Lattice gauge notes, part II
Fermions

Here I will approach Wilson fermions in three different ways. First as a simple hamiltonian
system, then from a path integral approach, and finally as a Dirac operator in the path
integral.

The essence of the lattice doubling problem already appears with the simplest Fermion
Hamiltonian in one space dimension

H = iKZa;+1aj — a;f-aj_|_1.
J

Here j is an integer labeling the sites of an infinite chain and the a; are Fermion annihilation
operators satisfying standard anticommutation relations

[aj, az] N = aja}; + azaj = 0 k-

The bare vacuum |0) satisfies a;|0) = 0. This vacuum is not the physical one, which
contains a filled Dirac sea. We refer to K as the hopping parameter. Energy eigenstates

in the single Fermion sector
x) =Y _x;allo)
J

can be easily found in momentum space
Xi = 'y Xo-
where 0 < ¢ < 27. The result is
E(q) = 2K sin(q).

The physical vacuum has the negative energy states filled to form a Dirac sea.

- H.W.: show that the ¢ in our Hamiltonian is just a convention. find a change of
variables that would reduce the Hamiltonian to H = K ), a;f. 1105 + a;r-aj+1

If we consider a Fermionic wave packet produced from small momentum ¢, then since the
group velocity dE/dq is positive in this region, it will move to the right. On the other hand,
a wave packet produced from momenta in the vicinity of ¢ ~ 7 will be left moving. The
essence of the Nielsen Ninomiya theorem is that we must have both types of excitation.
The periodicity in g requires the dispersion relation to have an equal number of zeros with
positive and negative slopes.



Here I will concentrate on a Hamiltonian version of Wilson approach to remove the doubles.
Work in one dimension with a two component spinor

()

The most naive lattice Hamiltonian begins with the simple hopping case of above and adds
in the lower components and a mass term to mix the upper and lower components

H=iKY al ja;—alajs — bl b +blbj4
J

+M Z a;bj + b;r.aj.
]

{0 1 {0 -1
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and defining ¢ = ¢y, we write the Hamiltonian more compactly as

H = Zz’K@jH%% —P71i41) + MZEJ%"
i ]

Introducing Dirac matrices

As before, the single particle states are easily found by Fourier transformation and satisfy
E? = 4K?sin®(q) + M?
Again, we are to fill the negative energy sea.

Naive chiral symmetry is implemented through distinct phase rotations for the upper and
lower components of ). The mass term mixes these components and opens up a gap in
the spectrum. The doublers at ¢ ~ 7, however, are still with us.

To remove the degenerate doublers, we make the mixing of the upper and lower components
momentum dependent. A simple way of doing this was proposed by Wilson. In our
language, we add one more term to the Hamiltonian

H= ZKZ a;-_l_laj — a;r-aj+1 — b;r-_l_lbj + b;-bj_i_l
J
+M Z a;r.bj + b;r-aj
J
—’I‘KZ a;r.bj+1 + b;r-aj+1 + b;r.+1aj + a;r.+1bj

J
=Y KWy (ivi — r)h; — (i + 1)) + > Mipjap;.
i i
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Now the spectrum satisfies
E? = 4K?sin’(q) + (M — 2rK cos(q))*.

Note how the doublers at ¢ ~ 7 are increased in energy relative to the states at ¢ ~ 0.
The physical particle mass is now m = M — 2r K while the doubler is at M + 2rK.

When r becomes large, the dip in the spectrum of near ¢ = 7 actually becomes a maximum.
This is irrelevant for our discussion, although we note that the case r = 1 is somewhat
special. For this value, the matrices ¢y, =7, which determine how the Fermions hop along
the lattice, are proportional to projection operators. In a sense, the doubler is removed
because only one component can hop. This choice for r has been the most popular in
practice, but we remain more general.

The hopping parameter has a critical value at
M
Kcrit = 2_

At this point the gap in the spectrum closes and one species of Fermion becomes massless.
The Wilson term, proportional to r, still mixes the a and b type particles; so, there is no
exact chiral symmetry. Nevertheless, in the continuum limit this represents a candidate for
a chirally symmetric theory. Beforehand, chiral symmetry does not provide a good order
parameter.

A difficulty with this approach is that gauge interactions will renormalize the parameters.
To obtain massless pions one must finely tune K to K .+, an a priori unknown function
of the gauge coupling. Despite the awkwardness of such tuning, this is how numerical
simulations with Wilson quarks generally proceed. The hopping parameter is adjusted to
get the pion mass right, and one hopes for the remaining predictions of current algebra to
reappear in the continuum limit.



