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We consider equal-time commutators among various components of the electromagnetic
current and its time-derivatives. In particular we study the general structure of the vacuum
and one-particle matrix elements of these commutators. The form of the commutation re-
lations with no time derivatives enables us to obtain new relations on the commutators in-
volving time derivatives of the current. Using these results, we discuss possible g-number

Schwinger terms in the equal-time commutator.

1. INTRODUCTION

Equal-time commutation relations of local oper-
ators play an essential role in elementary-particle
theory. The canonical equal-time commutation re-
lations of fields are basic to Lagrangian field
theory. Hypothesized equal-time commutators for
components of observable currents are the starting
point for many current-algebra theories. Further-
more, commutators and their time derivatives at
equal times are closely related to the asymptotic
behavior in energy of particular covariant ampli-
tudes.! Recent work in perturbation theory shows
that the equal-time commutators given by these
relations can be more complicated than expected
from naive application of the usual canonical com-
mutators.? ‘Nevertheless, causality requires a
certain simplicity in the equal-time commutators,
which must vanish for spacelike separations.

In this paper we exploit an observation of Furlan
and Rossetti and of Cornwall and Norton® that the
knowledge, through hypothesis or otherwise, of an
equal-time commutator in all Lorentz frames
places constraints on the time derivatives of the
commutator taken at equal times. The most singu-
lar parts of a matrix element of time derivatives
of a commutator taken at equal times are deter-
mined uniquely by the equal-time commutator it-
self. Less singular terms depend on further dy-
namics.

We use this technique on the commutator of two
electromagnetic currents. We choose to look at
electromagnetic currents because these commuta-
tors are directly related to hadron production in
electromagnetic processes. For a particular ma-
trix element we find the most general form for the
commutator which is allowed under general sym-
metry requirements and with the additional as-
sumption that it is no more singular than a single
derivative of a spatial 5 function. We make this
assumption for simplicity; it is not necessary in

5

general. With this form for the commutator at
equal times, we proceed to determine the most
singular parts of a time derivative of the commuta-
tor taken at equal times. This assumes that the
commutator and its time derivative are well de-
fined at equal times.* Using our results, we dis-
cuss the possibility that the terms involving deriv-
atives of spatial 6 functions occurring in an ex-
pectation value of the equal-time commutator de-
pend nontrivially on the state with respect to which
the expectation value is taken. Such terms are
commonly called g-number Schwinger terms. We
find a connection between such terms and the ex-
perimental result that the total transverse cross
section for photoproduction of hadrons on a had-
ronic target with off-mass-shell photons goes to a
constant as the photon energy becomes large with
fixed virtual-photon mass.

In Sec. II we consider the vacuum expectation
value of the commutator of two electromagnetic
currents. Here we can check our results because
the matrix element for all times is completely de-
termined by the spectral representation in terms
of a single spectral function. Therefore the com-
mutator and all its derivatives at equal times can
be calculated explicitly from this spectral function.
In this section we also consider briefly the possi-
bility that this matrix element of the commutator
is not well defined at equal times and the relation
of this to scale invariance. In Sec. III we discuss
the single-particle diagonal matrix element of the
same commutator. Here we discuss g-number
Schwinger terms. We conclude in Sec. IV with a
summary of our results.

II. THE VACUUM EXPECTATION VALUE

In this section we consider the vacuum expecta-
tion value of the commutator of two electromagnet-
ic currents given by

h’pu(x) =<0|[]p(x)’.7u(o)]|0> (1)
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Here ju(x) is the electromagnetic current with a
factor of e, the electric charge, removed. Before
proceeding let us review the spectral representa-
tion of z,,(x). For the Fourier transform of z,,(x)
we have a simple expression in terms of a single
spectral function p(q?) defined by

WH u(q) = fd x et .xhuu(x)

=-e(qo)p(q2)<gpu—zfl%2) ) (2)

where €(q,) =q,/|g,|- Here p(g?) has the properties
p(¢g?) =0,

p(g?) =0 for ¢2<0. (3)

