Lattice gauge notes VIII

Hamiltonian formulation for pure gauge

(this section from chapter 15 of my book)

Path integrals are formally justified as in the first lecture by relating then to a Hamiltonian.
The path integral with periodic time is formally a four dimensional classical partition
function, but it is also a quantum mechanical partition function in three dimensions, i.e.
Z = Tre #/*T with temperature T and Boltzmann’s constant k. The variables in lattice
gauge theory are somewhat more complicated than in the simple quantum mechanical
model I did before, so lets try to reproduce the same steps with lattice gauge theory.

Here I want to explore the continuum time limit of the Wilson pure gauge theory. This

suggests treating the spacelike and timelike lattice spacing separately. This results in
separate couplings for timelike and spacelike plaquettes; so, I consider the action

S=—: Y ReTxlU, — f ¥ _ReTrl,
s t

where s refers to spacelike plaquettes and ¢ to timelike. Introducing ag and a to represent
the timelike and spacelike lattice spacing, the formal classical relation for SU(n) is

2nag
ﬂs = 2
gsa
2na
ﬂt = 2
giao

Quantum corrections will enter at higher order and thus I distinguish g5 and g;. To lowest
order these are equal to the bare coupling. For the moment, just note that if the timelike
lattice spacing goes to zero first, §; goes to infinity. This drives the timelike plaquettes to
unity first.

I want to find a quantum mechanical Hilbert space and a “transfer matrix” operator T
such that

Z = / (dU)e™5 = ToTN = Tre #/*T

with N being the number of time slices for our periodic lattice and 7 the physical tem-
perature. If we identify Nag = 1/k7 our Hamiltonian is formally H = —Nk7T logT =
— L JogT.

ao

Our Hilbert space is the direct product of spaces of square integrable functions over the
gauge group. A state |¢) is specified by a wave function ¢ (U) which is a function of link
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variables U;; which in turn are group elements associated with each bond of a spacelike
lattice. The inner product is

W) = [y @)
Here the (dU) only refers to integration over spacelike links.

A natural non-normalizable basis {|U)} consists of states specified by group elements on
each bond. These elements are constrained bo that reversed links are not independent
Uij =U JTZ The overlap of these basis states is

(U'\uy = Ha U,

where the group theoretical delta function is defined in the natural way

/ dof(9)8(g, 9) = £ (g')

for any function f(g). Completeness reads

1=/<dU>|U><U

and a general state takes the form

) = / (@)UY (U)

I can now write down by inspection the matrix elements of my desired transfer matrix

(U'|T|U) =exp Z ReTr(U;.UL)

1] zg

2
X exp (ggz Z ReTrUs)

Just as for ordinary quantum mechanics we have conjugate operators p and &, we want to
find a complete set of operators to generate our Hilbert space. In analogy with z, define
a set of matrix valued operators U;; satisfying

Ui;|U) = Uy |U)



The conjugate variable should generate the analog of translations, and indeed it convenient
to start directly with the translation operators. Thus given some group element g and some
link (ij), consider the quantum operator R;;(g) defined by

Rij(9)|U) = |U")

where Uj; = gU;; and on all other links the U’s are unchanged. These group-translation
operators satisfy the group representation property

Ri;j(9)Rij(9") = Rij(g99")

Using these operators, the transfer matrix takes the form

Z ReTrg

gt ag

2@0
X exp (gg—a Z ReTrUs>

Wiy =1] [ doris(o)exo

Now for some more group theory. Since R;;(g) represents the group, let me write it in
terms of generators. Thus consider

where w® are a set of parameters and A* the fundamental group generators, which satisfy
AT =
1
TrA*Ne = —§2P
2
(X%, €] = ifoBT X
With some foresight in notation, I introduce operators Ef; which generate R through the

equation
Rijg) = € Bl = ¢ B

These quantities are Hermitian operators in our Hilbert space and satisfy
[Eg, EL] =if*"E]

1’ J
] = —)\anj

[ K
These are the canonical commutation relations analogous to [p,z] = i. The operators

corresponding to different links all commute. Homework: verify the minus sign in the
second part of the above equation.



The connection between a link and its inverse is

which implies
[E5, Ujil = Ujix*

R

a Bl _
[Eija Eji] =0

To relate the forward and reversed E’s, look at
Rji(9)|Uij) = [Uizg™")

= |(Uijg~'U;;")Uij)

= Rij(Uijg~ U5 ) |Uss)
This implies for the generators

E§i|U) = ~G(Us)** Bj|U)
where I have introduced the adjoint representation G(g)aﬁ by
97N = G(9)*" N

The quadratic casimir operator Efj =>. E7E}; commutes with R and, by the above
relation, does not depend on the direction of the link

2 _ 2

Now lets go back to the transfer matrix. I want to take the timelike spacing to zero.
This means the integrals over g will be dominated for g near the identity. Here the group
measure is smooth, and we expand in the group parameters w using

dg ~ Hdwa
2

ReTrg =n — wz + O(w?)