Fermionic transfer matrices

Anticommutation is at the heart of fermionic behavior. This is true in both Hamiltonian
operator formalisms and Lagrangian path integral approaches, but in rather complemen-
tary ways. If an operator a' creates a fermion in some normalized state on the lattice or
the continuum, it satisfies the basic relation

[a,a']; = aa’ +afa = 1.
This contrasts sharply with the fields in a path integral, which all anticommute

[ x']+ = 0.

The connection between the Hilbert space approach and the path integral appear through
the transfer matrix formalism. For bosonic fields this is straightforward, but for fermions
certain subtlies arise, related to the so called “doubling problem.” Ref: hep-lat/9905024

To be more precise, consider a single fermion state created by the operator af, and an
antiparticle state created by another operator bt. For an extremely simple model, consider
the Hamiltonian

H =m(a'a +b'd) + p(ata — b'd).

Here m can be thought of as a “mass” for the particle, and p represents a chemical
potential. What I want is an exact path integral expression for the partition function

7 = Tre PH .

Of course, since my Hilbert space has only four states, this is trivial to work out: Z =
1+ e™tH 4 em—k 4 2™ However, 1 want this in a form that easily generalizes to many
variables, makes the connection with the Wilson projection operator clear, and illustrates
how the chemical potential is properly inserted into a path integral.

A path integral for fermions uses Grassmann variables. I introduce a pair of such, x and
xT, which will be connected to the operator pair a and a', and another pair, ¢ and &7, for b,
b. All the Grassmann variables anticommute. Integration over any of them is determined

by the simple formulas
/dxle; /dxle.

This determines my phase conventions. For notational simplicity I join individual Grass-
mann variables into spinors

wz(g); Yh=(xt €).

To make things appear still more familiar, introduce a “Dirac matrix”

(1 0
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and the usual

P =Ty.
Then we have B
P = xTx + €1¢.

The temporal Wilson projection operators

1
arise when one considers the fields at two different locations

XIx; + &6 = Y Prap; + 9, Py

The indices ¢ and 7 will soon label the ends of a temporal hopping term; this formula is
the basic transfer matrix justification for the projection operator formalism.

For a moment I ignore the antiparticles and consider some general operator f(a,a’) in
my Hilbert space. How is this related to an integration in Grassmann space? To proceed
I need a convention for ordering the operators in f. I adopt the usual normal ordering
definition with the notation : f(a,a’) : meaning that creation operators are placed to the
left of destruction operators, with a minus sign inserted for each exchange. In this case a
rather simple formula gives the trace of the operator as a Grassmann integration

Tr : f(a,a’): = /dXdXTeH*Xf(X, xh).

To verify, just check that all elements of the complete set of operators {1, a,a',afa} work.
However, this formula is actually much more general; with a set of Grassmann variables
{x,x'}, one pair for each fermion state, this immediately generalizes to the trace of any
normal ordered operator acting in a many fermion Hilbert space.

What about a product of several normal ordered operators? This leads to the introduction
of multiple sets of Grassmann variables and the general formula

Tr : fi(a,a):: fa(al,a):...: fu(al,a): =
/ dx1 dx7 - - - dxn dx;,

eX1(x1+xn) x5 (x2—x1)  oXn(Xn—Xn-1)

F10G x1) fa(xGs x2) - - - (X Xn)-

The positive sign on x, in the first exponential factor indicates the natural occurance
of antiperiodic boundary conditions. With just one factor, this formula reduces to the
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previous relation. Note how the “time derivative” terms are “one sided;” this is how
doubling is eluded.

This exact relationship provides the starting place for converting our partition function

into a path integral. The simplicity of the Hamiltonian allows this to be done exactly at
every stage. First I break “time” into a number N of “slices”

Z ="Tr (e_ﬂH/N>N.
Now I need normal ordered factors for the above formula. For this I use
L (e —1a'a = ele*—Da'a . )

true for arbitrary parameter . Combining the particles and antiparticles into one matrix
equation gives

exp((a 4 p)ata + (o — p)bTb) = : exp ((aT b (extPr —1) (Z)) :,

This is all the machinery I need to write

7 = / (dapdap™)e®

where

S = Zine_:@m/Ne_ﬂlVYO/an - Enp-l-@bn—l - En—lp_wn'
=1

Note how the Wilson projection factors of P, automatically appear to handle the reverse
convention of x versus £ in our field . The projection operator formalism is a natural
consequence of an exact transfer matrix.

