 (Z)-——ﬂ,
h=(V;—ied)’p* - 2p*(|¢ |2~ a?),

A.=E.

1 1

Ei =(V20,;, - ViV)A; -7,

(8)

“Here j; represents the space components of the
electromagnetic current

ji=—ie(p*V,p - Viore)+ A 02 - (9)
The charge density is given by

Jo= 2 (grmramrgr - gm), (10)

where we have symmetrized products of noncom-
muting operators with the Weyl ordering.® The
equations of motion imply current conservation

3,7, =0. (11)

Note that Gauss’s law V « E - j, =0 does not fol-
low as a Hamiltonian equation of motion. Rather,
we find

0,(VoE—j)=i[H,(V-E~j)]=0. (12)

Since V «E — j, commutes with the Hamiltonian, it
can be simultaneously diagonalized and we impose
it as a constraint on physical states. Thus we say
that a state |¥) is physical if

(V<E-j,)|¥)=0. (13)

At this point we run into a technical difficulty in
that (V -E = j,) has a continuous spectrum when
the canonical relations of Eq. (7) are realized in
a Hilbert space. The eigenstates of an operator
with a continuous spectrum are not normalizable
and thus our physical states are formally of infin-

ite norm. This norm is, however, a common fac- -

tor in all physical states and will not appear in
gauge-invariant Green’s functions.® Alternatively
one can regularize as in the lattice theory where
the spectrum of V -E - j, is discrete.?

Fixing A, =0 still leaves open the possibility of
time-independent gauge transformations. Indeed,
the Hamiltonian is invariant under

1 -
A (x)=~Ax) - P VAR,
. (14)
P(x) = e O (x), '
where A(X) is an arbitrary function of X. Using

the commutation relations in Eq. (7), one can show
that the unitary operator

U=exp [— Ei fd3x(EiV,-+jo)AJ ‘ (15)
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generates this transformation, i.e.,

1
=1 = 3 — s
VAU =A;- VA, (16)

UpU™ =e*o.

We temporarily assume A(x) goes to zero rapidly
enough at spatial infinity so that we can partially
integrate the expression in Eq. (15) to obtain

U=exp [+ —g fd3x(VeE—j0 )A] . 1)

Because Gauss’s law generates local gauge trans-
formations, physical states are gauge invariant:

Ulw)y=|¥). (18)

This immediately implies that the field ¢ cannot
have an expectation value in any physical state be-
cause applying a local gauge transformation gives

W |¥)=@|UpUYT)=e™|¢|¥T). (19)

Since A(X) is arbitrary at any finite point %, the
average of ¢ must be zero.

We now.give a perturbative argument that the
spectrum of the theory begins with a massive vec-
tor meson and a massive scalar meson. Changing
to “polar” variables we write

= _1_ + i6(x)
() <a+ Q_x(x)>e .
¢>*<x)=<a+ -é_— x(x)> eioe) (20)

A) =W, (x) g v,00x).

The fields W; and x will, respectively, represent
spin-1 and spin-0 particles while 6 will be elim-
inated by the imposition of Gauss’s law. Under
the gauge transformation of Eq. (14) both W; and
X are invariant while '

0—-0+A. (21)

We define momenta conjugate to these new fields
by

1 «
Ty, =Wi= = ViH=E;, (22)
T, =X, ' (23)
2, . .
ﬂe=2<a+—1—x>6+1ViW- 1V"’(), (24)
V2 e e

Working at a fixed time, we impose the commu-
tation relations

[E;(x), W;(»)]=-i8,,83(X =),
[7, (%), x(3)] = [7,(x),0(9)] = -i8* (X - ),

with all other combinations from the set

(25)



{W,.,x,e yEymy ne} commuting. It is straighfor-
ward to show that Eq. (25) implies the canonical
Eq. (7). .

To express 7 and 7* in terms of the new coor-
dinates requires a little care because 6 and 6 do
not commute. We find

i 1
2[a+(1/V2 K] <”"' P E>

ol 1
1T*=30(f) =e‘9{E Ty =

-116,6] (a+ {é—x)} (26)

Unfortunately the commutator [29,6] diverges be-
cause both fields are taken at the same point. This
divergence will later serve to cancel divergent
Feynman diagrams coming from the derivative
couplings in the Hamiltonian when expressed in [
these new variables. At this point we abandon rig-
or and write formally
1 \Y% E) ,9]
e

6°(0), 2"

. 1
[9.01= | sr VT RT (-

7
T 2[a+(1/V2)XF
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where 63(0) represents a cubic divergence in an
ultraviolet cutoff imposed for calculational pur-
poses. Thus we write

%=L i ) i['ﬂ' -(1/e)v -E] i53%(0) )
' —zeo{ﬂx_ ;+(1/¢7)x * a+(1/«’z“)x}-

(28)

Using this we can express jé in the new coordin-
ates. A little algebra gives the simple result

1 2,
j =—-2e<a+———x> 9. (29)
° VT
In Eq. (24) this gives
1 L
n9=z(VoE—]o).‘ : (30)
Thus we see that the imposition of Gauss’s law is
the same as setting
m, [¥)=0 (31)

for physical states. Note also that Eq (21) shows .
that 7, is the generator of time-independent gauge
transformations.’

