Lattice gauge notes
Gauge Fields

What is a gauge theory

- electrodynamics plus isospin

- a theory of phases

- a local symmetry A, — g7 4,9 + igog~ 0.9

- fields don’t transform simply under Lorentz group

Lattice gauge theory closely tied to the middle two definitions. Put a phase on each link.
For non-Abelian case, phase becomes an element of the gauge group, i.e. U;; € SU(3).
The analogy is

__ _iagoA
- Ui ite, = €907

- Uij = Uﬁl = (U;;)1

Non-trivial gauge field means the curl of the potential is non zero, which in turn means
the phase factor around a closed loop is non trivial. The smallest closed path in the lattice
is a “plaquette.” Consider the phase corresponding to one such

Up = U12Uz3U34U41

In some sense this measures the flux through this plaquette Up ~ exp(iea®F), ). Thus a
nice way to get something like an action is to look at the real part of the trace of this

ReTrUp ~ const. — a*F,, F,, + O(a®)

An overall constant is irrelevant. This suggests to the natural lattice action

S(U) =) _ReTtUp
P

Now we have our variables and our action; we need to define our path integral as an integral
of the exponentiated action over all fields. For a Lie group, there is a natural measure that
I will discuss extensively shortly. Using this measure, the path integral is

7= / (dU)e~PS

where we obtain the conventional continuum expression if we choose 8 = 2N /g2 for group
SU(N) and conventionally normalized bare coupling go.

Physical correlation functions are obtained as expectation values. Given operator B(U)
which depends on the link variables, we have

(B) = / (dU) B(U)e P



Group Integration

For groups there is a natural measure which satisfies several nice properties. Given any
function f of the group elements g € G the integration measure should be invariant under
“translation” by an arbitrary fixed element g; of the group

/dg f(g) =/dg f(g19)

An explicit representation for this integration is almost never needed, but fairly straight-
forward to write down. Suppose a general group element can be is parametrized by some
variables oy, ...a,. For SU(N) there would be N? — 1 such parameters. Then assume we
know some region R for these parameters that covers the group exactly once. Define the
n dimensional fully antisymmetric tensor €, .. ,, such that, say, €1 2 ., = 1. Writing

n

I= A/Rdal...danf(g(&))eul,.‘_unTr (9704, 9)--(97 04, 9))

will have exactly the required invariance properties. Because we have a group g19(@) =
g9(@') and we can change variables from « tp o’ and the epsilon factor generates exactly
the Jacobean needed to absorb this change of variables.

The factor A is at this point arbitrary, but for a compact group it is convenient to normalize
the measure so that
/ dgl=1

The left and right measures are equal

/drg flg) = /dlgz/drgl f(g192) = /dlg f(9)

Applying this twice shows the measure is unique. For a non-compact group the normal-
ization might be different.

Similarly, we can show

[ s 1) = [ dg 157

For a discrete group, [ dg is just a sum over the elements. For U(1) = {¢%|0 < 6/27}

[awsw=[" L
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For SU(2)
G = {ap+id-&la} +a* =1}

the measure is simply

[ s 10)= 5 [ d*a 530 -1

In particular, SU(2) is exactly a 3-sphere.
- HW: verify the 72 factor

SU(3): you really never need it, but in case you are curious let me factor a general SU(3)
matrix as

1 0 0 1 0 0 1 0 O
g=10 1 0 0 ¢ ss| |0 ps O

0 0 1/pipapspepr 0 —ss cs 0 0 pr

Cq s4 O 1 0 0 P1 0 0

—84 C4 0 0 Cs S5 0 P2 0

0O 0 1 0 —s5 c5 0 0 ps3

Now the angles run over 0 < 61,02,03,06,07 < 2m and 0 < 64,05,0s < /2. With these
limits the integration measure is

/dg flg) = (2;)5 /dSHSin(294) sin(265s) sin(260s) f(g)

Note: SU(3) is approximately an S5 x Sz, but actually it has a slight twist, in mapping
an Sy non-trivially into the group one must cover it 4 times. I.e. we have a generalization
of a Moebius strip.

Some integrals are quite easy if we realize that group integration picks out the “singlet”
part of a function. Thus

[ daRata) =0

for any irreducible representation other than the trivial one, R = 1. One can write
/dgTrg Trgt =1
/ dgTrg (Trg)® =1
from the well known 3@ 3=1®8and 3®3Q®3=198® 83 27.

My book discusses an algorithm for a general integral, but for here I really only need
/dg 955 (9Nk1 = Lijui
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The group invariance says I can multiply the indices arbitrarily by group element on the
left or right. There is only one combination of the indices that can survive

Lijki = 6adjk/N

for SU(N). The normalization is fixed since tracing over ik should give the identity matrix.
Another integral that has a fairly simple form is

/dg Girjr Gings - Ginin = /Ny in€j . jn
This is useful for studying baryons.

We now have our full theory. It depends on two parameters, 8 and K, which correspond
to the bare gauge coupling and the quark mass, or equivalently to the lattice spacing and
the quark mass. The full action for SU(N) is

S=B) (1- %ReTrUp)
p

+ Z (Eﬂﬁz - K Zaz(l + V) Uiite,Vive, + Pige, (1= ’Yu)UiJr,i+e“¢i>
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Gauge invariance

The lattice gauge action has an exact local symmetry. If I place an arbitrary group element
g; on each site 4, the action is unchanged if I replace

Uij = 9; 'Uijg;
One consequence is that any link cannot have a vacuum expectation value
(Uij) = 97 (Uiz)g; = 0
Integrating over g;, say, gives zero.

Another consequence is that I can forget to integrate over a tree of links in calculating any
gauge invariant observable. An axial gauge uses all links pointing in a given direction.

- HW: solve two dimensional pure Zs gauge theory

More general gauges require an analogue of the Fadeev Popov factor. If B(U) is gauge
invariant, then

(B) =, [A©)BE©) = [ a0 BE)£©)/60)

where f is some gauge fixing function and

o) = [ @o)1(6: )
is the integral of f over all gauges.

Wilson loop provides a gauge invariant operator. Lots of things vanish without gauge
fixing, i.e. quark and gluon propagators!

Now let me get a bit formal and sloppy. Suppose f = 6(h) so ¢ = [(dg)d(h). The integral
of a delta of a function is generically a determinant ¢—! = det(dh/dg) which is how you
get the usual Fadeev Popov picture.

- Continuum can of worms

- does h completely fix the gauge?

- Gribov copies; etc.?

- lattice sidesteps these issues



Order parameters

Formally we have something like a classical statistical mechanics spin system. The spins
U;; are elements of a gauge group G. They are located on the bonds of our lattice. Can
this system become “ferromagnetic”? Gauge invariance says (U) = 0.

- confinement vs free photons?

- U(1) different from SU(3)?

- Wilson loop measures force between quark sources
- area law versus perimiter law

- non-local order parameter

With dynamical quarks:

- screening: always perimeter law

- glueballs massive, use mass gap

- massless quarks: no mass gap

- use low temperature Stefan Boltzmann law?

Strong coupling;:

- area law from pure gauge theory

- W ~ (B/2N?)2° = exp —area x log(2N?2/p3)
- mass gap (P1P). ~ exp—R x 4log(2N?/3)
- adjoint loop: perimeter law

- mesons: hopping parameter expansion

- (Ba)(0) ~ (2K)2E

- finite radius of convergence K ~ 2



