Lattice gauge notes IV
Monte Carlo

Start with the pure gauge theory; return to the quarks later.

The path integral
7= / (dU)e~5

on a finite lattice is a finite dimensional integral. One might try to evaluate it numerically.
But it is a many dimensional integral. With SU(3) on 10* lattice we have 4 x 8* links,
each parametrized by 8 numbers. Thus it is a 320,000 dimensional integral. Taking two
sample points for each direction, this already gives

2920000 — 3.8 x 10%%*  terms

The age of the universe is only ~ 1027 nanoseconds, so adding one term at a time will take
a while.

Such big numbers suggest a statistical approach. Find “typical” equilibrium configurations
P(C) ~ e #5(©)

Use a Markov process
C—-C — ...

For example, consider a Z5 theory with U € {£1}. Then the path integral is a discrete
sum over 240:990 terms. But storing a configuration involves only 40,000 numbers. Given
a configuration, set up a loop over those numbers, touch a heat bath to each in turn. That
is, calculate the probability for that spin to be 1

e_ﬂs(l)
e—B5(1) 1 ¢—B5(—1)

P(1) =
and then set it to 1 or —1 with this probability.
For a 146 line (with comments) example program, see
“http://thy.phy.bnl.gov/~creutz/coursenotes/z2/” .
For simple models, such as SU(2), this procedure can be implemented fairly straightfor-
wardly. For SU(3) the generation of the heat bath weighted group elements is complicated

so other algorithms are used.

In general we want a procedure that takes a configuration C' to a new one with some
probability P(C' — C’). This satisfies 0 < P < 1 and ) , P(C — C’) = 1. (For
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continuous groups the sum really means integrals.) To set up a Markov process, P should
have no dependence on the history (an easy way to make a mistake!).

We want this to bring us closer to “equilibrium.” For this we need at least two things.
- equilibrium should be an “eigen-distribution”

ZP(C — Ce3(C) = ¢=5(0)
Cl

- ergodicity: all states can eventually be reached with the set of P’s used
This is all that is required!

Suppose we start with ensembles of states, E, characterized by their distribution p(C). A
distance between ensembles is easily defined

D(E,E') =) Ip(C) - (O)
C

This is positive and vanishes only if the ensembles are equivalent. A step of our Markov
process takes ensemble E into another E’ with

p(C)=>_ P(C—C)p(C)
7

Now assume that P is chosen so that the equilibrium distribution p.,(C) = e™5(©)/Z is
an eigenvector of eigenvalue 1. Compare the new distance from equilibrium with the old

D(E',Eeq) = ) _IP'(C) = peql =Y | D P(C = C')(p(C) = peg(C))]
c c c
Now the absolute value of a sum is always less than the sum of the absolute values, so we

have
D(ElaEeq) < E E :P(C - Cl)‘(p(c) _peq(C))|
c cC

The since each C' must go somewhere, the sum over C’ gives unity and we have

D(E', Eeq) < Y |(p(C) = peq(C))| = D(E, Eey)
c

Thus the algorithm automatically brings one closer to equilibrium.

How can one be sure that equilibrium is an eigen-ensemble? The usual way is detailed bal-
ance, a sufficient but not necessary condition. This states that the forward and backward
rates between two states are equal when in equilibrium

peq(C)P(C — Cl) = peq(C,)P(Cl - C)
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Summing this over C’ immediately gives the fact that the equilibrium distribution is an
eigen-ensemble.

The heat bath algorithm trivially satisfies detailed balance since it uses P(C — C’)
Peq(C") with all untouched variables being fixed.

The Metropolis et al. approach is an elegant and simple way to construct an algorithm
satisfying detailed balance. This begins with a trial change on the configuration, specified
by a trial probability Pr(C — C'). This is required to be constructed in a symmetric way,
so that

PT(C — C,) = PT(CI — C)

This by itself would just tend to randomize the system. To restore the detailed balance,
the trial change is conditionally accepted with probability

A(C, C") = min(1, peg(C") /eg(C))

In other words, if the Boltzmann weight gets larger, take the change, otherwise accept it
with probability proportional to the ratio of the Boltzmann weights.

An explicit expression for the final transition probability is

P(C = C') = Pr(C — CA(C,C") + §(C, C") (1 3" Pr(C = CA(C, C”))
ol

The delta function term accounts for the possibility that the change is rejected.