Current conservation restricts us to a single spec-
tral function instead of two. In the remainder of
this paper we will only consider the coupling of the
electromagnetic current to hadrons, and this only
to the lowest nonvanishing order in the electromag-
netic charge. Since the lightest intermediate state
which can then contribute is the two-pion state, we
have

p(g®) =0 for g®<4m.. (4)

The total cross section for e*e” annihilation into
hadrons at center-of-mass energy v s and to second
order in the electromagnetic charge e is directly
related to p(g?) by (neglecting the electron mass)

4
e
O'¢*e=—> hadrons (‘/—S) =2_Szp(s) . (5)
Because experiment® indicates a nonvanishing cross

section, p(s) cannot vanish identically.
Equation (2) can be Fourier transformed to give

k) = [ G e W)

=i£mn2£§%[(guvm - aual’)A(c’ 01, (6)

J

n? L5 ), (%) =x>‘§’(%lg{>hu,,(x)

dn*
. 2n LN
=iC gp)_ nz 9y +\8ua—

[on

where A(o, x) is defined by

Ao, x) = —if (g;;, e 1" *¢(q,)276(g2-0) (7)

and 0 =9,9" Equation (6) is the spectral represen-
tation for %, ,(x) in terms of p(¢). From the defini-
tion it is readily verified that

8(x,)8,2™ A0, x) =0,
6(x0)302m+1A(0_’ x) =(_1)m+1(0. +0 - 302)m64(x)
=(=1)"* Yo - V*)"6%(x)

(8)

where m is any non-negative integer. Combining
(8) with (6) at equal times gives the form of the
equal-time commutator

6(% ) (%) = +C(g,09, + &y 0By — 28108v090)0% (%) ,
(9)

where C is given by

C= do p(o) . (10)
amg2 270

We will later discuss briefly the possibility that
this integral may be divergent.

With these preliminaries out of the way we can
now proceed to discuss the relation of the time de-
rivatives of the commutator at equal times to the
equal-time commutator itself. To do this we note
that since Eq. (9) is true in all Lorentz frames we
can introduce an arbitrary timelike vector n, with
7,>0 and write

_¥HC (n ny, nun,dn
o(n - x)hpy(x) -*\‘/75‘ (7'7%2'81)*' m 8”- 2 W)ﬁ%x) .
(11)
This equation should be true for all » satisfying

n*>0, ny,>0; sowe can differentiate with respect
to n, to obtain

2m,
Oy

_ 2<g,, knr,,a " gy ;\nzpa . n+npn;,m _ 4nyn,,ﬁx8 . n)]é“(x) . (12)
n

n? n

n

Equation (12) can be solved to find the most general form for the generalized function &'(n* x/Vn2)h,,, (x).

This gives

2nyn+88, 2n,n-389,
5 - -

8-n)?\ .
";Z‘”DM”P”:; n)>—sz]64(x). (13)
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Here K, is a Lorentz tensor undetermined by Eq. (12). It depends only on na/\/;z and contains no deriva-
tives with respect to x. Knowledge of &'(n* x)/Vr®)k,,(x) implies knowledge of 8(n* x/Vr?)(8 - n/Vr)h,, (x)

through the identity

Using Egs. (11), (13), and (14) gives the result

nex\0*n . Nun,
6<Th5-)7;l-2—hw(x)-zc<a“a,,— 2 L+ 2

Current conservation gives us some additional

information on K,,. Since 8,k,,=0 we have

8,06(n- x)h,“,(x)=nu5’(n-x)hu,,(x). (16)

This can agree with Eq. (13) only if we require
n,K,,=0. By symmetry we have n,K,,=0. This
means that in general we must have

Ko (o) = (200 - 2520, an

where D is a dynamical constant which may be
infinite. Writing our result in terms of specific
components and setting », =g),, gives

8(%0)3 100 (%) =0C (=01 +8,2)6%(x) =iCV26%(x)

(18a)
8(%)00 hrgy (%) =0, (18b)
8(%5)8 1 3;(x) =C0;8,06%(x) +iDg;;6%(x) . (18¢)

Here ¢ and j run from 1 to 3.

