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The status of phenomenological implementations 
of TMD-factorization:   

•  Factorization and Definitions of PDFs. 
 

•  TMD PDFs and phenomenology. 
 

•  More on Definitions. 
 

•  Explicit Determination of TMDs. 
 

•  The Sivers Effect. 
. 
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Part 1: Factorization and Definitions of 
PDFs 
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TMD-Factorization: 
 
 

 
 
 
 

Ex: SIDIS 

(Libby, Sterman (1978)) 
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TMD-Factorization: 
 
 

 
 
 
 

Ex: SIDIS 

Target and Jet  
Collinear gluons 
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TMD-Factorization: 
 
•  Approximations needed to obtain factorization formula. 

 
 
 
 

Ex: SIDIS 

Target and Jet  
Collinear gluons 

Soft gluons 
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TMD-Factorization: 

Collins, Soper (1982) 
Collins, Soper, Sterman (1985) 

Ji, Ma, Yuan (2004,2005) (SIDIS) 



Recall: Collinear factorization for inclusive 
DIS 
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Factorization

• Hard, soft, collinear --- separate factors order-by-order.
• Corrections suppressed by powers of Q.
• Non-perturbative factors are universal.
• Evolution relates different scales.
• Interpretation in terms of parton model concepts.

dσ =


f


|H(Q)|2 ⊗ f(x,Q)

Short distance physics,
asymptotic freedom

Renormalization group/
DGLAP evolution equations
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• Eikonal factors, extra Feynman rules.

Ward Identity: Usual (Integrated) PDF

Sum over 
graphs

i

−l+ + iǫ
−igtauµJ

Eikonal Propagator Vertex

,
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23

• Operator definition:

• Wilson lines enforce gauge invariance.

Usual (Integrated) PDF

(Example: DIS)
uJ = (0, 1,0t)

Vw(n) = P exp


−igta

 ∞

0

dλn · Aa(w + λn)


f(x) = F.T. ⟨p| ψ̄(0, w−,0t)V †w(uJ)γ
+V0(uJ)ψ(0)|p⟩

V †w(uJ)V0(uJ) = P exp


−igta

 w−

0

dλuJ · Aa(λuJ)


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Gauge Links/Wilson Lines 
•  Paths of Wilson lines in coordinate space: 

24

Standard PDFs: Wilson Lines
• Paths of Wilson lines in coordinate space:

+_
w−

Standard (Integrated)
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Complications with TMD definitions: 
 
•  Divergences 
 

–  New kinds! 
 
•  Wilson lines / gauge links (what are they?). 

 
•  Universality. 

 
•  Interface with collinear factorization at large transverse momentum. 

•  Definitions are dictated by the requirements for factorization! 
 
 



Gauge Links/Wilson Lines 

•  Integrated PDF: 
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Gauge Links/Wilson Lines 
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34

• Fields no longer evaluated along light-like separation.

• Extend standard definition (first try):

TMD PDFs:

Link at infinity

F.T. ⟨p| ψ̄(0, w−,wt)V †w(uJ)In;w,0γ
+V0(uJ)ψ(0) |p⟩

(Belitsky, Ji, Yuan (2003))
(Boer, Mulders, Pijlman (2003))

Φ[+](x,kt) =

U [0, w]

F.T. ⟨p| ψ̄(0, w−,wt)V †w(uJ)In;w,0γ
+V0(uJ)ψ(0) |p⟩Φ(x,kt) = ??
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−l+ + iǫ
−igtauµJ
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Gauge Links/Wilson Lines 
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TMD PDFs: Gauge Links/Wilson Lines 
•  Paths of Wilson lines in coordinate space: 

35

TMD PDFs: Wilson Lines
• Paths of Wilson lines in coordinate space:

+_
w−

+

w−,wt

Standard (Integrated) Unintegrated (First Try) 
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“Rapidity” Divergences in TMD -
Factorization:

• Uncanceled light-cone (rapidity) divergences.

• Use non-light-like Wilson lines. 

• Introduces new arbitrary parameter.
– Predictability recovered with new evolution equations (Collins-Soper

equations).

+

(Collins, Soper (1983))
[Exercise:  Directly calculate these diagrams with quark/gluon masses  

“What exactly is a parton density” (Collins, 2003)] 
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TMD PDFs: Gauge Links/Wilson Lines 
•  Paths of Wilson lines in coordinate space: 

37

TMD PDFs: Wilson Lines
• Paths of Wilson lines in coordinate space:

+_
w−

+
_ ∞

w−,wt

Standard (Integrated) Unintegrated First Try 

Still more complications!
w−,wt

Unintegrated “tilted” Wilson lines 

∞
_ +

9

TMD PDFs: Gauge Links/Wilson Lines
• Paths of Wilson lines in coordinate space:

+_
w−

+
_ ∞

w−,w
t

Standard (Integrated) Unintegrated First Try 

w−,w
t

Unintegrated “tilted” Wilson lines 

∞_ +

Tilt to regulate
rapidity divergences
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38

• Precise definition of TMD PDFs still need some further 
modification.

• Extra divergences… should cancel in definition.

TMD PDFs: Other Divergences

(Cherednikov, Stefanis (2008))

Nothing to do with original, unfactorized graphs. 
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Part 2: TMD PDFs and Phenomenology 



 
•    Previously existing implementations:  
 
 

–  Use existing fixed-scale fits / no evolution. 
 
 
 
 
 
 
 
 

–  Existing “Old fashioned” implementations of Collins-Soper-
Sterman formalism. 
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TMD Phenomenology: 

(Schweitzer, Teckentrup, Metz (2010)) 
(Anselmino et al., (2009…)) 

(Collins et al., (2006)) 
(D’Alesio, Murgia (2008)) 

Generalized Parton Model 



TMD-Factorization 

•  TMD Parton model intuition (Drell-Yan): 

 

Generalized Parton Model 

Leading order  
 hard part 

No evolution 



 
•    Previously existing implementations:  
 
 

–  Use existing fixed-scale fits / no evolution. 
 
 
 
 
 
 
 
 

–  Existing “Old fashioned” implementations of Collins-Soper-
Sterman formalism. 
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TMD Phenomenology: 

(Schweitzer, Teckentrup, Metz (2010)) 
(Anselmino et al., (2009…)) 

(Collins et al., (2006)) 
(D’Alesio, Murgia (2008)) 

(Landry et al., (2003)) 
(Qiu, Zhang, (2001)) 

Generalized Parton Model 
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Evolved Cross Section: 

•  Typical appearance of Collins-Soper-Sterman implementation:         
 

 

(Contrast with GPM picture.) 

TMD definition is given in  
CSS derivation, but it is difficult   
to indentify what should by fit! 
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What is needed? 
(Think analogy with collinear factorization.) 

(Collins book, 2011) 
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What is needed? 

Process dependence  
in hard part Universal PDFs  

with evolution 

(Collins book, 2011) 
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What is needed? 

Process dependence  
in hard part Universal PDFs  

with evolution 

Large Transverse  
               Momentum Correction 

(Collins book, 2011) 



Part 3: More on Definitions 
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TMD-Factorization: 

Collins, Soper (1982) 
Collins, Soper, Sterman (1985) 

Ji, Ma, Yuan (2004,2005) (SIDIS) 
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4

These correspond to the directions of P and p

h

. Our
coordinates for a 4-vector v are defined by

v = (v+, v�, v
T

) (6)

where,

v

± = (v0 ± v

z)/
p
2. (7)

Now the most obvious definitions of PDFs use light-
like Wilson lines, which give rise to rapidity divergences
[30]. Regulating the divergences can be done by using

non-light-like Wilson lines. So we define vectors n
A

(y
A

)
and n

B

(y
B

) with finite rapidities y
A

and y

B

:

n

A

= (1,�e

�2yA
,0

T

), n

B

= (�e

2yB
, 1,0

T

). (8)

The actual TMD PDF in Eq. (1) is defined as a limit
of an unsubtracted TMD multiplied by certain unsub-
tracted soft functions. These are first defined in trans-
verse coordinate space and then the final result will be
Fourier transformed to transverse momentum space. The
unsubtracted TMD PDF is

F̃

unsub

f/P

" (x,b
T

, S;µ; y
P

� y

B

)

= Tr
C

Tr
D

Z
dw

�

2⇡
e

�ixP

+
w

�hP, S| ̄
f

(w/2)W (w/2,1, n

B

(y
B

))†
�

+

2
W (�w/2,1, n

B

(y
B

)) 
f

(�w/2)|P, Si
c

(9)

where w

µ = (0+, w�

,b
T

), and we let the function notated with a tilde to denote the use of transverse coordinate
space. The subscript c indicates that only connected diagrams are included, and Tr

C

and Tr
D

represent color and
Dirac traces respectively. The unsubtracted soft function is:

S̃

(0)

(b
T

; y
A

, y

B

) =
1

N

c

h0|W (b
T

/2,1;n
B

)†
ca

W (b
T

/2,1;n
A

)
ad

W (�b
T

/2,1;n
B

)
bc

W (�b
T

/2,1;n
A

)†
db

|0i. (10)

In both of these functions, there should be inserted transverse gauge links at infinity. However their e↵ects cancel in
the subtracted TMD PDF, when Feynman gauge is used, so we have not indicated the extra gauge links explicitly.

The full definition of the TMD PDF from [21] is

F̃

f/P

"(x,b
T

, S;µ; ⇣
F

) = F̃

unsub

f/P

" (x,b
T

, S;µ; y
P

� (�1))

vuut S̃

(0)

(b
T

; +1, y

s

)

S̃

(0)

(b
T

; +1,�1)S̃
(0)

(b
T

; y
s

,�1)
Z

F

Z

2

. (11)

This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z

F

Z

2

at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y

s

.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].

The momentum-space TMD PDF is

F

f/P

"(x,k
T

, S;µ, ⇣
F

) =
1

(2⇡)2

Z
d

2b
T

e

ikT ·bT
F̃

f/P

"(x,b
T

, S;µ, ⇣
F

). (12)

This has dependence on the azimuthal angle between k
T

and the transverse spin vector S
T

of the target hadron. (We
normalize S

T

so that its maximum size is unity.) The TMD PDF is decomposed as usual into the unpolarized TMD
PDF and a spin-dependent term:

F

f/P

"(x, k
T

, S;µ, ⇣
F

) = F

f/P

(x, k
T

;µ, ⇣
F

)� F

? f

1T

(x, k
T

;µ, ⇣
F

)
✏

ij

k

i

T

S

j

M

p

, (13)

with F

? f

1T

(x, k
T

;µ, ⇣
F

) being the Sivers function.