This gives
T = Ke—aoH+O(a(2))

with K an irrelevant normalization and the Hamiltonian

2
g 2 A
H = (g+/95) o § :Efj + 7 § ‘ReTrU,
P

ij



where I have defined g2 = g;gs. The overall g;/g, factor goes to unity in the continuum
limit. This is the Kogut-Susskind Hamiltonian. The first term represents the electric field
squared, while the second, involving spacelike plaquettes, is the magnetic field squared.

This Hamiltonian possesses a large symmetry due to the remaining gauge freedom. The
temporal gauge still allows time-independent gauge transformations. An operator that
performs such at site 7 is
Jilg)= ][ Riilg)
{ij}Di
where the product extends over all bonds eminating from site 7. This is a symmetry

operator that commutes with H. All physical states should be singlets under this operation
in that they satisfy

Ji(9)|¥) =+
In terms of the generators

> Eflp) =0

{ij}D1
The net flux of electric field out of any site should be zero for physical states. This is an
exact discrete version of Gauss’s law.



Mean field theory

(this section adapted from my rhic97 notes)

Let me consider for simplicity a simple Ising spin system, and I want to study a ferromag-
netic transition, giving a magnetization M = (s).

Consider a large number of dimensions. Then each site has lots of neighbors, suggesting
we might assume their effect can be averaged. Suppose we are in a magnetized state with
(s) = M. Look at one spin in the average field of the others. Calculate its magnetization

p2dMB _ ,—2dMB

M = G2dMB | o2 = tanh(2dM ()

This can be solved by iterating

M — M+ AM
AM = tanh(2dMp) — M

We have a non-trivial fixed point only if

ﬁzﬂc=%

Jensen’s inequality provides a more formal approach to mean field theory. Note that e®
2

is a convex function, j?em = e® > 0. If z is some stochastic variable, this means that

(e®) > e!®). Show this for homework.

Consider a “fake” weighting with P(s;) = % With this probability distribution

<3i>P = tanh(H)

Thus H might be thought of as a “source” pulling on the spins. Now I manipulate the
partition function

zZ= Z eﬂ Z{m 8isj
{s}

_ Z eﬂ Z{ij} SiSj_Zi log(P(s;)) H P(Sl)
{s} i
_ <6ﬂ Z{ij} sisj—H Zz s;+V log(2 cosh(H))>P

> exp({0 Z sis; —H Z s; + V' 1og(2 cosh(H)))p)
{is} @
= exp(V(df tanh®(H) — H tanh(H) + log(2 cosh(H))))
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Thus for any H the true free energy is less than
F <= Fy,; = —dftanh’®(H) + H tanh(H) — log(2 cosh(H)).

This is an “effective potential” which, depending on the value of 3, can have one minimum
at H = 0 or a double well shape with two minima. The critical point occurs when O(H?)
term vanishes, i.e. the “mass term.” This happens at

dB. —1/2 =10
or B, = 2—1d, as before.

These transitions have been second order, i.e. the system evolves continuously with the
coupling parameters. The picture is a bit different with three states, where cubic terms can
drive us to first order transitions, and physics becomes discontinuous. For example consider
the three state Potts model, a system with a Zs symmetry. Take s; € {1, e2™/3 ¢=27%/3},
Suppose the bonds have low energy if the spins are “parallel” or equal, higher energy

otherwise
—_— * .
E=— E Res; s;
1J

Define the magnetization to vanish for a random distribution
M = (Res;)

For mean field theory, we are to replace neighbors with the average and solve self consis-
tently. Now there are two anti-parallel cases, each giving minus half a unit of magnetization

B edBM _ —dBM/2
T edBM | 9p—dpM/2

Expand the right hand side for small M

M = gﬁM + gﬁ2M2 + O(M3)

For the Ising case there was no O(M?) piece, and the O(M3) piece was negative. Now a
non-trivial solution appears before reaching 8 = 2/d. The new solution appears discon-
tinuously; when it becomes of lower energy, we have a first order transition! Note that
when the extra solution first appears, it is meta-stable and not the lowest energy; one can
use the Jensen inequality argument to estimate when it drops below the unmagnetized
state. Simulation results show that for three and more dimensions the transition is indeed
first order. In two dimensions, however, it is second order and the prediction fails. In one
dimension there is no transition, just as for the Ising case.
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Mean field theory suggests first order transitions for lattice gauge theory. Lattice gauge
theory is summarized by the path integral

Z = Z exp(f Z ReTrUp)
U P

with Up = U U3U3sUy, and the U; are link variables running around the plaquette in
question. The local symmetry U;; — g;U;jg; implies there is no barrier to twirling a local
group of links around. Without gauge fixing U cannot have an expectation value for any
(. This is Elitzur’s theorem. One should play the Jensen game for more rigor, but proceed
naively anyway, trying to find a self consistent expectation for a link. Do Z, for simplicity,
which gives the same result as the above Ising case except for the replacement M — M3
for the average field
M = tanh(BM?)