Using only information about the commutator at
equal times, we have found the general form for
the time derivative of the commutator at equal
times. Clearly this process could be repeated to
find higher time derivatives of z,,(x) at x,=0. At
each stage another dynamical parameter will be
introduced. If this parameter is infinite, the cor-
responding commutator and higher derivatives are
not well defined at equal times. Always the most
singular part will be determined by the equal-time
commutator alone.

Since Eq. (6) gives the commutator explicitly for
all times in terms of p(c), one can differentiate
with respect to time and go to equal times to check
our result. This procedure immediately verifies
our conclusions and gives the additional result that

_ [~ do
D= 230 p(0). (19)

Clearly the additional constants obtained by looking
at higher derivatives are related to higher-moment
integrals of p(c). Unless p(o) goes to zero faster
than any power as o goes to infinity, eventually
one of these moment integrals will diverge. This
means that probably not all time derivatives of

nun, (8 * n)?
4

. * 99
—nﬂnzaay_nu’:ﬁ U> 64(x)+iKuv54(x). (15)

n

r

the commutator are well defined at equal times.
For example, if D is a divergent quantity, the in-
terpretation of Eq. (18c) is unclear.

For the remainder of this section we would like
to digress and discuss how the spectral represen-
tation can give interesting results at equal times
even when the commutator itself is undefined
there. This occurs when the integral defining C
in Eq. (10) diverges. These results are not new®
but we discuss them in a slightly different lan-
guage. Let us assume, for example, that p(o)/c
goes to a constant as o goes to infinity. We also
assume this limit is sufficiently nonpathological
that we can use the ’Hospital relation p(c)/o
~(d/do)p(0) as o0 —~o. Although %, (x) is now un-
defined at x, =0, the spectral representation still
completely determines the commutator for unequal
times. Thus we can consider x? times the commu-
tator and see if this has a well-defined equal-time
limit. Using the identities

x,A(0, x) = -29, ad; Ao, x),

x%a(o, x) = —40%2-

Ao, x),
and some straightforward manipulations, we ar-
rive at the result
— ] ry 4
00y (9] = =22y ()
5i8,;6%(x) N @D
0 [y )] =221 iy (ﬂ(&"—) .

O~

Boulware and Jackiw’ have emphasized that in
lowest-order perturbation theory, where p(c)/c
does go to a constant,® a triple derivative of a &
function occurs in the equal-time commutator.
Since the equal-time commutator is not well de-
fined, Eqgs. (21)are amore precise statement of
this behavior.

The behavior p(o)/o going to a constant is the
case in any exactly scale-invariant theory where
the currents carry the usual dimensions, as can
be seen by the following argument. Let u(s) be
the unitary transformation causing a dilatation by
the factor s,
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u(s)j, (Xu(s)™* = s%,(sx). (22)

Here d is the dimension of the current. We re-
quire u(s)|0)=|0). Using this operator in Eq. (2)

gives

W, (@) =s*"*W ,(a/s). (23)
This implies

plg®) =s**~*p(g*/s%) (24)
or

plg®) =A(g*)*~2. (25)

Note that using this argument on different com-
ponents of W, ,(q) requires d to be the same for
all Lorentz components of the current. If we have
the naive dimension d =3, as would be required by
usual current algebra, then p(c)/o goes to a con-
stant as o goes to infinity. This means that C of
Eq. (10) is undefined and a term like that in Eq.
(21) is required. Recently Wolsky® claims to have
shown that naive dimensionality for all components
of the current is impossible. However, to get this
result he implicitly assumes that C is finite.