III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar meth-

ods apply to the other TMDs with azimuthal dependence.
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These factors contain non-kinematic parameters, µ, ⇣
F

,
and ⇣

D

, whose definitions are given below. The hard-
scattering factor |H2|µ⌫ is computed, with appropriate
subtractions, from massless parton scattering in a pho-
ton frame where the photon and partons have zero trans-
verse momentum — see [21, p. 527] for its definition. The
first line of the factorization formula is valid at low trans-
verse momentum, and the Y -term provides a correction
for large transverse momentum in a form like that for or-
dinary collinear factorization. Although we will focus on
SIDIS for this paper, the same general treatment applies
also to DY scattering, up to the change in direction of the
Wilson line in the definition of the TMD PDF. Note that
the TMD-factorization piece, the first term in Eq. (1), is
formulated specifically to deal with the small k

T

behav-
ior (k

T

! 0), while allowing for systematic corrections
to the behavior as k

T

grows larger than ⇤
QCD

.
The above formula is exactly like the parton-model

formula for the same cross section except for the scale
dependence of the PDF and fragmentation function and
except for higher order corrections in the hard scattering
and Y -term. It di↵ers from the older CSS formula by no
longer needing an explicit soft factor. The factorization
formula (1) is written for the case that the partons at
the hard scattering are unpolarized. Parton polarization
e↵ects can be allowed for simply by inserting spin ma-
trices for the incoming and outgoing partons of the hard
scattering. This gives other terms, e.g., those with the
Collins function in fragmentation, with their character-
istic angular distributions in the cross section. It was
recently suggested in Ref. [27] that it would be useful
to analyze data for cross sections in transverse coordi-
nate space b

T

by taking various weighted integrals with
Bessel functions. In that case, the b

T

version of Eq. (1)
is needed.

The parameter µ is a conventional renormalization
scale, which we will choose to be in the MS scheme.
It should be chosen to be of order Q so that the hard
scattering has no large logarithms. The parameters ⇣

F

and ⇣

D

are related to the need to regulate rapidity di-
vergences in the definitions of the TMDs. They are de-
fined with the aid of an auxiliary rapidity parameter y

s

,
which has the function of separating forward and back-
ward rapidity gluons. We use a hadron frame (in which
the hadrons have zero transverse momentum), oriented
so that eyP � e

yph , and we let M
P

and M

h

be the masses
of these hadrons. Then ⇣

F

and ⇣
D

are defined by

⇣

F

= M

2

P

x

2

e

2(yP�ys) (2)

and

⇣

D

= (M2

h

/z

2)e2(ys�yh)
. (3)

They obey
p
⇣

F

⇣

D

= Q

2 up to power-suppressed correc-
tions, and have been normalized to correspond to CSS’s
definitions.
The definitions of gauge-invariant TMD functions are

equipped with Wilson lines. AWilson line (or gauge link)
from a point x to 1 along the direction of a four-vector
n is defined as

W (1, x;n) = P exp


�ig

0

Z
1

0

ds n ·Aa

0

(x+ sn)ta
�
.

(4)
Here, bare field operators and bare couplings are used
and P is a path-ordering operation. The generator for
the gauge group in the fundamental representation, with
color index a, is labeled by t

a.
To define the parton densities, we use two light-like di-

rections that characterize the extreme forward and back-
ward directions:

u

A

= (1, 0,0
T

), u

B

= (0, 1,0
T

). (5)
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where,

v

± = (v0 ± v

z)/
p
2. (7)

Now the most obvious definitions of PDFs use light-
like Wilson lines, which give rise to rapidity divergences
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TMD PDF, Complete Definition: 

From Foundations of Perturbative QCD, J.C. Collins, 
 (See also, Collins, TMD 2010 Trento Workshop) 
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
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strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y
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An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].
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III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar meth-

ods apply to the other TMDs with azimuthal dependence.
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z
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at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y
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.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].
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This has dependence on the azimuthal angle between k
T
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PDF and a spin-dependent term:

F

f/P

"(x, k
T

, S;µ, ⇣
F

) = F

f/P

(x, k
T

;µ, ⇣
F

)� F

? f

1T

(x, k
T

;µ, ⇣
F

)
✏

ij

k

i

T

S

j

M

p

, (13)

with F

? f

1T

(x, k
T

;µ, ⇣
F

) being the Sivers function.
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where w
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), and we let the function notated with a tilde to denote the use of transverse coordinate
space. The subscript c indicates that only connected diagrams are included, and Tr
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In both of these functions, there should be inserted transverse gauge links at infinity. However their e↵ects cancel in
the subtracted TMD PDF, when Feynman gauge is used, so we have not indicated the extra gauge links explicitly.

The full definition of the TMD PDF from [21] is
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z

F

Z

2

at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y

s

.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].
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This has dependence on the azimuthal angle between k
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and the transverse spin vector S
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coordinates for a 4-vector v are defined by
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The actual TMD PDF in Eq. (1) is defined as a limit
of an unsubtracted TMD multiplied by certain unsub-
tracted soft functions. These are first defined in trans-
verse coordinate space and then the final result will be
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where w
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), and we let the function notated with a tilde to denote the use of transverse coordinate
space. The subscript c indicates that only connected diagrams are included, and Tr
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In both of these functions, there should be inserted transverse gauge links at infinity. However their e↵ects cancel in
the subtracted TMD PDF, when Feynman gauge is used, so we have not indicated the extra gauge links explicitly.
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z

F

Z

2

at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y

s

.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].
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This has dependence on the azimuthal angle between k
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and the transverse spin vector S
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of the target hadron. (We
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so that its maximum size is unity.) The TMD PDF is decomposed as usual into the unpolarized TMD
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III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar meth-

ods apply to the other TMDs with azimuthal dependence.
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The actual TMD PDF in Eq. (1) is defined as a limit
of an unsubtracted TMD multiplied by certain unsub-
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verse coordinate space and then the final result will be
Fourier transformed to transverse momentum space. The
unsubtracted TMD PDF is

F̃

unsub

f/P

" (x,b
T

, S;µ; y
P

� y

B

)

= Tr
C

Tr
D

Z
dw

�

2⇡
e

�ixP

+
w

�hP, S| ̄
f

(w/2)W (w/2,1, n

B

(y
B

))†
�

+

2
W (�w/2,1, n

B

(y
B

)) 
f

(�w/2)|P, Si
c

(9)

where w

µ = (0+, w�

,b
T
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space. The subscript c indicates that only connected diagrams are included, and Tr
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In both of these functions, there should be inserted transverse gauge links at infinity. However their e↵ects cancel in
the subtracted TMD PDF, when Feynman gauge is used, so we have not indicated the extra gauge links explicitly.

The full definition of the TMD PDF from [21] is
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z

F

Z
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at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y
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An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].
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This has dependence on the azimuthal angle between k
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and the transverse spin vector S
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of the target hadron. (We
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cleon structure. In fact, as we will demonstrate, TMD-
factorization provides a unified treatment of the various
energy regimes currently being investigated by experi-
ments.

II. SETUP AND DEFINITIONS

In this section we give the factorization formula for
SIDIS: e+P (S) ! e+h+X, and present the definitions

of the TMD functions. We let P and S be the momentum
and spin vector of the hadron target, and we let h label
the detected hadron, of momentum p

h

. With a single ex-
changed photon of momentum q, independent kinematic
variables are: Q =

p
�q

2, x = Q

2

/2p · q, z = P ·p
h

/P · q,
and the virtual photon’s transverse momentum q

T

(in
a hadron-frame where the measured hadrons have zero
transverse momentum).

The TMD-factorization formula in the form derived by Collins [21] is:
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Here F
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"(x,k
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, S) is the TMD PDF for an unpolar-
ized quark of flavor f in a proton of polarization S, and
D

h/f

(z, zk
2T

) is the unpolarized fragmentation function.
These factors contain non-kinematic parameters, µ, ⇣

F

,
and ⇣

D

, whose definitions are given below. The hard-
scattering factor |H2|µ⌫ is computed, with appropriate
subtractions, from massless parton scattering in a pho-
ton frame where the photon and partons have zero trans-
verse momentum — see [21, p. 527] for its definition. The
first line of the factorization formula is valid at low trans-
verse momentum, and the Y -term provides a correction
for large transverse momentum in a form like that for or-
dinary collinear factorization. Although we will focus on
SIDIS for this paper, the same general treatment applies
also to DY scattering, up to the change in direction of the
Wilson line in the definition of the TMD PDF. Note that
the TMD-factorization piece, the first term in Eq. (1), is
formulated specifically to deal with the small k

T

behav-
ior (k

T

! 0), while allowing for systematic corrections
to the behavior as k

T

grows larger than ⇤
QCD

.

The above formula is exactly like the parton-model
formula for the same cross section except for the scale
dependence of the PDF and fragmentation function and
except for higher order corrections in the hard scattering
and Y -term. It di↵ers from the older CSS formula by no
longer needing an explicit soft factor. The factorization
formula (1) is written for the case that the partons at
the hard scattering are unpolarized. Parton polarization
e↵ects can be allowed for simply by inserting spin ma-
trices for the incoming and outgoing partons of the hard
scattering. This gives other terms, e.g., those with the
Collins function in fragmentation, with their character-
istic angular distributions in the cross section. It was
recently suggested in Ref. [29] that it would be useful
to analyze data for cross sections in transverse coordi-
nate space b

T

by taking various weighted integrals with
Bessel functions. In that case, the b

T

version of Eq. (1)

is needed.
The parameter µ is a conventional renormalization

scale, which we will choose to be in the MS scheme.
It should be chosen to be of order Q so that the hard
scattering has no large logarithms. The parameters ⇣

F

and ⇣

D

are related to the need to regulate rapidity di-
vergences in the definitions of the TMDs. They are de-
fined with the aid of an auxiliary rapidity parameter y
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which has the function of separating forward and back-
ward rapidity gluons. We use a hadron frame (in which
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tions, and have been normalized to correspond to CSS’s
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
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Here, bare field operators and bare couplings are used
and P is a path-ordering operation. The generator for
the gauge group in the fundamental representation, with
color index a, is labeled by t

a.
To define the parton densities, we use two light-like di-

rections that characterize the extreme forward and back-
ward directions:
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scattering factor |H2|µ⌫ is computed, with appropriate
subtractions, from massless parton scattering in a pho-
ton frame where the photon and partons have zero trans-
verse momentum — see [21, p. 527] for its definition. The
first line of the factorization formula is valid at low trans-
verse momentum, and the Y -term provides a correction
for large transverse momentum in a form like that for or-
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SIDIS for this paper, the same general treatment applies
also to DY scattering, up to the change in direction of the
Wilson line in the definition of the TMD PDF. Note that
the TMD-factorization piece, the first term in Eq. (1), is
formulated specifically to deal with the small k
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! 0), while allowing for systematic corrections
to the behavior as k
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grows larger than ⇤
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.