For lattice gauge theory with its U variables, the trial change can be most easily set up via
a table of group elements T = {g1, ...gn}. The trial change consists of picking an element
randomly from this table and using Ur = gU. These can be chosen arbitrarily with two
conditions: (1) multiplying them together in various combinations should generate the
whole group and (2) for each element in the table, its inverse must also be, i.e. g €
T = g~! € T. The second condition is essential for having the forward and reverse trial
probabilities equal.

Note: the measure of the group is not used in any way! It is generated automatically.

Generally the group table should be weighted towards the identity. Otherwise the accep-
tance gets small and you never go anywhere. But not too much, because then the motion
is slow. Usually the width of the table is adjusted to the acceptance is about 50%. For
free field theory the optimum can be worked out, it is a bit less. Note: a big change with a
small acceptance can sometimes be better than small changes; this appears to be the case
with simulating self avoiding random walks.



Amusing observation: the acceptance involves I:L((é,)) The expectation of this ratio in
eq

equilibrium is

Peq(C)\ _ / / B
<m> B ZC:pGQ(C) %:PT(C — C")peq(C") [peq(C) == 1

since

Y Pr(C—C)=) Pr(C'—C)=1
C C

Of course the average acceptance is not 1 since it is expectation of the minimum of this
ratio and 1. I like to use this expectation as a monitor of when I am near equilibrium.

Variations:
1) calculation of the “staples” takes a fair amount of time, thus multiple hits are good

2) overrelaxation: the contribution to the action from a single link U is of the form
ReTr(MU) with M depending only on the neighbors. Project M onto a group element
Uy in some arbitrary way. Then take Ur = Uy 'U—'U,. This takes U to a reasonably far
away place with little change in action. I.e., with constant M it takes the element to its
inverse, which is on the opposite side of the minimum action.

3) Cabbibo Marinari: For SU(2) a heat bath is not too hard to implement (my old paper).
For SU(3), apply this successively to three SU(2) subgroups.

Old results:

- thermal cycles, measure plaquette

- Z4: strong first order phase transition; area vs. perimiter clean

- U(1): deconfining phase transition at § = 1. Blamed on monopole condensation.
Order uncertain, weak first order?

- SU(2) and SU(3): smooth passage from weak to strong coupling. Argues for con-
finement.

- SU(N), N > 4: bulk phase transition; lattice artifact?

Other studies:
- Higgs: confinement versus Higgs mechanism
- generalized actions: induce new artifacts



Fermions

The numerical difficulties with fermionic fields stem from their being anticommuting quan-
tities. Thus it is not immediately straightforward to place them on a computer, which likes
to manipulate numbers. Indeed, the Boltzmann factor is formally an operator in a Grass-
mann space, and cannot be directly interpreted as a probability for Monte Carlo purposes.
All algorithms in current use eliminate the fermions at the outset by a formal analytic
integration. This is possible because most actions in practice are, or can easily be made,
quadratic in the fermionic fields. The fermion integrals are then over generalized gaussians.
Unfortunately, the resulting expressions involve the determinant of a large, albeit sparse,
matrix. This determinant introduces nonlocal couplings between the bosonic degrees of
freedom, making the path integrals over the remaining fields rather time consuming. Nev-
ertheless, various tricks have been developed to minimize the pain with fermions.

For this discussion I will be quite generic and assume we are interested in a path integral
of form

7= / (dA)(d) (") oxp(—Sa(A) — $*M(A)p).

Here the gauge fields are formally denoted A and fermionic fields ¢ and 4*. As I will
be concentrating on fermionic details, I will ignore the technicality that the gauge fields
are group elements. All details of the fermionic formulation are hidden in the matrix
M(A). While I may call A a gauge field, the algorithms are general, and have potential
applications in other field theories and condensed matter physics.

Note that under multiplicative rescaling a Grassmann integral behaves as
[ avswa)= ([ dwsw)a.

This can be written in the heuristic form d(¢¥a) = (d¢)/a. For integration over several
anticommuting variables, I have

/ () F (M) = | M| / pf ()

where M is an arbitrary matrix, |M| its determinant, and (dw) denotes di); .. .d,,. This
immediately implies the Matthews-Salam formula for a fermionic Gaussian integral

[apasry e —
where (dydy*) = di1dys ... dip,diy.
Using this, I explicitly integrate out the fermions to convert the path integral to

Z = /(dA) (M| eS¢,
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This is now an integral over ordinary numbers and therefore in principle amenable to
Monte Carlo attack.

For now I assume that the fermions have been formulated such that |M| is positive and
thus the integrand in can be regarded as proportional to a probability measure.