The chemical potential appears simply as an inserted factor of e ##%/N in the “mass”
term. This is not quite in the conventional form since the chemical potential piece is
temporally diagonal. However this is actually only a convention, as the factor can be
moved to temporal links with a change of variable

—Brg

U =e 28 9.

With this substitution, we have

S = Zﬁne_ﬁm/N\I]n _ WTLP—Fe'Bu/N\IIn—l _ ﬁn_lp_e_ﬂ“/N\I/n.

=1



If 14 were imaginary, this would be precisely the form of a U(1) gauge field on the timelike
bonds.

In this discussion I have ignored spatial hoppings. Terms in the action of the form
YD - Jip

are invariant under this change of variables since vy anticommutes with 7. However, more
complicated terms, such as spatial Wilson hoppings, are generally not invariant under this
change. This would be a modification of higher order in the lattice spacing for Wilson
fermions. These are lattice artifacts, presumably irrelevant to the continuum limit. Thus,
it is only a convention whether the chemical potiential is inserted as a matrix valued mass
as or as a direction dependent link term.

If we consider the action as a generalized matrix connecting fermionic variables
S =M1,

the matrix M is not symmetric. The upper components propagate forward in time, and
the lower components backward. Even though our Hamiltonian was Hermitian, the matrix
appearing in the corresponding action is not. With further interactions, such as gauge field
effects, the intermediate fermion contributions to a general path integral are generally not
positive, or even real. Of course the final partition function, being a trace of a positive
definite operator, is positive. However, depending on the order of operations, there can be
negative intermediate results. With Monte Carlo methods, this can lead to uncontrollable
fluctuations. This is the primary unsolved problem in lattice gauge theory. With no
chemical potential term, symmetry between particles and antiparticles results in a real
fermion determinant, which in turn is positive for an even number of flavors.

For our simple Hamiltonian, this discussion has been exact. The discretization of time adds
no approximations since we could do the normal ordering by hand. In general with spatial
hopping or more complex interactions, the normal ordering can produce extra terms going
as O(1/N?). In this case exact results require a limit of a large number of time slices.



More on Wilson fermions

In the continuum, we usually write for the free fermion action density

YD = (P + m)y

or in momentum space B
P(ip +m)y

My convention is hermitan gamma matrices. Note that D is the sum of hermitian and
antihermitian parts. In the continuum the former is just a constant, the mass. A hermitian
operator appears in the combination 5D, but we don’t need that just now.

A matrix can be diagonalized when it commutes with its adjoint; then it is called “normal.”
For this continuum operator this is the case, and we see that all eigenvalues lie along a
line parallel to the imaginary axis intersecting the real axis at m.

As discussed earlier, a naive transcription of derivatives onto the lattice replaces factors of
p with trig functions. Thus the naive lattice action is

¥(1/a Z iy, sin(pya) + m)y

m

For small momentum this agrees with the continuum result. Now let one component of p
get large and be near w/a. Then we again have small eigenvalues and a nearby pole in the
propagator.

The Wilson solution adds a momentum dependent mass. Since it also involves only nearest
neighbor terms, it also involves trig functions. Explicitly for free fields

YDwy =P (1/a > (ivusin(pua) + 1 — cos(pua)) + m) 0

m

Now at momentum 7, the roots are of order 1/a in size. Note that the lattice artifacts in
the propagator start at order p%a, rather than O(a?) as for the bosonic case or for naive
fermions.

The eigenvalue structure of Dyy is rather interesting. For the free theory the hermitian and
antihermitian parts still commute; this is not true in the interacting case. The eigenvalues

occur at ] .
i
A=%— |3 sin’ tm4+ =Y 1-
a2 sin“(pya) +m pa cos(p,a)

Note that for real eigenvalues each component of the momentum must be a multiple of 7.
In the complex plane the spectrum fills a set of overlapping elipses.
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Note that m <> —m is not a symmetry. Naively it would be in the continuum, but as
we will extensively discuss later, it cannot be in the quantum theory. This is a hint of
anomalies and things to come.

For m = 0,2,4,6,8 we have 1,4,6,4,1 massless species. When interactions are present
these values of m will be renormalized.