The above formula is exactly like the parton-model
formula for the same cross section except for the scale
dependence of the PDF and fragmentation function and
except for higher order corrections in the hard scattering
and Y -term. It di↵ers from the older CSS formula by no
longer needing an explicit soft factor. The factorization
formula (1) is written for the case that the partons at
the hard scattering are unpolarized. Parton polarization
e↵ects can be allowed for simply by inserting spin ma-
trices for the incoming and outgoing partons of the hard
scattering. This gives other terms, e.g., those with the
Collins function in fragmentation, with their character-
istic angular distributions in the cross section. It was
recently suggested in Ref. [29] that it would be useful
to analyze data for cross sections in transverse coordi-
nate space b

T

by taking various weighted integrals with
Bessel functions. In that case, the b

T

version of Eq. (1)

is needed.
The parameter µ is a conventional renormalization

scale, which we will choose to be in the MS scheme.
It should be chosen to be of order Q so that the hard
scattering has no large logarithms. The parameters ⇣

F

and ⇣

D

are related to the need to regulate rapidity di-
vergences in the definitions of the TMDs. They are de-
fined with the aid of an auxiliary rapidity parameter y
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,
which has the function of separating forward and back-
ward rapidity gluons. We use a hadron frame (in which
the hadrons have zero transverse momentum), oriented
so that eyP � e
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The definitions of gauge-invariant TMD functions are
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from a point x to 1 along the direction of a four-vector
n is defined as
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Here, bare field operators and bare couplings are used
and P is a path-ordering operation. The generator for
the gauge group in the fundamental representation, with
color index a, is labeled by t
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To define the parton densities, we use two light-like di-

rections that characterize the extreme forward and back-
ward directions:
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Standard UV renormalization  
factor Cuts off soft 

rapidities 
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TMD PDF, Complete Definition: 

From Foundations of Perturbative QCD, J.C. Collins, 
 (See also, Collins, TMD 2010 Trento Workshop) 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 

 

d ¾ = | H | 2 F u n s u b 
1 ( y 1 ¡ ( ¡ 1 ) ) q 

˜ S ( + 1 , ¡ 1 ) 
£ 

˜ F u n s u b 
2 ( + 1 ¡ y 2 ) q 

˜ S ( + 1 , ¡ 1 ) 
. 

q 
˜ S ( + 1 , y s ) ˜ S ( y s , ¡ 1 ) 

q 
˜ S ( + 1 , y s ) ˜ S ( y s , ¡ 1 ) 

d ¾ = | H | 2 

( 

F u n s u b 
1 ( y 1 ¡ ( ¡ 1 ) ) 

s 
˜ S ( + 1 , y s ) 

˜ S ( + 1 , ¡ 1 ) ̃  S ( y s , ¡ 1 ) 

) 

£ 
( 

˜ F u n s u b 
2 ( + 1 ¡ y 2 ) 

s 
˜ S ( y s , ¡ 1 ) 

˜ S ( + 1 , ¡ 1 ) ̃  S ( + 1 , y s ) 

) 

Naïve Factorization: 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 
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•  Rearrange factors: 
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2 ( + 1 ¡ y 2 ) 

s 
˜ S ( y s , ¡ 1 ) 

˜ S ( + 1 , ¡ 1 ) ̃  S ( + 1 , y s ) 

) 

Naïve Factorization: 

y = 0 y = + 1 y = ¡ 1 

Soft 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 
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˜ S ( + 1 , ¡ 1 ) ̃  S ( + 1 , y s ) 

) 

Naïve Factorization: 

y = 0 y = + 1 y = ¡ 1 

Soft 

Bad approx. 

Bad approx. 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 

 

d ¾ = | H | 2 F u n s u b 
1 ( y 1 ¡ ( ¡ 1 ) ) q 

˜ S ( + 1 , ¡ 1 ) 
£ 

˜ F u n s u b 
2 ( + 1 ¡ y 2 ) q 

˜ S ( + 1 , ¡ 1 ) 
. 

q 
˜ S ( + 1 , y s ) ˜ S ( y s , ¡ 1 ) 

q 
˜ S ( + 1 , y s ) ˜ S ( y s , ¡ 1 ) 

d ¾ = | H | 2 
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1 ( y 1 ¡ ( ¡ 1 ) ) 

s 
˜ S ( + 1 , y s ) 

˜ S ( + 1 , ¡ 1 ) ̃  S ( y s , ¡ 1 ) 

) 

£ 
( 

˜ F u n s u b 
2 ( + 1 ¡ y 2 ) 

s 
˜ S ( y s , ¡ 1 ) 

˜ S ( + 1 , ¡ 1 ) ̃  S ( + 1 , y s ) 

) 

Naïve Factorization: 

y = 0 y = + 1 y = ¡ 1 

Soft 
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Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



Bad approx. Bad approx. 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 
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Understanding the Definition: 
•  Start with only the hard part factorized: 

 
•  Separate soft part: 

 
 

•  Multiply by: 
 

 
•  Rearrange factors: 
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Summary: Complete Definition: 

•  No more pathologies or unregulated divergences. 
–  Non-perturbative models??  Lattice Calcs??   

 

•  Universal (for factorizable processes). 

•  Evolution understood. 
 
•  Follows from TMD-factorization derivation. 

–  Consistent matching to large-qT collinear treatment that 
preserves factorization point-by-point in qT. 

 
•  No explicit soft factor in the TMD factorization formula. 

 
 

 

(See, e.g., Musch, Hagler (2011)) 

Remember Sivers sign flip 
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What is needed? 

Process dependence  
in hard part Universal PDFs  

with evolution 

Large Transverse  
               Momentum Correction 

(Collins book, 2011) 
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•  Collins-Soper Equation: 

–    

 
 

•  RG: 
 
–    

 
–    
 

Evolution 

Perturbatively 
calculable, from  
definitions 

Perturbatively 
calculable from 
definition at small b. 
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Implementing Evolution 

60

• After evolution:

Implementing Evolution

Perturbatively calculable 
coefficient functions Standard (int) PDF

F̃f/H(x, bT , µ, ζ) =


j

 1

x

dx̂

x̂
C̃f/j(x/x̂, b∗;µb, g(µb))fj/H(x, µb)×

•  Small bT: 

 

34

• After evolution:

Implementing Evolution

34

• After evolution:

Implementing Evolution

Not Unique! 
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• After evolution:

Implementing Evolution

Perturbatively calculable 

F̃f/H(x, bT , µ, ζ) =


j

 1

x

dx̂

x̂
C̃f/j(x/x̂, b∗;µb, g(µb))fj/H(x, µb)×

× exp

ln

√
ζ

µb
K̃(b∗;µb) +

 µ

µb

dµ′

µ′


γF (g(µ

′); 1)− ln
√
ζ

µ′
γK(g(µ

′))


×

•  Evolution (valid at all bT): 
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62

• After evolution:

Implementing Evolution

Non-Pertubative
bT dependence

Universal
(same for PDFs, FFs etc…)

× exp

ln

√
ζ

µb
K̃(b∗;µb) +

 µ

µb

dµ′

µ′


γF (g(µ

′); 1)− ln
√
ζ

µ′
γK(g(µ

′))


×

F̃f/H(x, bT , µ, ζ) =


j

 1

x

dx̂

x̂
C̃f/j(x/x̂, b∗;µb, g(µb))fj/H(x, µb)×

× exp

gj/H(x, bT ) + gK(bT ) ln

√
ζ

Q0



•  Matching to non-pertubative bT-dependence: 
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•  After evolution: 

 

Implementing Evolution 

Not Unique! 



54 

Part 4: Explicit determination of TMDs 
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4

These correspond to the directions of P and p

h

. Our
coordinates for a 4-vector v are defined by

v = (v+, v�, v
T

) (6)

where,

v

± = (v0 ± v

z)/
p
2. (7)

Now the most obvious definitions of PDFs use light-
like Wilson lines, which give rise to rapidity divergences
[30]. Regulating the divergences can be done by using

non-light-like Wilson lines. So we define vectors n
A

(y
A

)
and n

B

(y
B

) with finite rapidities y
A

and y

B

:

n

A

= (1,�e

�2yA
,0

T

), n

B

= (�e

2yB
, 1,0

T

). (8)

The actual TMD PDF in Eq. (1) is defined as a limit
of an unsubtracted TMD multiplied by certain unsub-
tracted soft functions. These are first defined in trans-
verse coordinate space and then the final result will be
Fourier transformed to transverse momentum space. The
unsubtracted TMD PDF is

F̃

unsub

f/P

" (x,b
T

, S;µ; y
P

� y

B

)

= Tr
C

Tr
D

Z
dw

�

2⇡
e

�ixP

+
w

�hP, S| ̄
f

(w/2)W (w/2,1, n

B

(y
B

))†
�

+

2
W (�w/2,1, n

B

(y
B

)) 
f

(�w/2)|P, Si
c

(9)

where w

µ = (0+, w�

,b
T

), and we let the function notated with a tilde to denote the use of transverse coordinate
space. The subscript c indicates that only connected diagrams are included, and Tr

C

and Tr
D

represent color and
Dirac traces respectively. The unsubtracted soft function is:

S̃

(0)

(b
T

; y
A

, y

B

) =
1

N

c

h0|W (b
T

/2,1;n
B

)†
ca

W (b
T

/2,1;n
A

)
ad

W (�b
T

/2,1;n
B

)
bc

W (�b
T

/2,1;n
A

)†
db

|0i. (10)

In both of these functions, there should be inserted transverse gauge links at infinity. However their e↵ects cancel in
the subtracted TMD PDF, when Feynman gauge is used, so we have not indicated the extra gauge links explicitly.

The full definition of the TMD PDF from [21] is

F̃

f/P

"(x,b
T

, S;µ; ⇣
F

) = F̃

unsub

f/P

" (x,b
T

, S;µ; y
P

� (�1))

vuut S̃

(0)

(b
T

; +1, y

s

)

S̃

(0)

(b
T

; +1,�1)S̃
(0)

(b
T

; y
s

,�1)
Z

F

Z

2

. (11)

This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z

F

Z

2

at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y

s

.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].

The momentum-space TMD PDF is

F

f/P

"(x,k
T

, S;µ, ⇣
F

) =
1

(2⇡)2

Z
d

2b
T

e

ikT ·bT
F̃

f/P

"(x,b
T

, S;µ, ⇣
F

). (12)

This has dependence on the azimuthal angle between k
T

and the transverse spin vector S
T

of the target hadron. (We
normalize S

T

so that its maximum size is unity.) The TMD PDF is decomposed as usual into the unpolarized TMD
PDF and a spin-dependent term:

F

f/P

"(x, k
T

, S;µ, ⇣
F

) = F

f/P

(x, k
T

;µ, ⇣
F

)� F

? f

1T

(x, k
T

;µ, ⇣
F

)
✏

ij

k

i

T

S

j

M

p

, (13)

with F

? f

1T

(x, k
T

;µ, ⇣
F

) being the Sivers function.

III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar meth-

ods apply to the other TMDs with azimuthal dependence.