- Wilson fermions satisfy ysMys = M1

- Implies |M| real

- for large K it is not always positive If | M| is not positive, one can always double the
number of fermionic species, replacing M by MMT. The case where M is not positive is
not yet well understood, and indeed in some such cases the path integral may not be well
defined. These problems are probably closely connected with the difficulties of placing
chiral fermions on the lattice. This issue is quite important; with a chemical potential
present to give a background fermion density, the determinant is not in general positive.
Indeed, it is not yet known how to simulate this physically important problem.

Direct Monte Carlo study of the partition function in this form is still not practical because
of the large size of the matrix M. In our compact notation, this is a square matrix of
dimension equal to the number of lattice sites times the number of Dirac components
times the number of internal symmetry degrees of freedom. Thus, it is typically a tens
of thousands by tens of thousands matrix, precluding any direct attempt to calculate its
determinant. It is, however, generally an extremely sparse matrix because most popular
actions do not directly couple distant sites. All the Monte Carlo algorithms used in practice
for fermions make essential use of this fact.

Some time ago Weingarten and Petcher presented a simple “exact” algorithm. They ob-
served that by introducing auxiliary set of complex scalar fields ¢ one can rewrite the path
integral in the form

2= [ (@A)d6" d)expl~5a - "M "),

Thus a successful fermionic simulation would be possible if one could obtain configurations
of fields ¢ and A with probability distribution

P(A,¢) x exp(—Sg — ¢*M ' ¢).

To proceed I will assume that M is a positive matrix so this distribution is well defined.

Note:

- if x is gaussianly random

- P(x)~ex

- then ¢ = M x distributed as desired for two flavors
- P(¢) ~e M9

- hard part is the A updating

Trick to generate gaussian random numbers:
- given uniform generator dP/dz = const
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- call it twice, generate r = \/—log(z1) and 6 = 27z,

- dP/dr ~ re="’

- x = rcos(f) and y = rsin(f) are distributed as desired
- dxdy ~ rdrdf

- dP/dzdy ~ e ~e % Y’

While M~! is the inverse of an enormous matrix, one really only needs ¢* M ~1¢, which
is just one matrix element of this inverse. Furthermore, with a local fermionic action the
matrix M is extremely sparse, the nonvanishing matrix elements only connecting nearby
sites. In this case there exist quite efficient iterative schemes for finding the inverse of a
large sparse matrix applied to a single vector. Thus it was proposed to directly simulate
the partition function using a Gauss-Seidel algorithm to calculate M ~'¢. Most recent
work has turned to the conjugate gradient algorithm for this inversion.

The conjugate gradient algorithm has also been quite useful for fermionic studies in the
“valence” or “quenched” approximation, where the Dirac equation is solved on gauge field
configurations obtained by simulations ignoring the feedback of the dynamical quarks on
the gauge fields themselves. This approximation, circumvents the problem of simulating
dynamical quarks, but still imposes substantial computational demands when the lattices
are large.

The conjugate gradient method to find ¢ = M ~1¢ works by finding the minimum over ¢
of the function |[M¢ — ¢|2. The solution is iterative; starting with some &, a sequence of
vectors is obtained by moving to the minimum of this function along successive directions
d;. The clever trick of the algorithm is to choose the d; to be orthogonal in a sense
defined by the matrix M itself; in particular (Md;, Md;) = 0 whenever i # j. This last
condition serves to eliminate useless oscillations in undesirable directions, and guarantees
convergence to the minimum in a number of steps equal to the dimension of the matrix.
There are close connections between the conjugate gradient inversion procedure and the
Lanczos algorithm for tridiagonalizing sparse matrices.

The procedure is a simple recursion. Select some arbitrary initial pair of non-vanishing
vectors gg = dp. For the inversion problem, convergence will be improved if these are a
good guess to M ~'¢. Then generate a sequence of further vectors by iterating

gis1 = (Mgi, Md;)g; — (9i, 9:) M Md;
diy1 = (Md;, Md;)giy1 — (Md Mg;11)d;
This construction assures that g; is orthogonal to g;+1 and (Md;, Md;4+1) = 0. It should

also be clear that the three sets of vectors {do, ...dx}, {go,.--gx}, and {do,...(MTM)*dy}
all span the same space.

The remarkable core of the algorithm, easily proved by induction, is that the set of g; are
all mutually orthogonal, as are Md;. For an N dimensional matrix, there can be no more

than N independent orthogonal vectors. Thus, ignoring roundoff errors, the recursion in
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Eq. (15) must terminate in N or less steps with the vectors g and d vanishing from then
on. Furthermore, as the above sets of vectors all span the same space, in a basis defined by
the g; the matrix MM is in fact tri-diagonal, with (Mg;, Mg;) vanishing unless i = j £ 1.

