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Heavy Quarkonia: Motivation

Hadrons
Nuclei

The Quark-Gluon Plasma (QGP)

Superconductors ?

Gas-Liquid

T

μB

The early universe

Unknown

Phase transition Quark-Gluon Plasma (QGP) T>TC vs. Confining phase T<TC

TC ≈200MeV Confinement
transition

Relativistic heavy-ion collisions

Recreate the QGP in the laboratory: RHIC/LHC

Heavy Quarkonium:  Clean probe for experiment and theory
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The classic argument: Matsui & Satz

Static color test charges: correlations from lattice QCD
Polyakov loops

Melting sets in already below 1.2TC

PLB 178 416 (1986)

How to derive a Schrödinger equation from first principles QCD? 

What is the proper potential to use in a non-relativistic description?Goal for Theory

Debye screening

T>TC

Model potentials: confinement

T<TC

QQbar à la Satz
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Towards a T>0 Potential

i=x,y,z

Δ
τ

Δx

τ

Ω

R

Lattice QCD: Monte Carlo

Goal is to derive a Hamiltonian with: 

Derivation of V0(R):
Wilson Loop

i=x,y,z

Δ
τ

Δx

τ

W


R

Lattice QCD (LQCD): Monte Carlo V(R)

R

At T=0 systematic framework available: NRQCD, pNRQCD Brambilla et al. 2005

R

Melting at T≈1.2TC

No Schrödinger equation 
available, gauge dependent, 

handling of entropy?

Potential Models at T>0

Ad-hoc choice:
Free Energies or
Internal Energies

Nadkarni, 1986



Alexander Rothkopf

Universität Bielefeld

8. Juni 2011 5

Defining a T>0 Potential

What is a non-relativistic potential?

Direct answer: The non-kinetic term in a Schrödinger type E.O.M.
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The first complex static potential

Landau damping:
collisions with the 
deconfined environment

Debye screening:
a cloud of quarks and
gluons mitigates the
interaction effects

Wilson Loop in the infinite time limit: Potential emerges with real and imaginary part

Heavy quark propagation described by rectangular Wilson in the static limit

The real-time 
thermal 

Wilson Loop

Laine et. al. JHEP03 (2007) 054; see also Beraudo et. al. NPA 806:312-338,2008

HTL gluon propagator
Pisarski PRL 63 (1989) 1129
Braaten, Pisarski NPB 337 (1990) 569
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Defining a T>0 Potential

Direct answer: The non-kinetic term in a Schrödinger type E.O.M.

What is a non-relativistic potential?

Systematic answer: Renormalization coefficient in an effective theory

How to obtain an effective field theory: Integrate out  energy scales

Physics of pair creation,  gluons mediate interaction

Physics of pauli spinors,  gluons still appear explicitlySoft scale: E  mQ

Hard scale: E  mQ

Even softer scale: E ∼ Ebind Physics of QQbar pairs, gluons do not appear explicitly

Obtain Ci factors by comparing correaltion functions at a fixed energy (matching)

Find a separation in scales and choose appropriate degrees of freedom
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Effective Field Theory approach

Obtain potentials by comparing greens functions in the EFT and perturbative QCD

Effective theory that treats q.m. singlet and octet pairs of heavy Q and Qbar as d.o.f. 

Interaction with the color electric field
temporarily turns singlet into octet

If T>>EB and mD >> Ebthe following diagram gives the leading contribution

S O S

Brambilla, Ghiglieri, Vairo and Petreczky PRD 78 (2008) 014017
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Potential from lattice spectral functions

Goal:  Non-perturbative determination of the potential at any temperature by
using first principles lattice QCD

Use only the following separation of scales:

Select appropriate degrees of freedom:

Dirac fields Pauli fields
Position &

Momentum

Derive a Schrödinger equation with a non-perturbative, spin-independent potential

Derivation of the heavy quark potentialRelativistic thermal
field theory

Quantum 
mechanics
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Derivation of V(R)

Starting point: QQ in the language of field theory (Minkowski – time)

M= Q(x+R,t)Q(x-R,t)

Describe the time evolution in a gauge invariant way

M†=[Q(R,0)Q(-R,0)] †

Test charges: Introduce an external separation R

R > 0

Another choice: do not insert W(x,y) and fix a gauge

J (x,t)

R 0

Only naturally gauge invariant quantity:  current - current correlator

Use separation of scales to simplify the expression for D>(R,t)

t

J†(0,0)

Meson current
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Integrating out E=mQc2

Replace the degrees of freedom for the heavy fermions Q -> Q = (χ,ξ)

Foldy-Tani-Wouthuysen transformation:  an expansion in the inverse rest energy 1/mQc2

FTW Transformation leaves the path integral unchanged at this order

No coupling between upper χ and lower ξ components of Q.  No creation/annihilation possible

Integrate out (χ,ξ) explicitly: Replace by quantum mechanical Green`s functions S

Temperature
dependence

2x2 sub matrix

q.m. heavy quark Green`s functions (2x2)
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Q.M. Path Integrals

Determine the heavy quark Green`s function S beyond the static limit: Barchielli et. al. 1988

&

H(z(t),p(t))

This is not just the rectangular Wilson loop: fluctuating paths

x

x´

y

y´

z1(s)
z2(s)

time

x,y,z

The full forward propagator D> is the product of two S factors: 

To read off the Hamiltonian for the two-body system we need to rewrite:
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diffusion process

constant damping

For p→0:
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The Proper Static Potential

Systematic expansion of the potential in p/mc: Barchielli (1988) uses v/c instead

Real-time thermal rectangular Wilson loop

t

x,y,z

x

x´

y

y´

z∞
1
(t

) z
∞

2 (t)

R

Take the time derivative to obtain the potential u(R,t)