Now there is no linear term at all on the right hand side. The prediction is for a strong
first order transition. Most lattice gauge transitions in fact are first order: Z3_4 in four
dimensions; all known gauge groups in 5 or more dimensions. However, in 3-d, the Zs
gauge model is dual to the Ising model; so, the transition is second order. In 2-d, gauge
fixing turns a gauge model into a one dimensional spin system, with no transitions for any
finite dimensional group.

(a bit of review) Group integration extracts the “singlet” part of a function in the following
sense. Suppose f is a “class function,” i.e. f(g) = f(g1gg97"). Then I can expand it in
traces over the various irreducible representations R of the group

F(9) =) frxr(g)
R

where the character xr(g) = TrMg(g) and Mg(g) is the matrix representing g in represen-
tation R. These representations include the trivial one, R = 0, the fundamental one R = F',
the adjoint R = A, and generally infinitely many more. For irreducible representations,
the characters x satisfy an orthogonality condition

/@ﬁ@”ﬂ@=ﬁm

From this and xo(g) = 1, we see
[ st (@)= fo

If we insert a character in some other representation we obtain

/@&@f@ZM-

This allows us to do some specific integrals integrals quite easily. For example, with SU(3)
we have
[ g (109 =1
SU(3)
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since there is only one singlet in the famous decomposition 3 3®3 =16&8® 8@ 10. This
integral lies at the base of the argument below for a first order chiral transition with three
massless quark flavors.

So lets apply this to lattice gauge theory. On each bond of our hyper-cubic lattice we have
a group element U;;. The Wilson action multiplies these around elementary squares and
constructs Up = U UyU3Uy. The partition function is

Z = / {dU}e™P 2op Rexr (UP)

Formally, as argued earlier, this represents something like Z = Tre®# ™Vt with a the temporal
lattice spacing. The picture, however, is a bit more complicated due to gauge invariance.
If we put a group element g; on each site, we can imagine taking U;; — giUijgj_l. This
change cancels from the action.

In the temporal gauge, all time-like links are set to unity. In this gauge the above transfer
matrix argument reduces the path integral to Hamiltonian lattice gauge theory. But on
finite periodic temporal lattice, temporal links at a given spatial site form a closed loop.
Thus one cannot gauge fix all of them. At each spatial location we must leave one temporal
link unfixed, take it to be at time 0. What does integrating over this link correspond to?

In Hamiltonian language, there is an operator R;(g) that does a local gauge rotation at
site 7. In particular, for a link to a spatial neighbor

Ri(9)Ui;R; ' (g) = gUi;

These are all operators in the Hilbert space of the Hamiltonian approach. What the path
integral formally reduces to is

Z =Tr (e_aHNt H(/ dgiRi(gi))>

7

From the above discussion we see that this last integration projects out a gauge singlet.
This operator imposes the lattice-gauge-theory version of Gauss’s law

<%5-E>«{/ngxm

Now we can generalize and consider not projecting out the singlet everywhere. In partic-
ular, at one site I might want to put down a quark-like source. To do this I simply insert
the character for the desired representation

/@ﬁ@&@
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The ratio of the new partition function to the old is the Wilson line or the Polyakov loop.
Going back to the path integral, it is just the expectation of a product of temporal links
wrapping around the time direction. This Hamiltonian argument explicitly shows how it
represents the energy carried by a fixed source in the fundamental representation of the

gauge group.

For the quark-less theory, the unfixed temporal links at time 0 have a global symmetry
under the center of the gauge group. For the SU(3) of the strong interactions the center is
the set {1,et2™¥/3}. By definition, center elements commute with all group elements, and
the global change g; — e2™*/3g; will cancel out of the temporal plaquettes, each of which
involves one g; and one gj_l. This is exactly the same symmetry as for the 3 state Potts
model, which I argued above should have a first order phase transition. This prediction is
well verified by numerical simulation.

The quark kinetic term explicitly breaks this symmetry, so the transition might go away.
For massless quarks, it is instead the global chiral symmetry that becomes relevant. This
suggests second order for two flavors. For three light flavors the suggestion is first order
since there is a quadratic term in the mean field expansion. This arises since the product of
three fundamental representations contains a singlet piece, as we well know because three
quarks can combine to form a gauge singlet baryon. Generalizing our earlier mean field
equation to an SU(3) spin system gives

[ dg e2PMReTrI Ty dBM + (dBM)?/2+ ...
[ dg e2dBMReTrg 14 (dBM)2...

3M = = dBM + (dBM)2)2...

where I use the earlier SU(3) example integral. The quadratic term means that the solu-
tion jumps discontinuously, just as argued earlier for the Potts model. The interpolation
between the small and large mass limits for various numbers of flavors is a major area of
current study.
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