III. THE SINGLE-PARTICLE EXPECTATION
VALUE

We now consider the diagonal one-particle ma-
trix element of the cqmmutator of the electromag-
netic current with itself. Define &, ,(x, p) by

Ry (2, 0) =D 115,00, 5,(0)] 1 ) . (26)

The particle |p) has mass m, p®=m? We use a
covariant normalization of the one-particle state
with (p’ | p) =(27)°2p,8%(p' - p). In what follows if
| p) has spin, we consider all equations as aver-
aged over the spin states of |p). We shall also
consider Eq. (26) as having the vacuum expecta-
tion value subtracted; in other words, [j(x),4,(0)]
really means [j,(x),7,(0)] - <0|[Jp(x>,au<0)f 0).
Symmetry principles place several constraints
onkh, A%, p). Translation invariance tells us

By (%, D) = =k (=2, D) . (27)
Hermiticity of j,(x) gives

(%, P) = =h¥ (%, D) . (28)
Time reversal times parity (T P) gives

h”y(x’p)’:_bh;ru(_x)p)' (29)
Parity alone gives

huu(x’ p):(_l)gyo*fuohpy(xo’ =X; o, D) - (30)

Charge conjugation relates h“,,(x, p) to a different
process unless |p) is self-conjugate, in which
case charge conjugation is automatically conserved

here since we have two electromagnetic currents.
Given the above symmetries, we can write the
most general form allowed for the equal-time com-
mutator. Since these symmetries imply &, A% D)
=-h,,(-%, p), the equal-time commutator can only
contain terms with an odd number of derivatives
on a spatial 6 function. Arbitrarily assuming only
first derivatives, we can write (as in Sec. II, #, is
any timelike vector with »,>0)

Vi 8(n+ X0y, (%, p) =iC ,,o(n/Vn2, p)o ,0%(x) . (31)

I, (%) is to have a well-defined equal-time limit,
the combinations of derivatives taken in Eq. (31)
must involve no time derivatives in a frame where
n has only a time component. This means we
must require

n cu uoc(n/ 2,p)=0. (32)
The symmetry conditions require
Cuva=Crya+ (33)

We have not yet used current conservation. This
constraint can be written 8,4, (%) =9,k,,(x) =0.
Taking the divergence of (31) and using current
conservation gives

£)8,846%(x).
(34)

7,0 (n* x)h (%, p) =i71n;C,,,,a(n/«/n_,

Let us also note that

= 801 0y, ) = 08 ey, )

dn (V_Cuvcc(”/ »0)? 64(x)> '
(35)

Multiplying Eq. (34) by x, and Eq. (35) by », with
a sum over the index u gives

1 d 1
T;;Cu ,,ax)a,,aao“(x) =n, T Wcuma 0%x) .

(36)
This is equivalent to
= d_(ny
Cuw——\/—ﬁz"%c/?c)\y”) . 37)
Now proceeding similarly using 8,k uv=0 we get

—~d [n
Cﬂua=_ n* dn (77:\5 Cu Xv) . (38)
o

Taking the difference of these equations we find
that the quantity

LON "™ c
T Crom = TE Curo

cannot depend on n. Because of Eq. (33) this
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quantity is antisymmetric under interchange of u
and v. However no antisymmetric tensors can be
constructed from p, alone, so this quantity must
vanish. Thus we can define a symmetric tensor
C,, by

n
Cuu:_ 771)2\ Cu)\u
n
== 7% Cru - 39)

By Eq. (32) we have

pv

n,C,,=n,C,,
=0. (40)
From (37) or (38) we can get C,,,, from C,,,,
d
C“"O‘:-H/;ﬁdna pv . (41)

Finally note that any C,,,(n/V#?, p) satisfying Eq.
(40) will define, through Eq. (41), a C,, , which
will satisfy the constraints of current conserva-
tion. This means that the most general form for
C, o is given by Eq. (41) with a C,,, of the form

Cyo N p)——C(%)(gpy—zﬁ;z@)

Do n nupn n,pe
D<7;1—2')(Py“ yn2 ><Pu—n52 n) .