To solve ¢ = M¢ for £, simply expand in the d;
=) od;.
The coefficients are immediately found from the orthogonality conditions
o; = (Md;, )/ (Md;, Md;).
Note that if I start with the solution dy = M ~'¢, then I have a; = J;.

This discussion applies for a general matrix M. If M is Hermitian, then one can work
with better conditioned matrices by replacing the orthogonality condition for the d; with
(di, Mdj) vanishing for ¢ # j.

In practice, at least when the correlation length is not too large, this procedure adequately
converges in a number of iterations which does not grow severely with the lattice size.
As each step involves vector sums with length proportional to the lattice volume, each
conjugate gradient step takes a time which grows with the volume of the system. Thus the
algorithm is expected to require computer time which grows as the square of the volume
of the lattice. Such a severe growth has precluded use of this algorithm on any but the
smallest lattices. Nevertheless, it does show the existence of an exact algorithm with
considerably less computational complexity than would be required for a repeated direct
evaluation of the determinant of the fermionic matrix.

- quenched approximation: use CG to find propagator
- fixed gauge field background

- construct meson propagators, extract masses

- ignores internal loops

Here and below when I discuss volume dependences, I ignore additional factors from critical
slowing down when the correlation length is also allowed to grow with the lattice size. The
assumption is that such factors are common for the local algorithms treated here. In
addition, such slowing occurs in bosonic simulations, and I am primarily concerned here
with the extra problems presented by the fermions.

One could imagine making trial changes of all lattice variables simultaneously, and then
accepting or rejecting the entire new configuration using the exact action. The problem
with this approach is that a global random change in the gauge fields will generally increase
the action by an amount proportional to the lattice volume, and thus the final acceptance
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rate will fall exponentially with the volume. The acceptance rate could in principle be
increased by decreasing the step size of the trial changes, but then the step size would
have to decrease with the volume. Exploration of a reasonable region of phase space would
thus require a number of steps growing as the lattice volume. The net result is again an
exact algorithm which requires computer time growing as volume squared.

- step size €

_ P A~ 6—62V

- pick € ~ 1/4/(V)

- random walk in N steps goes e/ N
- new configuration takes V steps

- order V2 algorithm

So far this discussion has assumed that the trial changes are made in a random manner.
If, however, one can properly bias these variations, it might be possible to reduce the
volume squared behavior. The “hybrid Monte Carlo” scheme does this with a global
accept/reject step on the entire lattice after a microcanonical trajectory. This algorithms
has an interesting theoretical volume dependence that I now discuss.

In some sense, the difficulties with fermions stem from the time consuming evaluation of
M~1¢. For simplicity, let me not write ¢ explicitly and assume that I have some action
which is particularly difficult to calculate; so, I want to evaluate it as rarely as possible.
Make the trial changing table into dynamical variables. Consider one group element g
corresponding to each U. Look for a coupled distribution

P(g, U) ~ e—S(U)-i-E%ReTI‘g
For the trial change of U and g take
gi/2 = F(U)QF(U)

U' = 91/2U
g ' =F(U")g12FU')

where for now F'(U) is an arbitrary “force” function taken to lie in the gauge group. Note
that dUdg = dU'dg’. Also note that if we take ¢’ to its inverse and repeat the same steps,
we will go exactly back to the start.

g1, /12 =FU)g 'FU)
U= gl_/le
g ' =FU)g 'F(U)

Now in equilibrium both g and its inverse are equally likely, so a technically valid Monte
Carlo step is to invert the g’s. The above change followed by such an inversion and a
Metropolis acceptance will give a valid algorithm.
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The value added by introducing the driving F' lies in trying to cancel the changes in the
total action to get a bigger acceptance. To see this more easily, let me drop the group
complications and replace (g, U) with simple numbers (p, A) and look for

P(p,A) = e~ A

with
H=7p?/2+ S(A)

Define F = 0S/0A. An approximately energy conserving algorithm is given by a dis-
cretization of Newtons law
P12 =p+0F(A)/2
A =A+6p

p =pipp+0F(A")/2
or combined
A= A+ pé+ F(A)S?
P =-p— (F(A)+ F(4))/20.

This is an area preserving map of the (A, p) plane onto itself. The scheme iterates this
mapping several times before making the accept/reject decision. This iterated map remains
reversible and area preserving. The second order terms in this equation make it equivalent
to the leap frog procedure with an initial half step. The procedure thus generates a
microcanonical trajectory.