Using Egs. (28), (20), and (6), we express the
Hamiltonian density in the new variables

Rz%Ei2+%nx,z+ 4[a;(1/1fz* N [(”"‘EV'EY E%M
+%(V,.x‘)2+e2 <a+ \/_—;_~ x) 2W,-2+%F,-J.F“+>x[(a+ 7___:—— x> ’ _azT . (32)

The term proportional to [5%(0)]? is a field-theoret-
ical generalization of the quantum corrections to
the centrifugal barrier obtained in going to polar
coordinates in a cylindrically symmetric ordinary
quantum-mechanics problem.?

We wish to set up a perturbation theory in e with
the masses of the W, and x particles fixed. To
that end we define

2 - 2
my® =4a®, (33)
my? =2e%a’.

Restricting ourselves to the physical Hilbert
space, we set 7, in Eq. (32) to zero and eliminate
X and a with Eq. (33). The Hamiltonian then splits
naturally into two parts

=50 +3C, . (34)

where

56, =3 M +3 (VX)* + 3 m,x*
1

2
My

+LE2+ 5oz (V-EY

+3 Wi(=0,,V2+V V)W, +3m, W2 (35)
and

L em.? e*m, >
L9 2,2 2, Oy 3 X 4
+3 (2exmy + Y)W, + S, X+ B, ? X

(36)

The bare theory defined by 3¢ alone can be exact-
ly solved and then 3¢;, which is of order e and high-
er, can be treated as a perturbation. The x-de-
pendent part of iC, is clearly the standard Hamil-
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tonian density for a self-conjugate scalar field of
mass m, and needs no further discussion. The W;
field is less standard so we treat it in some detail.
The equations of motion for the bare W, field are

. V.V,
W;= (5“‘ ,7:;21) E;, (37)
Ei:-_[<mw2_vi’~>5“+vivj W,. (38)

Combining Eqgs. (37) and (38) gives
Wi == (my” - VOW,;

consequently, the bare field W, satisfies the Klein-
Gordon equation with mass . The solution to
the theory defined by JC, is obtained by writing

- [ ggrLessa @t

+ e (®al(k)ertuu] (40)

and
By = jzk(zn)s( )<"%§L.>‘

X|e js(E)a s(ﬁ) € HRuty
_ex[@al®)ertrnl, (41)

Here a (k) are destruction operators for the quanta
of the W, field and satisfy (s runs from one to

three)
la,(k),al (k)] = 2k, (27)*63 (K’ — k)5 . (42)

The polarization vectors € for s =1 and 2 are two
arbitrary unit vectors orthogonal to each other and
to k while

~ [ R
:k‘( _o.> . (43)
i3 i my,
The bare vacuum is annihilated by as(ﬁ):
a (k) |0y, =0. (44)

The subscript 0 on the state means that it is the
vacuum of $¢, and not the full 3C. The bare propa-
gators for the W, field are

d«ik e-ik'(x-y)
2m* k2 mi+ie

L0 T, ()W ,(3)) 0= f(
><<61.j+ %%> , (45)

4 =ike (x=y)
o(OIT(E,(x)W,(y))I())o:if(—g;,—;% Eze__%?e_

(46)

—ikyd;,)

FIG. 1. A diagram confributing to the x one-point
Green’s function. The solid and wavy lines represent
scalar and vector propagators, respectively.

dik ek (y)
(2m)* B2 —mP+ie

0| (B, (B, ()]0 =i [

X| & +m?)6,,— k). (47)

From these propagators, perturbation theory in
4¢; can be worked out in the standard manner. Note
that in order e® the term involving [63(0)]? will be-
gin to appear. This will cancel divergences in dia-
grams containing both W and x loops. For exam-
ple, in Fig. 1 we show an example of a diagram
contributing to the one-point Green’s function for
Xx. This diagram is one of several to this order of
e that diverge as the sixth power of the cutoff in
momentum space. The sum of these divergences
should cancel the term in 4C; linear in x and
[%(0)]". '

The above discussion shows that at least in per-
turbation theory the physical states of the model
are the same as in more usual discussions where
the gauge symmetry is spontaneously broken. In
terms of the new polar variables it is exactly m,
that generates gauge transformations. Imposing
that m, vanish on all physical states is equivalent
to saying that physical states are invariant under
all gauge transformations. This invariance holds
regardless of the asymptotic behavior of the gauge
transformation. This model has actually restored
symmetry under transformations that do not van-
ish at spatial infinity, obviating the need for mass-

© less gauge mesons as discussed in Ref. 2.
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Often the Higgs mechanism is also used to gen-
erate masses for fermion fields coupled in a Yuk-
awa manner to the scalar Higgs fields. To see this
mass generation in the temporal gauge, where the
Higgs fields do not acquire a vacuum expectation
value, requires the removal of a gauge-dependent
phase from the fermion field. For example, con-
sider a Fermi field that transforms under the
gauge transformation of Eq. (14) as

U =y eth ), : (48)

Upon going to polar variables as in Eq. (20), one
should also define a new Fermi field

V(x) =¥ (x)e*? ™, © o (49)

The new field ¥’(x) is invariant under gauge trans-
formations, and mass generation will then proceed
as in conventional discussions in other gauges.

This work was performed under Contract No.
EY-76~C~02-0016 with the U. S. Department of
Energy.
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