Use spectral function of the Wilson Loop:
Well defined peaks

ρ
(ω

)

ω

Intuitive: Two analytically solvable cases ( Breit-Wigner & Gaussian )

Γ0

ω0
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Prior probability: Shannon-Janes entropyLikelihood: the usual χ2 fitting term

O(10) + noise O(1000)

Log[W


(τ)]

τ
β

ρ (ω)

Bayes Theorem can help (Maximum Entropy Method)
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Spectral functions & LQCD

We have connected the spectral function ρ of the rectangular real-time Wilson loop W


to V(R)

Cannot measure ρ or W


(R,t) directly in Lattice QCD: Analytic continuation 

t=-i τ

Cannot use simple χ2 fitting: ill defined

Since ρ is spectral function: positive definite 
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Exploring the potential

Using Lattice QCD and the MEM, we can obtain the spectral function at any temperature

τ
[0

,β
]

x,y,z

ω

R

ρ

V(0) (R)

T<TC T≈TC

τ
[0

,β
]

x,y,z

ω

R

ρ

Re[V(0)](R)
Im[V(0)](R)
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Numerical Results: T=0.78TC

Quenched QCD Simulations

Anisotropic Wilson Plaquette Action

NX=20   NT=36  β=6.1  ξb=3.2108

Box Size: 2fm  Lattice Spacing:  0.1fm

HB:OR 1:4 with 200 sweeps/readout

Maximum Entropy Method

Singular Value Decomposition

Nω=1500

Prior: m0/ω,  varied over 4 orders

384bit precision

Note that the Wilson 
Loop is non-symmetric 
since heavy quarks are 

not thermalized
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Numerical Results: T=0.78TC

T<TC: Only scattering 
with glueballs

( Im[V] is probably 
MEM artifact )

Lowest peak 
dominance for late times

R=0.1fm R=0.2fm

Assess prior 
dependence

R=0.3fm R=0.4fmstable & 
separated

stable & 
separated

MEM ringing

MEM ringing
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Numerical Results: T=0.78TCNumerical Results

The real part coincides with the color singlet 
free energies in Coulomb gauge

Spectral width consistent with zero due to large error bars
(Note: MEM induces artificial width)
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Numerical Results: T=1.17TC

Quenched QCD Simulations

Anisotropic Wilson Plaquette Action

NX=20   NT=24  β=6.1  ξb=3.2108

Box Size: 2fm  Lattice Spacing:  0.1fm

HB:OR 1:4 with 200 sweeps/readout

Maximum Entropy Method

Singular Value Decomposition

Nω=1500

Prior: m0/ω,  varied over 4 orders

384bit precision

Upward trend  
becomes visible
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Numerical Results: T=1.17TC

MEM ringing MEM ringing

R=0.1fm R=0.2fm

stable and still 
well separated

Somewhat stable but 
NOT well separated
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Numerical Results: T=1.17TC

Real part is slightly stronger than color singlet
free energies but error bars are quite large. 

Spectral width is finite and larger than below Tc
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Comparison at different T

The simulations around TC show:

Real part up to and around TC insensitive to thermal fluctuations

Imaginary part increases with temperature
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Numerical Results T=2.33TC

Maximum Entropy Method

Singular Value Decomposition

Nω=1500

Prior: m0/ω,  varied over 4 orders

384bit precision

Quenched QCD Simulations

Anisotropic Wilson Plaquette Action

NX=20   NT=12  β=6.1  ξb=3.2108

Box Size: 2fm  Lattice Spacing:  0.1fm

HB:OR 1:4 with 200 sweeps/readout
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Numerical Results T=2.33TC

stable but not 
well separated

stable but NOT 
separated

R=0.1fm R=0.2fm
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Comparison at different T

The simulations at T=2.33TC show:

Real part shows steep rise if we trust the position of the lowest peak

Imaginary part increases with almost equal slope and magnitude
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Check the numerical results T=2.33TC

Quenched QCD Simulations

Anisotropic Wilson Plaquette Action

NX=20   NT=12   β=6.1  ξb=3.2108

NX=20   NT=32  β=7  ξb=3.5

Box Size: 2fm  Lattice Spacing:  0.1fm

Box Size: 0.8fm  Lattice Spacing:  0.04fm

HB:OR 1:4 with 200 sweeps/readout

Maximum Entropy Method

Singular Value Decomposition

Nω=1500

Prior: m0/ω,  varied over 4 orders

384bit precision

Back
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Numerical Results T=2.33TC

stable but not 
well separated

NOT stable and 
NOT separated

stable and well 
separated

β=7 Δx=0.04fm Back

R=0.04fm R=0.24fm

R=0.36fm R=0.48fm
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Comparison at different lattice spacing

The simulations at T=2.33TC show:

Steep rise of both real and imaginary part does not dependent 
on the lattice spacing
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Summary & Conclusion

Numerical Results and Discussion

Complex Potential is obtained from the spectral function of the real-time Wilson loop

Possibility to check the applicability of the potential picture

Treatment based on effective theories allows a derivation of the heavy quark potential

At T<TC real part coincides with color singlet free energies

Above TC both real and imaginary part become of the same (large) magnitude

Around TC the real-part appears to be insensitive to thermal fluctuations

Non-perturbative derivation of an effective in-medium Schrödinger equation

Perturbative evaluation of the potential:

Landau damping and singlet to octet breakup can induce an imaginary part

There is more to the physics of J/Ψ melting than Debye screening
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Future Studies

Include dynamical fermions into the medium

Extract the heavy quark potential at larger separation distances R

Solve the time dependent Schrödinger equation to assess 
the temporal and spatial structure during the evolution of 
J/ψ in the QGP

The End

Check consistency with perturbation theory at very high T

Future work