(42)

This shows the remarkable result that the con-
straint of current conservation determines the
equal-time commutator in terms of only two in-
variant functions. Combining Eqgs. (31) and (41)
with Eq. (42) gives the most general form for the
equal-time commutator consistent with our as-
sumption of only first derivatives of spatial 6 func-
tions:

OF THE ELECTROMAGNETIC... 1941

O Vgl D) =iV (e ), (0, D).
(43)

In Appendix A we carry out this differentiation to
find the equal-time commutator explicitly in terms
of C and D.

With this form for the equal-time commutator,
we can find our desired restrictions on the time
derivative of the commutator. Differentiating (43)
with respect to n, gives

x30"(n+ 2, (%, p) = i d (;n ‘Z)Cpu("/ » D)O%(x).

(44)

This can be true only if

o’ (n x)hyu(x’p) __—<a;'d )cpu(n/ )54()6)

— LK, B O (45)

Here K, is an undetermined dynamical tensor
analogous to that found in Sec. II. As in the vacuum
case, current conservation requires

”uKu Ky,
=0, (46)

This means K, must have the form

-

p ‘n nlJp up n
+B<T§-n )(pu £ )( > (a7)
It is possible that K, is a divergent quantity. If
this is the case, the time derivative of #,,(x) is

not well defined at x,=0. As in Sec. II, we can
now write the time derivative of the commutator:

6(n- x)8  nh, (%, p) ==n?0" (- x)h (%, p) +8 * nb(n* x)h (%, p)

() ) G i

In Appendix B we carry out the above differentia-
tions to give the derivative of the commutator ex-
plicitly in terms of A, B, C, and D. Things sim-
plify considerably if we go to the rest frame of

[p) and let n,=g,,. Table I summarizes our re-
sults on the commutator and its time derivative in
this frame.

Now that we have expressions for the commutator
and its time derivative at equal times, let us try
to relate them to the total cross sections for had-
ron production by virtual photons incident on |p).

e

s D)B*(x) +iK,, 6%(x) . (48)

I
Introduce the tensor W,,(gq
functions W, and W, by

, p) and the invariant

Wllu(q,P) =fd4xeiq‘xhuv(x,p)

= (guv _ ng‘Iu) W,(v, ¢?)

. ( p_qu;' q)(pv_quﬁz'q

) Wy(v, ¢%).
(49)



1942 M. CREUTZ AND S. SEN

Here v is the photon energy in the lab frame,
given by

b-a
v= (50)

We have the crossing property

Wl,z(V, qZ) = _WLz("V> CIZ) . (51)
Define o, (o) to be the total cross section up to
a factor of ¢® for hadronic production by longitu-
dinally (transversely) polarized virtual photons on
|p). Then we have

onlv,¢?) = W(V,q)

(52)

o.(v, )= ("W, +m®qs*W,) .

4mq Y Ardl

Let us work in a Lorentz frame where p
=(m,0,0,0) and q=(qg,,0,0, g;). We relate the
equal-time commutator in this frame to the above
cross sections through

f_ AdgoW,, (a4, D) |44 = Zﬂfd “x e 1388(xo ), (%, D) -
(53)

Instead of v and ¢, let us use ¢* and g; as our in-
dependent variables. Using Table I we get the re-
sult

20 qzyqa) mC
f T T agm (54

This result has been ob-

Here C means C(po)[,,o=m.
10,11

tained previously by others.
We now relate the cross sections to the time de-
rivatives of the commutator using

f Aqo9oWy o (g,p) = 277ifd 4xe-iq3x36(xo)aohu A% D)
(55)

TABLE I. Values for the commutator and its time de-
rivative at equal times in the external-particle rest
frame. All invariant functions are evaluated at p+n/Vn?
=m. C' denotes @/dpo)C (D o)lp=m-

6(x)hgg(x)=0

8(x )y (%) =iCO,;0%(x)