Calculate 
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Calculate 

20

k

k−p
p

FIG. 8: One-loop diagram contributing to the TMD PDF and the integrated PDF for a quark inside a gluon.

k
k

p k−p
k−p

k

l

(a) (b) (c)

FIG. 9: One-loop diagrams contributing to the TMD PDF and the integrated PDF of a quark inside a quark. Hermitian
conjugate graphs are also needed but are note shown.

the integrated quark PDF we find to order ↵s,

C̃j0/j(x,bT ;µ; ⇣F /µ
2) = �j0j�(1� x) + �j0j

↵sCF

2⇡

(
2


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✓
2
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◆
� �

E

� "✓
2

1� x

◆

+

� 1� x

#
+ 1� x +

+�(1� x)


�1
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⇥
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� 2(ln 2� �

E
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⇤
2 �

⇥
ln(b2

T

µ2)� 2(ln 2� �
E

)
⇤
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✓
⇣F
µ2

◆��
+O(↵2

s). (A11)

Appendix B: Anomalous Dimensions

All calculations of anomalous dimensions defined in
Eqs. (20),(21) and (29) use dimensional regularization
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FIG. 6: One-loop diagrams contributing to the TMD FF and the integrated FF of a quark fragmenting into a quark.
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Using Eqs.(A7)-(A9) and evaluating the kT integrals, gives the TMD PDF collinear coe�cient function for finding a
quark of flavor j0 in a gluon at order ↵s,
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Finally using diagrams in Fig. 9 together with the soft subtraction terms in Fig. 7 for the TMD PDF for finding a
quark of flavor j0 in a quark of flavor j and again the diagrams in Fig. 9 together with the MS UV counterterms for
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FIG. 7: One-loop diagrams for the soft-factor contributions of Eq. (31). Hermitian conjugate graphs are also needed but are
not shown.
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FIG. 9: One-loop diagrams contributing to the TMD PDF and the integrated PDF of a quark inside a quark. Hermitian
conjugate graphs are also needed but are note shown.
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•  After evolution: 

 

Implementing Evolution 

Not Unique! 
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54

Momentum Space

F (x,kT ;µ; ζ) =
1

(2π)2


d2bT e

−ikT ·bT F̃ (x,bT ;µ; ζ)
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What is needed? 

Process dependence  
in hard part Universal PDFs  

with evolution 

Large Transverse  
               Momentum Correction 
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Our strategy up to now: 

•  Use evolution to combine existing fits into unified/global 
fits that include evolution. 
 
 
–  PDFs:  

•   Start with DY: 

•   Modify to match to SIDIS:  
 

 
 
 

•  Can now supply explicit, evolved TMD PDF fit. 
  

(Landry et al, (2003); Konychev, Nadolsky (2006)) 

(Schweitzer, Teckentrup, Metz (2010)) 

(BLNY) 

(STM) 

(S.M. Aybat, TCR (2011)) 
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Evolving TMD PDFs 

(Landry et al, (2003)) (Schweitzer, Teckentrup, Metz (2010)) 

(SIDIS) (Drell-Yan) 
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Evolving TMD PDFs 

JLab 
Energies 

Tevatron 
Energies 
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•  After evolution: 

 

Implementing Evolution 
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Evolving TMD PDFs 

Gaussian fit good at small kT. 
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Unambiguous Hard Part 

•  Higher orders follow systematically from definitions: 
 

 
•  Drell-Yan: 

 
–   

 
 

•  SIDIS 
 
–   

 
 
 
 

 

H = H 0 

µ 
1 + 

C F ® s 
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µ 
¼ 2 

2 
¡ 4 

¶ ¶ 
+ O ( ® 2 

s ) 

H = H 0 

µ 
1 ¡ 4 C F ® s 

¼ 

¶ 
+ O ( ® 2 

s ) 
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Unambiguous Hard Part 
•  Definition: 

 

 
•  Drell-Yan: 

 
 

 
 

•  SIDIS 
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Unambiguous Hard Part 
•  Definition: 

 

 
•  Drell-Yan: 

 
 

 
 

•  SIDIS 
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Unambiguous Hard Part 
•  Definition: 

 

 
•  Drell-Yan: 

 
 

 
 

•  SIDIS 
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Part 5: The Sivers Effect 
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Newest results: Sivers Function 
 
•   

  
  
•  Relevant transformations:  
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So from Eq. (15) we express the momentum space Sivers function in terms of F̃
0
:

F
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whose inverse transform is
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Notice that the originally defined F̃

? f

1T

from Eq. (16) no longer appears. The b
T

-dependent function F̃

0 ? f

1T

(x, b
T

;µ, ⇣
F

)

is closely analogous to the quantity f̃

?(1)

1T

that appears in Eqs. (16) and (20) of Ref. [29], and to @

i

b

q

T

in Eq. (40) of
Ref. [20], though the basic definition for the b

T

-space TMD PDF in Eq. (11) is significantly di↵erent.

B. The Evolution Equations

The set of evolution equations comprises the Collins-
Soper (CS) equation which gives evolution with respect
to ⇣

F

, and the RG equations which give evolution with
respect to µ. The CS equation for the TMD function
defined in Eq. (11) is [21]

@F̃
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@ ln
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The RG equations are:
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d lnµ
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and
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Similar equations apply to the fragmentation function.
It follows that the ⇣

F

dependence of �
F

is determined:

@�

F

(g(µ); ⇣
F

/µ

2)

@ ln
p
⇣

F

= ��

K

(g(µ)), (29)

so that

�

F

(g(µ); ⇣
F

/µ

2) = �

F

(g(µ); 1)� 1

2
�

K

(g(µ)) ln
⇣

F

µ

2

. (30)

These equations were used in Ref. [22] to calculate the
evolution of the unpolarized TMDs. For the spin de-
pendent case, the Fourier transform of the second term
in Eq. (13) obeys the same evolution equations, i.e., the
equations apply to

Z
d
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The CS equation for the spin dependent part is therefore,
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Hence, Eq. (18) shows that the CS equation for
F̃

0 ? f

1T

(x, b
T

;µ, ⇣
F

) is the same as for the unpolarized
TMD PDF:
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Similarly, its RG equation is like Eq. (28):
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Note that in Eqs. (33, 34) the same CS kernel K̃(b
T

;µ)
and anomalous dimension �

F

(g(µ); ⇣
F

/µ

2) appear as in
the unpolarized case. This is because K̃ and �

F

are prop-
erties of the operator defining the parton density, and this
operator is the same for the ordinary unpolarized TMD
PDF as for the Sivers function; both concern the num-
ber density of quarks in a hadron, with no polarization
restriction on the quark.

It is important to emphasize that the evolution equa-
tions (25, 27, 28) are set up to be exactly correct for
all b

T

, and for all k
T

. This includes the region where
b

T

! 1 (and hence k

T
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These equations were used in Ref. [22] to calculate the
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These correspond to the directions of P and p
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coordinates for a 4-vector v are defined by
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Now the most obvious definitions of PDFs use light-
like Wilson lines, which give rise to rapidity divergences
[30]. Regulating the divergences can be done by using
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The actual TMD PDF in Eq. (1) is defined as a limit
of an unsubtracted TMD multiplied by certain unsub-
tracted soft functions. These are first defined in trans-
verse coordinate space and then the final result will be
Fourier transformed to transverse momentum space. The
unsubtracted TMD PDF is
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), and we let the function notated with a tilde to denote the use of transverse coordinate
space. The subscript c indicates that only connected diagrams are included, and Tr
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represent color and
Dirac traces respectively. The unsubtracted soft function is:
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In both of these functions, there should be inserted transverse gauge links at infinity. However their e↵ects cancel in
the subtracted TMD PDF, when Feynman gauge is used, so we have not indicated the extra gauge links explicitly.

The full definition of the TMD PDF from [21] is
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z

F

Z

2

at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y

s

.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].

The momentum-space TMD PDF is
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This has dependence on the azimuthal angle between k
T

and the transverse spin vector S
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of the target hadron. (We
normalize S
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so that its maximum size is unity.) The TMD PDF is decomposed as usual into the unpolarized TMD
PDF and a spin-dependent term:
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with F
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(x, k
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) being the Sivers function.

III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar meth-

ods apply to the other TMDs with azimuthal dependence.

Sivers 

(S.M. Aybat, J.C. Collins, J.W. Qiu, TCR: arXiv:1110.6428) 

See Boer, Gamberg, Musch, Prokudin (2011)  



73 

Newest results: Sivers Function 
 
•   

  
 
•  Recall the definition: 

 

 

4

These correspond to the directions of P and p

h

. Our
coordinates for a 4-vector v are defined by

v = (v+, v�, v
T

) (6)

where,

v

± = (v0 ± v

z)/
p
2. (7)

Now the most obvious definitions of PDFs use light-
like Wilson lines, which give rise to rapidity divergences
[30]. Regulating the divergences can be done by using

non-light-like Wilson lines. So we define vectors n
A

(y
A

)
and n

B

(y
B

) with finite rapidities y
A

and y

B

:

n

A

= (1,�e

�2yA
,0

T

), n

B

= (�e

2yB
, 1,0

T

). (8)

The actual TMD PDF in Eq. (1) is defined as a limit
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z
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Z
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at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y

s

.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].
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This has dependence on the azimuthal angle between k
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and the transverse spin vector S
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of the target hadron. (We
normalize S
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so that its maximum size is unity.) The TMD PDF is decomposed as usual into the unpolarized TMD
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[30]. Regulating the divergences can be done by using

non-light-like Wilson lines. So we define vectors n
A

(y
A

)
and n

B

(y
B

) with finite rapidities y
A

and y

B

:

n

A

= (1,�e

�2yA
,0

T

), n

B

= (�e

2yB
, 1,0

T

). (8)

The actual TMD PDF in Eq. (1) is defined as a limit
of an unsubtracted TMD multiplied by certain unsub-
tracted soft functions. These are first defined in trans-
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This involves limits: infinite rapidity on the Wilson lines indicated, infinite length for the Wilson lines, and then
removal of the UV regulator (dimensional regularization). The factors Z
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Z
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at the end of Eq. (11) are the field
strength and TMD renormalization factors respectively. Notice that two of the soft factors have one of their rapidity
arguments equal to the finite parameter y

s

.
An exactly analogous definition applies to the fragmentation function (see Ref. [21] for the explicit definition). In

our notation, capital letters will denote unintegrated quantities and lower case letters will denote quantities integrated
over transverse momentum. Otherwise, we will stick as closely as possible to the Trento conventions [31].
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This has dependence on the azimuthal angle between k
T

and the transverse spin vector S
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of the target hadron. (We
normalize S
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so that its maximum size is unity.) The TMD PDF is decomposed as usual into the unpolarized TMD
PDF and a spin-dependent term:
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III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar meth-

ods apply to the other TMDs with azimuthal dependence.