The important point is that after each step the momentum remains exactly the negative
of that which would be required to reverse the entire trajectory and return to the initial
variables. If at some point on the trajectory I were to reverse all the momenta, the system
would exactly reverse itself and return throughtr the same set of states from whence it
came. Thus a final acceptance with the appropriate probability still makes the overall
procedure exact. This slight modification of the hybrid algorithm makes it exact, just as
the procedure with a single step removes the systematic errors of Langevin evolution. After
each accept/reject step, the momenta p are refreshed, their values being replaced by new
Gaussian random numbers. The fields ¢ could also be refreshed at this time, or less often,
as turns out to be appropriate. The goal of the procedure is to use the microcanonical
evolution as a way to restrict changes in the action so that the final acceptance will remain
high for reasonable step sizes.

This procedure contains several parameters which can be adjusted for optimization. First
is Npnic, the number of microcanonical iterations taken before the global accept/reject step
and refreshing of the momenta p. Then there is the step size d, which presumably should
be set to give a reasonable acceptance. Finally, one can also vary the frequency with which
the auxiliary scalar fields ¢ are updated.

The goal of the approach is to speed flow through phase space by replacing a random
walk of the A field with a coherent motion in the dynamaical direction determined by the
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conjugate momenta. As long as the total microcanonical time for a trajectory is smaller
than some characteristic time for the system, the net change in A will grow linearly with
both N,,;. and §; thus we have

AA ~ Npicf.

which should be valid as long as
Npicd < O(1).

With large Ny, the change in the classical energy will also grow. In any given micro-
canonical step the energy changes by an amount of order §3. For N,,;. of order 61, the
total energy change will then be of order 62. Because the evolution preserves areas in phase
space, I have for the expected energy change

('~ H) = L((H' ~ H) + O((H' ~ H®) = O(5%).

Now if I update V independent variables together, these positive contributions can coher-
ently add and earlier arguments give an overall acceptance falling as

Pice ~ exp(—C’V54).
This means that & should be taken to decrease with volume as V~1/4. Correspondingly,
Npic should grow as V/4. The final result is that the total time required to obtain a
substantially changed lattice grows as

T ~ V5/4

This may be only an asymptotic statement, valid for systems much larger than the corre-
lation length. The main uncertainty lies in the unknown characteristic time scales.

Experience has shown that the simple leapfrog algorithm is quite adequate in most practical
cases. Ome should bear in mind, however, in going to large systems that higher order
schemes may eventually become useful.

This method does, however, require the fermion matrix to be a square, requiring at least
two species for Wilson fermions and eight for the Kogut Susskind case. Users of the hybrid
algorithm without the global accept-reject step have argued for adjusting the number
of fermion species by inserting a factor proportional to the number of flavors in front
of the pseudofermionic term when the gauge fields are updated. This modification is
simple to make, but is not completely theoretically understood. Indeed, it may introduce
spurious behavior if the physics is not smooth in the number of flavors. Nevertheless,
this flexability of the hybrid algorithm has made it quite popular, although when the
global accept condition can be applied, it is probably worthwhile for the extra confidence
it supplies.

Despite the successes of these fermion algorithms, the overall procedure remains somewhat
awkward, particularly when compared with the ease of setting up a pure bosonic simulation.
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This appears to be due to the non-local actions resulting from integrating out the fermions.
Indeed, had one integrated out a set of bosons coupled quadratically to the gauge field, one
would again have a non-local effective action, indicating that this analytic integration was
not a good idea. Perhaps we should step back and explore algorithms before integrating
out the fermions.

As Monte Carlo methods are particularly difficult with fermions, perhaps one should look
for other numerical methods not based on stochastic processes. Here I include such possi-
bilities as direct diagonalization of the Hamiltonian. So far these methods have been very
constrained on possible system size, suggesting that one should look for new approxima-
tions to discard irrelevant information as the systems grow in volume.

An extremely difficult unsolved question is the simulation of fermionic systems when the
corresponding determinant is not always positive. This situation is of considerable interest
because it arises in the study of quark-gluon thermodynamics when a chemical potential
is present. All known approaches to this problem are extremely demanding on computer
resources. One can move the phase of the determinant into the observables, but then one
must divide out the average value of this sign. This is a number which is expected to go to
zero exponentially with the lattice volume;, thus, such an algorithm will require computer
time growing exponentially with the system size. Another approach is to do an expansion
about zero baryon density, but again to get to large chemical potential will require rapidly
growing resources. New techniques are badly needed to avoid this growth; hopefully this
will be a particularly fertile area for future algorithm development.
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