S(xp)h;;(x)=0

8(% ) Byhgy (%) =—IC(O — 8,2)0% (x) = +4C V264 (x)

8 (%) Byl (%) =0

6 (%0)0gh;;(x) =i[(C +m?D)8;8; +C'm3({ — 8 )g;; + Ag ;164 (%)

=il(C +m™D)8;8; - $C'mVig ;; + Ag ;0% (x)

[en

Looking at various components of this equation
gives three independent nontrivial relations, one
of which is equivalent to Eq. (54). The other two
relations, which are our new results, are

° 2 2 |q2|
dqor(¢?, q5) —5
-ag? q

A

(m®D +3mC’) )

" 2m< 2 q3 + %
(56)

® 2 =1l - L
f_squ 07 (¢?5 as) | 45 =57C B o A (57)

If the particle |p) is assumed to be stable to elec-
tromagnetic decay, the lower limit of integration
in Eqs. (54), (56), and (57) can be raised to
2mm — (m? +q,?) 2]

Let us now discuss how these results relate to
possible g-number Schwinger terms. Such terms
manifest themselves in our formalism through the
nonvanishing of C(p,) or D(p,) for some value of
bo- We have removed any non-g-number Schwinger
terms by considering the commutator with the
vacuum expectation value subtracted off. Of
course if C’'(m) or D’(m) is nonzero, C(p,) or
D(p,) cannot vanish identically. Present experi-
mental data indicate that o,(¢?, g5) goes to a non-
zero constant value as ¢; becomes large with ¢*
fixed.”® The value of this constant is dependent
on ¢*. Letting g; become large in Eq. (57) would
then seem to indicate that C’ is nonvanishing and
there are g-number Schwinger terms. Assuming
the constant asymptotic cross-section behavior is
correct, there are three ways to avoid this con-
clusion.

One way is to have | dq?o 1(¢% ¢; ==)=0. If this
were the case, the asymptotic cross section would
have to be negative for some values of ¢°. This
does not violate any positivity condition since we
have subtracted the vacuum expectation value of
the commutator, which is an infinite positive
quantity for timelike ¢%. Indeed vector-meson
dominance suggests that ¢ ,(¢* =m,?, g; =) should
be a negative quantity.

A second way of avoiding the conclusion that
C’(m) does not vanish is to have important nega-
tive contributions to the integral in Eq. (57) coming
from ¢?z gym even as g, becomes large. Here
lowest-order perturbation theory with fermions
gives a negative cross section; however, this
negative contribution to the integral in Eq. (57) is
canceled by contributions from ¢*= —gym as ¢, be-

"comes large. Similarly, if in this kinematic re-

gion the state |p) can be considered as a bound
state of point particles, as has been argued by
several authors,’® this contribution again will be
unimportant as g; becomes large. We will see
this cancellation in more detail later when we dis-
cuss the Bjorken scaling region. Thus we feel it
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unlikely that large negative contributions to the
integral in Eq. (55) can come from this region of
q*= ggm for large g,.

The third way of having C’ =0 is to have A(m)
be a divergent quantity. This requires the integral
in Eq. (57) to diverge for all values of ¢g,. This
means that, at any fixed ¢,;, 0(¢%, g;) cannot fall
faster than 1/¢% as ¢* becomes large compared
to g;m. Although we cannot disprove such be-
havior, it does not occur in lowest-order pertur-
bation theory and we regard such behavior as un-
likely.

On the basis of this discussion we conclude that
it would be simplest to either have g-number
Schwinger terms with C’() nonzero or to have
the sum rule

.[:dqzo'r(qz, g3 ==)=0.

If the parameter C’(m) does not vanish, then the
above integral must diverge. Of course, the
vanishing of this integral does not necessarily
imply an absence of operator Schwinger terms;
it would only imply C’(m) =0.