Evolution equations apply to this. 
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III. EVOLUTION OF THE SIVERS FUNCTION

In this section we generalize CSS evolution from the
unpolarized TMDs to the Sivers function. Similar meth-

ods apply to the other TMDs with azimuthal dependence.
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The general CSS formalism works equally well for these
functions [21]. But it involves Fourier transformations in
two transverse dimensions, and for practical use it is con-
venient to perform the azimuthal integrals analytically
and to write the transforms in terms of integrals over the
sizes of the transverse variables. The treatment of the az-
imuthal integrals provided in Sect. III A closely parallels
previous treatments in Refs. [20, 23] and recently in [29].
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As we will see shortly, it is this derivative F̃

0
and not

the function F̃ itself that gets used in the evolution equa-
tions and in the formula for the Sivers term in the actual
transverse momentum dependence in Eq. (13).
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The general CSS formalism works equally well for these
functions [21]. But it involves Fourier transformations in
two transverse dimensions, and for practical use it is con-
venient to perform the azimuthal integrals analytically
and to write the transforms in terms of integrals over the
sizes of the transverse variables. The treatment of the az-
imuthal integrals provided in Sect. III A closely parallels
previous treatments in Refs. [20, 23] and recently in [29].
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As we will see shortly, it is this derivative F̃

0
and not

the function F̃ itself that gets used in the evolution equa-
tions and in the formula for the Sivers term in the actual
transverse momentum dependence in Eq. (13).
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imuthal integrals provided in Sect. III A closely parallels
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and not
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generality, we use a frame where k

T

is in the x direction

so that k

i
T

kT
= (1, 0) and b

i
T

bT
= (cos ✓, sin ✓). Then,

�

i

f/P

(x,k
T

;µ, ⇣
F

) =
i

(2⇡)2M
P

Z
1

0

db

T

b

T

F̃

0 ? f

1T

(x, b
T

;µ, ⇣
F

)

Z
⇡

�⇡

d✓ e

ikT bT cos ✓(cos ✓, sin ✓)

=
1

(2⇡)2M
P

Z
1

0

db

T

b

T

F̃

0 ? f

1T

(x, b
T

;µ, ⇣
F

)
@

@(k
T

b

T

)

Z
⇡

�⇡

d✓ e

ikT bT cos ✓(1, 0)

=
k

i

T

2⇡M
P

k

T

Z
1

0

db

T

b

T

F̃

0 ? f

1T

(x, b
T

;µ, ⇣
F

)
@

@(k
T

b

T

)
J

0

(k
T

b

T

)

=
�k

i

T

2⇡M
p

k

T

Z
1

0

db

T

b

T

J

1

(k
T

b

T

)F̃ 0 ? f

1T

(x, b
T

;µ, ⇣
F

) . (21)

Then the complete Sivers term in Eq. (13) is
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b

max

= 0.5GeV�1 in [33], and b

max

= 1.5GeV�1 in [34].
Next we write
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The first two terms are perturbative and include all
the evolution of K̃. The last term is non-perturbative

but scale-independent. It represents the only non-
perturbative information needed to evolve the Sivers
function from the scale Q

0

where it was initially fit. But
this function is process-independent [21], so we can take
its value from already existing fits to unpolarized Drell-
Yan [33, 34] scattering at a variety of energies.

This gives the evolved function:
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We can set µ
0

= Q

0

and then use Q
0

=
p
2.4GeV, which

is the appropriate scale for the fits in [14, 15], which used
data from the HERMES experiment. For the prediction
of data at a higher energy, one should set µ

2 = ⇣

F

=
Q

2. The anomalous dimensions �
F

and �

K

are used in a
region where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation,
as in Eq. (23).

The one-loop values of the relevant perturbative quan-
tities are listed in App. A.

The size of the Sivers asymmetry is also often
parametrized by the function,
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As can be seen from Figs. 1 and 2 below, TMD func-
tions broaden substantially as the scale increases. Thus
larger values of transverse momentum become important,
and correspondingly we need the F̃ factor at small b

T

.

B. Including the perturbative calculation of Sivers
function at small-bT

At low scales, the Sivers function is dominantly at low
values of k

T

, and correspondingly the range of b
T

that
matters concerns the larger values where both the start-
ing value F̃
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) and the evolution kernel
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;µ) are in the non-perturbative region. After evolu-
tion to a su�ciently large scale, the broadening of the k

T

-
distribution makes smaller values of b

T

important, where
there is perturbative information. For both this case and
the treatment of the large k

T

tail of the Sivers function
we can use the expansion (41) to write it in terms of the
twist-3 Qiu-Sterman function.

Following the method used for the unpolarized TMD PDF — see Ref. [17, 21] and Eq. (31) of Ref. [22] — we write
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The first line describes the matching to a
collinear treatment relevant to small-b

T

. There,
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Qiu-Sterman Function  

(Kang, Xiao,Yuan (2011)) 



76 

Evolved Sivers Function 
 
•  Small bT: 

  

                     

 
 

8

b

max

= 0.5GeV�1 in [33], and b

max

= 1.5GeV�1 in [34].
Next we write

K̃(b
T

;µ) = K̃(b
⇤

;µ
b

)�
Z

µ

µb

dµ

0

µ

0

�

K

(g(µ0))�g

K

(b
T

). (43)

The first two terms are perturbative and include all
the evolution of K̃. The last term is non-perturbative

but scale-independent. It represents the only non-
perturbative information needed to evolve the Sivers
function from the scale Q

0

where it was initially fit. But
this function is process-independent [21], so we can take
its value from already existing fits to unpolarized Drell-
Yan [33, 34] scattering at a variety of energies.

This gives the evolved function:
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We can set µ
0

= Q

0

and then use Q
0

=
p
2.4GeV, which

is the appropriate scale for the fits in [14, 15], which used
data from the HERMES experiment. For the prediction
of data at a higher energy, one should set µ

2 = ⇣

F

=
Q

2. The anomalous dimensions �
F

and �

K

are used in a
region where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation,
as in Eq. (23).

The one-loop values of the relevant perturbative quan-
tities are listed in App. A.

The size of the Sivers asymmetry is also often
parametrized by the function,
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As can be seen from Figs. 1 and 2 below, TMD func-
tions broaden substantially as the scale increases. Thus
larger values of transverse momentum become important,
and correspondingly we need the F̃ factor at small b

T

.

B. Including the perturbative calculation of Sivers
function at small-bT

At low scales, the Sivers function is dominantly at low
values of k
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, and correspondingly the range of b
T

that
matters concerns the larger values where both the start-
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there is perturbative information. For both this case and
the treatment of the large k

T

tail of the Sivers function
we can use the expansion (41) to write it in terms of the
twist-3 Qiu-Sterman function.

Following the method used for the unpolarized TMD PDF — see Ref. [17, 21] and Eq. (31) of Ref. [22] — we write
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The first line describes the matching to a
collinear treatment relevant to small-b
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We can set µ
0

= Q

0

and then use Q
0
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2.4GeV, which

is the appropriate scale for the fits in [14, 15], which used
data from the HERMES experiment. For the prediction
of data at a higher energy, one should set µ

2 = ⇣

F

=
Q

2. The anomalous dimensions �
F

and �

K

are used in a
region where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation,
as in Eq. (23).

The one-loop values of the relevant perturbative quan-
tities are listed in App. A.
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As can be seen from Figs. 1 and 2 below, TMD func-
tions broaden substantially as the scale increases. Thus
larger values of transverse momentum become important,
and correspondingly we need the F̃ factor at small b
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The first line describes the matching to a
collinear treatment relevant to small-b
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0

= Q

0

and then use Q
0
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is the appropriate scale for the fits in [14, 15], which used
data from the HERMES experiment. For the prediction
of data at a higher energy, one should set µ
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F

=
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2. The anomalous dimensions �
F

and �

K

are used in a
region where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation,
as in Eq. (23).

The one-loop values of the relevant perturbative quan-
tities are listed in App. A.
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As can be seen from Figs. 1 and 2 below, TMD func-
tions broaden substantially as the scale increases. Thus
larger values of transverse momentum become important,
and correspondingly we need the F̃ factor at small b

T

.

B. Including the perturbative calculation of Sivers
function at small-bT
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The first line describes the matching to a
collinear treatment relevant to small-b

T

. There,
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The RG equations are:
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d lnµ
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Similar equations apply to the fragmentation function.
It follows that the ⇣

F

dependence of �
F

is determined:
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These equations were used in Ref. [22] to calculate the
evolution of the unpolarized TMDs. For the spin de-
pendent case, the Fourier transform of the second term
in Eq. (13) obeys the same evolution equations, i.e., the
equations apply to
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The CS equation for the spin dependent part is therefore,
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Hence, Eq. (18) shows that the CS equation for
F̃

0 ? f

1T

(x, b
T

;µ, ⇣
F

) is the same as for the unpolarized
TMD PDF:
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Similarly, its RG equation is like Eq. (28):
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Note that in Eqs. (33, 34) the same CS kernel K̃(b
T

;µ)
and anomalous dimension �

F

(g(µ); ⇣
F

/µ

2) appear as in

the unpolarized case. This is because K̃ and �

F

are prop-
erties of the operator defining the parton density, and this
operator is the same for the ordinary unpolarized TMD
PDF as for the Sivers function; both concern the num-
ber density of quarks in a hadron, with no polarization
restriction on the quark.
It is important to emphasize that the evolution equa-

tions (25, 27, 28) are set up to be exactly correct for
all b

T

, and for all k
T

. This includes the region where
b

T

! 1 (and hence k

T

! 0). Indeed, the first term on
the right side of Eq. (1) (the TMD-factorization term)
is designed to give an accurate pQCD treatment when
k
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⌧ Q, independently of the relative sizes of k
T

and
⇤
QCD

.

C. Power laws for kT and bT dependence

As a guide to the qualitative behavior of the Sivers
function, we summarize in this section the power laws
for its dependence on transverse momentum and trans-
verse position as obtained from simple model calcula-
tions. (For a detailed treatment of the power law behav-
ior of other TMDs, see Ref. [30] and also recent discus-
sions in Ref. [27].) In purely perturbative higher-order
calculations, these get modified by logarithms, while use
of a correct solution of the evolution equations can sig-
nificantly modify the power laws [31]. Nevertheless, the
power laws from elementary perturbative calculations
form a useful standard of comparison.
First, we characterize the power law for an ordinary

unpolarized TMD PDF by
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At large k
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is the simple dimensional-
analysis power, appropriate to a theory with a dimen-
sionless coupling. The increase at low k
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is tamed by an
infra-red cuto↵ M , which in QCD is non-perturbative.
In b

T

-space, the large-k
T

behavior Fourier transforms to

F̃ (x, b
T

) ⇠ constant⇥ logarithms (as b
T

! 0). (36)
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is convergent, to give
a finite value for F (x, k
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nential or Gaussian fallo↵ is assumed (which is controlled
by non-perturbative e↵ects in QCD).

As for the Sivers function, its contribution to the quark
density , F? f

1T

(x, k
T

)✏
ij

k

i

T

S

j

/M

p

, has a kinematic zero at
k

T

= 0. In addition, it is a chirality-violating quantity,
and at large k

T

, this requires a suppression by a factor of
mass divided by k

T

relative to the unpolarized density.
So we characterize the result by

F
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M

(k2
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2)2
. (37)
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max

= 0.5GeV�1 in [33], and b
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= 1.5GeV�1 in [34].
Next we write
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). (43)

The first two terms are perturbative and include all
the evolution of K̃. The last term is non-perturbative

but scale-independent. It represents the only non-
perturbative information needed to evolve the Sivers
function from the scale Q

0

where it was initially fit. But
this function is process-independent [21], so we can take
its value from already existing fits to unpolarized Drell-
Yan [33, 34] scattering at a variety of energies.

This gives the evolved function:

F̃
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;µ, ⇣
F
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)
. (44)

We can set µ
0

= Q

0

and then use Q
0

=
p
2.4GeV, which

is the appropriate scale for the fits in [14, 15], which used
data from the HERMES experiment. For the prediction
of data at a higher energy, one should set µ

2 = ⇣

F

=
Q

2. The anomalous dimensions �
F

and �

K

are used in a
region where perturbative calculations are appropriate.

The Sivers function in transverse-momentum space is
then obtained from Eq. (44) by Fourier transformation,
as in Eq. (23).

The one-loop values of the relevant perturbative quan-
tities are listed in App. A.

The size of the Sivers asymmetry is also often
parametrized by the function,
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, (45)

where
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F
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"(x, k
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) = �2k
T

M

p
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? f

1T

(x, k
T

;µ, ⇣
F

). (46)

As can be seen from Figs. 1 and 2 below, TMD func-
tions broaden substantially as the scale increases. Thus
larger values of transverse momentum become important,
and correspondingly we need the F̃ factor at small b

T

.

B. Including the perturbative calculation of Sivers
function at small-bT

At low scales, the Sivers function is dominantly at low
values of k

T

, and correspondingly the range of b
T

that
matters concerns the larger values where both the start-
ing value F̃

0 ? f

1T

(x, b
T

;µ
0

, Q

2

0

) and the evolution kernel
K̃(b

T

;µ) are in the non-perturbative region. After evolu-
tion to a su�ciently large scale, the broadening of the k

T

-
distribution makes smaller values of b

T

important, where
there is perturbative information. For both this case and
the treatment of the large k

T

tail of the Sivers function
we can use the expansion (41) to write it in terms of the
twist-3 Qiu-Sterman function.

Following the method used for the unpolarized TMD PDF — see Ref. [17, 21] and Eq. (31) of Ref. [22] — we write
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(47)

The first line describes the matching to a
collinear treatment relevant to small-b

T

. There,
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) is expressed as a coe�cient function
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)) convoluted with a (twist-
three) Qiu-Sterman function T
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b

), where
for the simplicity, we neglected the terms proportional
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The one-loop values of the relevant perturbative quan-
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As can be seen from Figs. 1 and 2 below, TMD func-
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and correspondingly we need the F̃ factor at small b
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The first line describes the matching to a
collinear treatment relevant to small-b

T

. There,
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Input distribution 

2

rect evolution formalisms. This is inadequate when they
are to be applied to experiments at widely di↵erent ener-
gies. There is a good QCD formalism for applying TMD
functions in a factorization framework, due to Collins,
Soper and Sterman (CSS) [16, 17]. The CSS formalism
gives a correct treatment of the region of low transverse
momentum, which is where the Sivers function analysis
is used. However it has not been fully systematized for
the case of the Sivers function and other azimuthally-
dependent functions, except in the work of Boer [18, 19]
and Idilbi et al. [20], on which we comment below.

In this paper, we give a complete extension of the CSS
method to processes that need the Sivers function, using
the methods recently given in Ref. [21]. It is straight-
forward to extend our results to the other azimuthally
dependent PDFs and FFs (e.g., the Collins function and
the Boer-Mulders function). We apply the formalism to
give numerical results for the Sivers function evolved from
existing fits. The only extra non-perturbative informa-
tion needed for the evolution is universal and is obtained
from existing fits to the unpolarized Drell-Yan process.
This extends the results given by two of us in Ref. [22] for
the unpolarized case. Reference [15] attempts to include
some e↵ects of evolution by simply including the evolu-
tion from collinear factorization, but this is incorrect for
TMD-factorization. It is also stated (Ref. [15], for exam-
ple) that the true scale-evolution of the Sivers function is
unknown. One purpose of this article is to demonstrate
that this is no longer true.

With the aid of an approximation useful for the
non-perturbative region, we present the results as
Gaussian transverse-momentum distributions with scale-
dependent parameters. They are therefore as easy to use
in simple parton-model-style calculations as the original
fixed-scale fits [14, 15]. As the scale increases, the distri-
butions broaden substantially in transverse momentum,
and get diluted in size. It will be necessary to include
perturbative twist-3 corrections to get more accurate val-
ues at the larger values of transverse momentum, and we
present a scheme for how this should be done.

Boer [18, 19] has applied the CSS method to processes
involving the Collins function. Idilbi et al. [20] have ap-
plied the CSS method to their definitions of various TMD
distributions [23, 24] including the Sivers function. Our
treatment is substantially improved, to include a correct
treatment of the non-perturbative region in CSS evolu-
tion applied to T-odd functions, to use a more modern
version of the CSS formalism, to apply it to the Sivers

function, and to obtain convenient numerical results for
the Sivers function.

Although it has recently become common for the
word “resummation” to be used to indicate any CSS-
like treatment, in our work we will maintain a firm dis-
tinction between resummation methodology and TMD-
factorization. The term “resummation” is often used to
indicate that one starts with conventional collinear fac-
torization and resums logarithms of q

T

/Q, which can in
fact be done with the CSS methodology. The problem
with this approach is that it is only valid when the un-
derlying collinear factorization formula is valid, i.e., for
the region where the transverse momentum q

T

is both
much less than the hard scale and much greater than
hadronic binding energies ⇠ ⇤

QCD

. (See, in particular,
the recent work of Ref. [25].) But to extend the cal-
culations to transverse momenta comparable to ⇤

QCD

and to zero transverse momentum requires a complete
TMD-factorization formalism, which we use here. This is
particularly important because many SIDIS experiments
such as HERMES and JLab are performed at kinemati-
cal scales where transverse momenta of order ⇤

QCD

are
certainly important, and Q is not so large.

A number of di�culties are caused by the use of a pure
resummation formalism rather than TMD factorization
as the basis of calculations. For the present paper, one of
the most significant is that a leading-power resummation
formalism does not give the e↵ects associated with the
Sivers function (and also those associated with the Boer-
Mulders [26] function). But, provided that spin e↵ects
are treated correctly, the presence of these functions is
automatic in TMD factorization, at leading power.

II. SETUP AND DEFINITIONS

In this section we give the factorization formula for
SIDIS: e+P (S) ! e+h+X, and present the definitions
of the TMD functions. We let P and S be the momentum
and spin vector of the hadron target, and we let h label
the detected hadron, of momentum p

h

. With a single ex-
changed photon of momentum q, independent kinematic
variables are: Q =

p
�q

2, x = Q

2

/2p · q, z = P ·p
h

/P · q,
and the virtual photon’s transverse momentum q

T

(in
a hadron-frame where the measured hadrons have zero
transverse momentum).

The TMD-factorization formula in the form derived by Collins [21] is:

W

µ⌫ =
X

f

��H
f

(Q;µ)2
��µ⌫

Z
d

2k
1T

d

2k
2T

F

f/P

"(x,k
1T

, S;µ; ⇣
F

)D
h/f

(z, zk
2T

;µ; ⇣
D

) �(2)(k
1T

+ q
T

� k
2T

)

+ Y (Q,q
T

) +O((⇤/Q)a). (1)

Here F

f/P

"(x,k
1T

, S) is the TMD PDF for an unpolar-
ized quark of flavor f in a proton of polarization S, and

D

h/f

(z, zk
2T

) is the unpolarized fragmentation function.
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Thus, our use of TMD-factorization is closely analogous
to what already exists for collinear factorization.

V. GAUSSIAN PARAMETRIZATIONS IN THE
LOW-qT REGION

In this section we explain the implementation of QCD
evolution for the Sivers function with a Gaussian ansatz.
Since the small-b

T

region is twist-three, the tail of the
(momentum space) Sivers function (at large k

T

) is power-
suppressed relative to the unpolarized TMD function.
Furthermore, as illustrated in Ref. [22], a Gaussian pa-
rameterization provides a good description of the low
transverse momentum behavior, even up to transverse
momenta of a few GeV. Therefore, we take as a starting
point a detailed treatment of the the twist-two large-b

T

behavior, leaving for future refinements an account of the
matching of the small-b

T

behavior to the twist-three fac-
torization formalism. That is, we use Eq. (44) rather
than Eq. (47)

Even so, a full treatment that extends to small-b
T

by
including higher orders in C̃

f/j

(x̂
1

, x̂

2

, b

⇤

;µ2

b

, µ

b

, g(µ
b

))
will be crucial in the long run for a complete understand-
ing of the evolved Sivers function over the full range of b

T

.
This is especially important to keep in mind when deal-
ing with weighted integrals of the Sivers function where
the e↵ect of the large transverse momentum tail becomes
magnified. We intend to pursue this in future refinements
of the TMD-approach.

At the initial fitting scale, we drop the explicit scale-
dependence:

F̃

0 ?

1T, 0

(x, b
T

) = F̃

0 ? f

1T

(x, b
T

;µ
0

, Q

2

0

). (49)

To match previous fits [14, 15], we approximate the input
function by a Gaussian

F̃

0 ? f

1T, 0

(x, b
T

) = �hk2
T

i
0

f

?

1T

(x)b
T

2
exp

⇥
�hk2

T

i
0

b

2

T

/4
⇤
,

(50)
which corresponds also to a Gaussian ansatz for the
momentum-space distribution:

F

?

1T, 0 f

(x, k
T

) =
f

? f

1T

(x)

hk2
T

if
0

⇡

exp
h
�k

2

T

/hk2
T

if
0

i
. (51)

The parameter hk2
T

if
0

is the width of the Sivers function
for a quark of flavor f at the scale where the Gaussian
fit is performed. Comparing with Eq. (47), we see that
g

Sivers

f/P

(x, b
T

) = hk2
T

if
0

b

2

T

/4. The fits performed in [14, 15]

are for quite low scales (Q2 = 2.4 GeV2 for HERMES
data). We therefore assume that the Sivers function is
dominated by the non-perturbative large-b

T

region, in
which case a Gaussian description, with a negligible tail
e↵ect, makes sense. The first moment of the input mo-

mentum space Sivers function obeys the usual relation:

f

? (1)

1T, 0

(x) =

Z
d

2k
T

k

2

T

2M2

p

F

?