Bjorken' has conjectured that, in the limit of
large ¢* and ¢, with the ratio ¢°/q; = w constant,
or and o, have the behavior

0 a2 Frale). (58)

Let us now discuss the contributions to our inte-
gral relations from this Bjorken scaling region.
For spacelike ¢? the vacuum subtraction does not
alter the fact that the total cross sections are
squares, so we have

frp(w)>0 for w<0. (59)

From the implicit assumption of a well-defined
commutator, Stack! has shown that

frlw) =+fp(-w),
fL(w) =_fL(—w)-

Because of the crossing property (60) this Bjorken
region gives vanishing contributions to Egs. (56)
and (57). To use this scaling in Eq. (54), let us
assume vanishing of o, (¢?, g;) as g;~ = with ¢°
fixed. Experimental data are not yet sufficiently
accurate to comment on this assumption. We can
then assume that Eq. (54) is dominated by the
Bjorken scaling region. This gives the result

(60)

f: Llgde_ x¢ (61)

Since f; (w) is non-negative for w in the integration
region, we must have C #0 unless f; (w) vanishes

identically. This result has been obtained pre-
viously by others.'®! Our assumption of o, (g%, =)
=0 and dominance by the Bjorken scaling region
can be inserted in Eq. (56) with the result

m?®D +3mC’ =0. (62)

We stress that o, (g%, g;) could vanish even in the
presence of g-number Schwinger terms; C’(m)
could be nonvanishing even if C(m) and m?D + $mC’
vanish. Finally we note that because of Eq. (60)
the Bjorken scaling region does not contribute to
Eq. (57) in the limit of large g, so this region will
not affect our discussion of C’(m).

IV. CONCLUSION

Using a technique of Furlan and Rossetti, and
Cornwall and Norton,® we have studied the com-
mutator of the time derivative of the electromag-
netic current with the electromagnetic current
at equal times. We find that the vacuum expecta-
tion value of this quantity must contain second de-
rivatives of spatial 6 functions. These terms are
completely determined by the vacuum expectation
value of the equal-time commutator of two elec-
tromagnetic currents. Beyond Lorentz invariance
and current conservation our only assumption is
that this equal-time commutator is well defined.

We then discussed the one-particle matrix
element of the same commutators. We obtained
relations between possible g-number Schwinger
terms and the total cross sections for hadron
production with virtual photons incident on the
one-particle state. Representing the transverse
cross section for photon mass squared ¢? and lab-
frame (rest frame of p) momentum |§| by o (¢?,
|4]), we find that at least one of the following is
true:

(1) There are g-number Schwinger terms.

(2) [ddor(q?, [§[=w)=0.

(3) The integral _"Zaquzor(qz, |q]) for increasing
|§| has increasing contributions from ¢* of the or-
der or larger than |§|. We include here the pos-
sibility that this integral diverges for all |§].

In the above we work with the vacuum expectation
value subtracted from the commutators.

We must finally emphasize that all of our rela-
tions on the virtual photoabsorption cross section
involve to some extent timelike photons. These
cross sections are experimentally unmeasurable.
Thus our results are of no direct experimental
interest. To get relations on experimental quanti-
ties from equal-time commutators either one must
take an infinite-momentum limit, which actually
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corresponds to evaluating the commutator on the light cone,'® or one must make subtraction assumptions
on dispersion relations. We have not done this here. Our results can, however, be of use in checking the
consistency of theoretical models which do predict the timelike cross sections.

APPENDIX A

Here we give the most general form for the one-particle diagonal matrix element of the commutator of
two currents. It is obtained by carrying out the differentiation indicated in Eq. (43) using C,yas given in
Eq. (42) of the same section. This gives the result

Va2 8(nxXp [ [4, ()5, 0)]1p)

=Vn? 6(n * %)k, (%)
[ Afpom\(mudy +ndy  2nunydon pen\( (budy+pydulp n_ (puny+pymylp *d
+ 2(puny +pynpp-nn-d + (nudy +ny0,)(p *n) 2munyp mp-d _ dnyny(p *n)fn- 3)
ey ey 3 (Y

. . a . v na wp " a .
+C'<71"pnn) <'guup *9 +guvp 7;2 2 "'nﬂnnf L (flz):z n)

+D’<1"7;¥l-> (P,J’,,a p Pﬂpvpn'zna ‘n_(puny +Pv:2u)p *nd-p

puny+pyny)p-n)focn muny(p-nfd-p _nuny(p-n)d "> ] 54(x).

w2y P eox e

To make this more manageable, look at various components with n,=g,,:
8(rg)hgo) =0, (A2)
(%o (¢) =i[C(Do)3; = D(bo)y (8 *p = 3,0,)]6% (%), (A3)
6(co)hy 5 (8) =i[ =D (Do) Po(8; 0 5 +8;0;) = C'(Po)gs (D * 8 =DoBo) + D' (Po)p; 0,(8 * p — 8,P,)]16% (%) . (a4)

Letting p ,=mg , gives the results in the first half of Table I.

APPENDIX B

Here we give the result of carrying out the differentiation indicated in Eq. (48) to obtain the time deriva-
tive of the commutator. Setting n, =g,,, we get

6(¢0)3glt0o (%, 2} =E[C(po)(=01+8,%) + D(po)(p * 8 = 8, pof [0 (¥), (B1)
6(60)30k0; 06, ) =E{D(P)[ 13260 = 852) +P40; (P * @ = P43,)]
+C'(po)la;(p -0 -~ 30Po)] +Dl(po)["pi(p *9 - 30p0)2]} 6*(x), (B2)

0(o)agh; ¢, ) =i{C(Po)(8; 8,) + D(po) o20,0; — (D38, +P;8,)(p * 8 = 8pP,)]
+C' (P2 841000 = 82)]+ D (PN ~Do(£,0, +D ;0,)(D ¢ 8 =podo)=2DsD ;5o (0 ~ 82)]

+C" (P =28:5(D * @ = 3PP +D" (Pl ~zp:0,(b * 8 = 8,00)*] + AlDo) g4; + B(po)p b5} 6% (x) .

(B3)
If we set p, =mg,, we get the second half of Table L
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The one-loop graph in the dual-tube model is constructed. The conditions for no diver-
gences or new singularities are exactly those found by Lovelace for factorization of the
“Pomeranchukon” in the strip model. Loops correspond to electrostatics on multiple tori
only if spurious particles are permitted to circulate in the loops.

The usual dual-resonance model can be under-
stood in terms of an electrostatic analog in which
the ether is a two-dimensional strip.! Resonances
correspond to long, thin strips and loop diagrams
to annuli. External particles correspond to
charges on the edges of the strip. Singularities in
the scattering amplitude are associated either with
an accumulation of charges corresponding to ex-
ternal particles, or to singularities in the shape
of the ether surface.? For example, the one-loop
diagram corresponds to an annulus of ether with
either all charges on one boundary (planar loop) or
some on each (nonplanar). When the hole shrinks
to zero, one gets a divergence® (planar case) or
the “ Pomeranchukon” singularity* (nonplanar).

Almost a year ago I proposed a model® with a
different kind of duality than that of the strip
model. In the strip model only planar channels
are dual to each other, while in the new model all
channels are dual. The ether is a closed two-

dimensional surface (a sphere for the tree dia-
grams) and resonances correspond to tubes in-
stead of strips, with external particles entering as
charges anywhere on the surface. I conjectured
that higher-order diagrams would correspond to
electrostatics on multiple tori (spheres with »
handles). It was further conjectured that the dif-
ficulties in the strip model coming from shrinking
the hole in the annulus might disappear in this
model.

In this article I calculate the one-loop diagram
in the tube model. We shall see that the electro-
static analog applies only if one permits spurious
states to circulate in the loop, but that, whether
or not they are permitted, there exist choices of
dimensions and assumed Virasoro-type gauges
for which there are no divergences or new singu-
larities. For the case where these spurious
states are projected out, the dimensionalities are
exactly those Lovelace found for the factorization