1T, 0

(x, k
T

) =
hk2

T

i
0

2M2

p

f

?

1T

(x).

(52)
We again remind the reader that for our calculations, we
are assuming a Sivers function for SIDIS and that a sign
flip is necessary to go to DY.
With g

K

(b
T

) already known from previous fits to high
energy Drell-Yan data [27, 35, 36], all that is now needed
in order to obtain evolved Gaussian fits are hk2

T

if
0

and

f

? f

1T

(x). These will come from previously obtained fixed
scale Gaussian fits. In the next section, we will provide
two examples and illustrate the e↵ect of evolution for two
of the sets of Gaussian fits available in the literature.
The function g

K

(b
T

) is the only non-perturbative input
that is necessary apart from these initial fits. We have
also adopted the standard Gaussian ansatz for g

K

(b
T

),
writing g

K

(b
T

) = g

2

b

2

T

/2. Fits like those of Refs. [27,
35, 36] provide numerical values for g

2

. In the Brock,
Landry, Nadolsky, Yuan (BLNY) fits [27] a value of g

2

=
.68 GeV2 is found. This corresponds to a value for b

max

of 0.5 GeV�1, and is what we will use in the fits of the
next section.

VI. SPECIFIC FITS

In this section we provide examples of evolved fits, ob-
tained by following the steps of Sect. V with specific fits
for the input distributions. We remind the reader that
our numerical calculations correspond to the Sivers func-
tion of SIDIS, and that they acquire and overall minus
sign in the Drell-Yan process.

A. Bochum Fits

The fits of Ref. [14] use a Gaussian to describe the
HERMES measurements [37] which were performed with
an average Q

2 of 2.41 GeV2. We refer to these as the
Bochum fits. The function corresponding to f

? f

1T

(x) in
Eq. (51) is

h
f

? up/down

1T

(x)
i

Bochum

= ± 2M2

P

hk2
T

i
0

Ax

b�1(1� x)5 . (53)

The fit parameters are

A = 0.17, b = 0.66.

In the Bochum fits, the parameter corresponding to
hk2

T

if
0

in Eq. (51) is assumed to be independent of flavor
and lies between 0.10 GeV2 and 0.32 GeV2. We take

hk2
T

if
0

Bochum

= hk2
T

i
0Bochum

= 0.2GeV2

, (54)

which corresponds to the “best fit” scenario of Ref. [14].
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function by a Gaussian

F̃

0 ? f

1T, 0

(x, b
T

) = �hk2
T

i
0

f

?

1T

(x)b
T

2
exp

⇥
�hk2

T

i
0

b

2

T

/4
⇤
,

(50)
which corresponds also to a Gaussian ansatz for the
momentum-space distribution:

F

?

1T, 0 f

(x, k
T

) =
f

? f

1T

(x)

hk2
T

if
0

⇡

exp
h
�k

2

T

/hk2
T

if
0

i
. (51)

The parameter hk2
T

if
0

is the width of the Sivers function
for a quark of flavor f at the scale where the Gaussian
fit is performed. Comparing with Eq. (47), we see that
g

Sivers

f/P

(x, b
T

) = hk2
T

if
0

b

2

T

/4. The fits performed in [14, 15]

are for quite low scales (Q2 = 2.4 GeV2 for HERMES
data). We therefore assume that the Sivers function is
dominated by the non-perturbative large-b

T

region, in
which case a Gaussian description, with a negligible tail
e↵ect, makes sense. The first moment of the input mo-

mentum space Sivers function obeys the usual relation:

f

? (1)

1T, 0

(x) =

Z
d

2k
T

k

2

T

2M2

p

F

?

1T, 0

(x, k
T

) =
hk2

T

i
0

2M2

p

f

?

1T

(x).

(52)
We again remind the reader that for our calculations, we
are assuming a Sivers function for SIDIS and that a sign
flip is necessary to go to DY.
With g

K

(b
T

) already known from previous fits to high
energy Drell-Yan data [27, 35, 36], all that is now needed
in order to obtain evolved Gaussian fits are hk2

T

if
0

and

f

? f

1T

(x). These will come from previously obtained fixed
scale Gaussian fits. In the next section, we will provide
two examples and illustrate the e↵ect of evolution for two
of the sets of Gaussian fits available in the literature.
The function g

K

(b
T

) is the only non-perturbative input
that is necessary apart from these initial fits. We have
also adopted the standard Gaussian ansatz for g

K

(b
T

),
writing g

K

(b
T

) = g

2

b

2

T

/2. Fits like those of Refs. [27,
35, 36] provide numerical values for g

2

. In the Brock,
Landry, Nadolsky, Yuan (BLNY) fits [27] a value of g

2

=
.68 GeV2 is found. This corresponds to a value for b

max

of 0.5 GeV�1, and is what we will use in the fits of the
next section.

VI. SPECIFIC FITS

In this section we provide examples of evolved fits, ob-
tained by following the steps of Sect. V with specific fits
for the input distributions. We remind the reader that
our numerical calculations correspond to the Sivers func-
tion of SIDIS, and that they acquire and overall minus
sign in the Drell-Yan process.

A. Bochum Fits

The fits of Ref. [14] use a Gaussian to describe the
HERMES measurements [37] which were performed with
an average Q

2 of 2.41 GeV2. We refer to these as the
Bochum fits. The function corresponding to f

? f

1T

(x) in
Eq. (51) is

h
f

? up/down

1T

(x)
i

Bochum

= ± 2M2

P

hk2
T

i
0

Ax

b�1(1� x)5 . (53)

The fit parameters are

A = 0.17, b = 0.66.

In the Bochum fits, the parameter corresponding to
hk2

T

if
0

in Eq. (51) is assumed to be independent of flavor
and lies between 0.10 GeV2 and 0.32 GeV2. We take

hk2
T

if
0

Bochum

= hk2
T

i
0Bochum

= 0.2GeV2

, (54)

which corresponds to the “best fit” scenario of Ref. [14].

(Collins et al., (2006)) 
 
 

(Anselmino et al., (2009…)) 
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FIG. 1: The (negative of the) up quark Sivers function at x = 0.1 evolved from Q =
p
2.4 GeV(solid-maroon) to Q =

5 GeV(dashed-blue) and Q = 91.19 GeV(dotdashed-red). (Color available online.) The upper plot is found by evolving the
Gaussian fits of the Bochum group [14] and the lower plot is found by evolving the Gaussian fits of the Torino group [15].
In the case of the Bochum fits, the down quark Sivers function is just the negative of the up quark one. For the Torino fits,
the down quark Sivers function is obtained by multiplying the up quark Sivers function by �1.35. These functions acquire an
overall sign flipped if used in Drell-Yan.

there is more than 40% suppression in the integral of the
curves in Fig. 2 from 0 to 10 GeV when the Gaussian fit
is used rather than the fit including the tail. (Note that
in principle the integral should be extended to order Q.)
For the Q = 5 GeV curves, integrated up to 5 GeV, the
corresponding suppression is only about 9%.

By contrast, at low-k
T

the Gaussian functions, shown
as the dashed curves in Fig. 2, provide excellent approx-
imations to the evolved Sivers function. This suggests
that the evolved Gaussian approximation is especially
suited to low-Q/low-k

T

studies. A sample of evolved
Gaussian fits for lower Q is shown in Fig. 3.

VII. DISCUSSION AND CONCLUSIONS

Many of the recent phenomenological e↵orts related
to the study of transverse polarization e↵ects in TMDs
have assumed a lowest-order, generalized parton model
(GPM) picture [51] and work within a rather narrow
range of energy scales. However, the full power of fac-
torization theorems lies is in their ability to make pre-
dictions for a variety of processes over a wide range of
energy scales. In this article, we have explained the steps
for implementing evolution for polarization dependent
TMD PDFs, specifically illustrated with the Sivers func-
tion. The basic method is the CSS formalism [16, 17, 33],

with the specific formulation of the TMD-factorization
formalism given recently in Ref. [21]. An advantage of
the most up-to-date TMD-factorization formula is that
it is written in a form closely analogous to the GPM
(see Eq. (1)), with explicit definitions for the individ-
ual TMDs. Therefore, existing treatments that rely on
a GPM framework need only to replace the unevolved
TMDs with the evolved ones. An important aspect of our
approach is that it relies on a genuine, complete TMD-
factorization formalism, to be contrasted with the resum-
mation methodology that has often been relied on in the
past to treat many aspects of TMD physics. That is, the
TMD-factorization formalism provides, from the outset,
a consistent treatment of factorization for the full range
of k

T

(or, equivalently, the full range of b
T

in coordinate
space).
Fortunately, many of the results obtained from the

treatment of unpolarized TMDs can be carried over di-
rectly to the polarization dependent case, including the
calculation of the anomalous dimensions �

F

, �
D

and �

K

,
and the CS evolution kernel K, in both its calculable per-
turbative part and its non-perturbative part g

K

(b
T

) that
is known from fits to unpolarized Drell-Yan. An impor-
tant di↵erence from the unpolarized case is in the match-
ing at large-k

T

. In the unpolarized case, the TMD PDF
(or FF) matches to a twist-2 collinear factorization treat-
ment at large k

T

, whereas the Sivers function matches
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FIG. 2: The up quark Sivers function at Q = 91.19 GeV (solid curves) and the corresponding Gaussian fit for the low-kT region
(dashed curves). Note that the function plotted is the Sivers function multiplied by �2⇡k3

T . The upper panel is obtained by
evolving the Gaussian fits of the Bochum group [14] and lower panel is obtained by evolving the Gaussian fits of the Torino
group [15] . Below each plot, the ratio between a Gaussian fit and the evolved function including the the tail is also shown.

polarized case. Also note that a significant perturbative
tail is generated at large Q as shown in Fig. 2. We reem-
phasize that this should be kept in mind when evaluating
integrals like Eq. (52).

Gaussian parametrizations are particularly convenient
for doing explicit calculations. Therefore, we have tested
the quality of Gaussian fits after evolution to large Q

and find that the Gaussian function provides an excellent
approximation to the Sivers function at small k

T

, even
for Q ⇡ 90.0 GeV. We have made these fits available, as
well as code for generating evolved TMDs at a website
maintained by two of us (Aybat and Rogers) [50].

Much work remains to be done in the e↵ort to connect
a full QCD treatment of TMDs with phenomenology. An

explicit implementation of the matching to the twist-3
Qiu-Sterman formalism is still needed, and will be partic-
ularly important for a correct treatment of k

T

-weighted
observables in which the extra k

T

factors enhance the
contribution from the large k

T

region. The recent work
of Ref. [25] may help. Moreover, as new data become
available for both polarized and unpolarized cross sec-
tions, it will be useful to construct new fits that include
evolution from the beginning. Finally, explicit calcula-
tions, analogous to the ones presented here, need to be
applied to the other TMDs like the Boer-Mulders and
Collins functions.

At large Q, the shape of the distribution is especially
sensitive to the value of b

max

, g
2

and the functional form
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Gaussian parametrizations are particularly convenient
for doing explicit calculations. Therefore, we have tested
the quality of Gaussian fits after evolution to large Q

and find that the Gaussian function provides an excellent
approximation to the Sivers function at small k

T

, even
for Q ⇡ 90.0 GeV. We have made these fits available, as
well as code for generating evolved TMDs at a website
maintained by two of us (Aybat and Rogers) [50].

Much work remains to be done in the e↵ort to connect
a full QCD treatment of TMDs with phenomenology. An

explicit implementation of the matching to the twist-3
Qiu-Sterman formalism is still needed, and will be partic-
ularly important for a correct treatment of k

T

-weighted
observables in which the extra k

T

factors enhance the
contribution from the large k

T

region. The recent work
of Ref. [25] may help. Moreover, as new data become
available for both polarized and unpolarized cross sec-
tions, it will be useful to construct new fits that include
evolution from the beginning. Finally, explicit calcula-
tions, analogous to the ones presented here, need to be
applied to the other TMDs like the Boer-Mulders and
Collins functions.

At large Q, the shape of the distribution is especially
sensitive to the value of b
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TABLE I: Table of evolved Gaussian parameters, obtained by fitting Gaussians to the evolved Bochum and Torino fixed-scale
fits. The fits are for x�N

Ff/P"(x, kT ;µ, ⇣F ) and are related to F

? f
1T (x, kT ;µ, ⇣F ) via Eq. (46). The parameters are listed

for the up quark distributions at x = 0.1; the Sivers function at di↵erent values of x can be found by multiplying by the
appropriate ratios obtained from Eqs. (53, 55). The Gaussian slope parameter bfit is the same for the up and down quarks. The
normalization parameters afit

up

are related to the down quark normalizations by a

Bochum

down

= �a

Bochum

up

and a

Torino

down

⇡ �1.35aTorino

up

.
The last two columns, kBochum

T,max

and k

Torino

T,max

, are the values of kT above which the Gaussian fits drop to less than a ratio of 0.8
of the Sivers functions calculated directly from Eq. (44).

x�N
F

fit

f/P (x = 0.1, kT ) = a

fit

f kT e
�bfitk2

T

Q (GeV) b

Bochum (GeV�2) b

Torino (GeV�2) a

Bochum

up

(GeV�3) a

Torino

up

(GeV�3) k

Bochum

T,max

(GeV) k

Torino

T,max

(GeV)
p
2.4 4.9999 6.9382 6.5570 ⇥10�1 1.7763 ⇥100 ... ...

2.0 1.8251 2.0329 9.5506 ⇥10�2 1.6661 ⇥10�1 ... ...

2.5 1.1726 1.2552 4.1658 ⇥10�2 6.7105 ⇥10�2 2.36 2.29

3.0 0.9067 0.9555 2.5716 ⇥10�2 4.0138 ⇥10�2 2.56 2.50

3.5 0.7604 0.7945 1.8430 ⇥10�2 2.8276 ⇥10�2 2.70 2.65

4.0 0.6668 0.6929 1.4329 ⇥10�2 2.1745 ⇥10�2 2.80 2.76

4.5 0.6013 0.6225 1.1718 ⇥10�2 1.7649 ⇥10�2 2.89 2.85

5.0 0.5526 0.5705 9.9179 ⇥10�3 1.4854 ⇥10�2 2.96 2.92

10.0 0.3562 0.3637 3.9881 ⇥10�3 5.8409 ⇥10�3 3.39 3.36

15.0 0.2941 0.2992 2.5477 ⇥10�3 3.7049 ⇥10�3 3.56 3.54

20.0 0.2612 0.2653 1.8893 ⇥10�3 2.7372 ⇥10�3 3.67 3.65

25.0 0.2400 0.2435 1.5090 ⇥10�3 2.1810 ⇥10�3 3.75 3.73

30.0 0.2249 0.2280 1.2602 ⇥10�3 1.8182 ⇥10�3 3.81 3.79

35.0 0.2135 0.2163 1.0841 ⇥10�3 1.5621 ⇥10�3 3.86 3.84

40.0 0.2044 0.2070 9.5257 ⇥10�4 1.3712 ⇥10�3 3.90 3.88

45.0 0.1969 0.1993 8.5046 ⇥10�4 1.2232 ⇥10�3 3.94 3.92

50.0 0.1907 0.1929 7.6878 ⇥10�4 1.1049 ⇥10�3 3.97 3.95

55.0 0.1853 0.1874 7.0188 ⇥10�4 1.0081 ⇥10�3 3.99 3.98

60.0 0.1806 0.1826 6.4604 ⇥10�4 9.2744 ⇥10�4 4.02 4.00

65.0 0.1765 0.1784 5.9868 ⇥10�4 8.5906 ⇥10�4 4.04 4.02

70.0 0.1728 0.1747 5.5800 ⇥10�4 8.0035 ⇥10�4 4.06 4.04

75.0 0.1695 0.1713 5.2267 ⇥10�4 7.4937 ⇥10�4 4.08 4.06

80.0 0.1665 0.1683 4.9164 ⇥10�4 7.0467 ⇥10�4 4.10 4.08

85.0 0.1638 0.1655 4.6421 ⇥10�4 6.6514 ⇥10�4 4.11 4.09

90.0 0.1613 0.1629 4.3976 ⇥10�4 6.2993 ⇥10�4 4.13 4.11

to a twist-3 collinear factorization treatment related to
the Qiu-Sterman formalism, as in Eq. (47). Thus, the
treatment provided in this article unifies several di↵erent
aspects of TMD physics.

It is worth commenting on the often repeated state-
ment (see, e.g., Ref. [52]) that calculations in covariant
gauges are impractical or inconvenient, and that working
in light-cone gauge is therefore preferred. In our work,
we find that the opposite is true. Namely, the calculation
of the perturbative parts (at least to order ↵

s

) follows
clear-cut steps in Feynman gauge, while the derivation
of TMD factorization theorems is much more direct in
Feynman gauge than in light-cone gauge. (Indeed, we
are not aware of the existence of a detailed light-cone
gauge derivation of TMD-factorization.) Moreover, once
the calculation of the perturbative parts has been per-
formed in Feynman gauge, a generalized parton model

interpretation follows directly from the TMD factoriza-
tion formula in Eq. (1). For these reasons, we advocate
continuing to work in Feynman gauge for both calcula-
tions and derivations.

We have implemented the evolution explicitly using as
input the already known �

F

, �

D

and �

K

(supplied for
easy reference in App. A), previous fixed-scale Gaussian
fits of the Sivers function at low-Q [14, 15], and previous
fits of the CSS formalism to DY [27]. For the explicit
calculations in the present article, we have focused only
on the low-k

T

region where we need not be concerned
with the treatment of the Qiu-Sterman formalism at large
k

T

, and the approximations of Sect. V make sense. The
resulting evolved momentum space Sivers functions are
shown in Fig. 1. Comparing with Fig. 1 of Ref. [22] for
the evolution of the unpolarized TMD PDF, one sees
even more suppression as Q is increased than in the un-

…
…
…

. 

…
…
…

. 
Gaussians fit to evolved TMD PDF 
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FIG. 3: The evolving Guassian parameters for �2⇡k3

TF
? up

1T (x, kT ;µ,Q) for a range of Q obtained from the Torino and Bochum
fits. Table I lists the Gaussian parameters for a selection of Q.

of g

K

(b
T

). Ref. [35], for example, finds that a larger
value of b

max

is preferred, along with a corresponding
change in g

2

. Furthermore, Refs. [53, 54] find advantages
to using a di↵erent functional form, ⇠ b

2/3 rather than
⇠ b

2, for g

K

(b
T

). This should be taken into account in
future improvements to the fits. The particular set of
parameters used in the calculations in the present article
were chosen both because of their simplicity and because
they correspond to the current state-of-the-art of global
fits to the unpolarized Drell-Yan cross section.

In the future, model calculations (see,e.g., [55] and ref-
erences therein for an overview) can be potentially helpful
for fixing non-perturbative input. Certain models also
lead to non-perturbative input distributions that devi-
ate from the Gaussian ansatz. Conversely, incorporating
evolution into model calculations can help establish the
scale appropriate to the model.

Theoretical uncertainties in the TMD fits, both for un-
polarized and polarized TMDs, can be reduced by in-
cluding higher order results for the anomalous dimen-
sions and the CSS kernel K (in the perturbative region).
Fortunately, as we have discussed in this paper, these
anomalous dimensions and the kernel K are the same for
unpolarized TMDs and the Sivers function. Therefore by
calculating them at NNLO in pQCD, we can reduce the
theoretical uncertainties for both unpolarized and polar-
ized TMDs at the same time.

The ultimate goal is to obtain sets of TMD PDFs and
FFs that can be used in a way that is closely analogous
to what already exists for processes that use collinear
factorization. Namely, we would like to obtain a set of
TMD fits based on precise TMD definitions such that
they can be reliably used to make predictions.
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Appendix A: Anomalous Dimensions etc.

Here we list the MS-scheme anomalous dimensions [21]
that were used in, for example, Eqs. (44) and (47).

�

F

(µ; ⇣
F

/µ

2) = ↵

s

C

F

⇡

✓
3

2
� ln

✓
⇣

F

µ

2

◆◆
+O(↵2

s

). (A1)

At order ↵

s

, the quark TMD FF anomalous dimension
is the same as for the TMD PDF. The CS kernel up to
order ↵

s

in b
T

-space is,

K̃(µ, b
T

) = �↵

s

C

F

⇡

⇥
ln(µ2

b

2

T

)� ln 4 + 2�
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Long-Term Goals: 

•  Repository of improved TMD fits with evolution based on well-
understood operator definitions. 

 
•  Create new fits for unpolarized TMDs (PDFs and fragmentation 

functions), spin dependent TMDs, SSAs, gluon TMDs. 
 

•  Find specific factorization breaking effects?? 

  

https://projects.hepforge.org/tmd/ 



 
•  Begin to implement new fits (starting with unpolarized case) 

using the full TMD-factorization treatment.   

•  Calculate higher orders in hard part, anomalous dimensions, 
coefficient functions.  Include Y-terms.   

 
•  Extend to other polarization dependent functions (Boer-

Mulders, etc…).  Calculate their hard coefficient functions to 
relate to higher twist collinear factorization treatments. 
 

•  Full TMD-factorization valid for all qT. 
 

•  TMD gluon distribution. 
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List of items: 

(In progress…) 

(Higgs…) 
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Thanks! 


